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Abstract Widely available computerized cardiotocography (CTG) data and
machine learning methods present an opportunity to improve the accuracy and
scalability of automated CTG analysis for prenatal fetal monitoring. However,
their interpretabilities are not clear enough, due to superficially dependent
on data. In this paper, we present a study on an interpretable reference for
machine learning-based prenatal fetal monitoring models. CTG characteristics
are classified into baseline category, variability category, acceleration category,
deceleration category and uterine contraction (UC) category via a measure-
ment model. Then structural equation models (SEMs) are introduced to derive
the causal relationship between the CTG categories and explore their impact
on the fetus status. The experimental results show that the variability cate-
gory predicts the baseline category and UC category has a predictive effect on
the deceleration category. In addition, the outcomes, that variability category
and the acceleration category have a greater impact on the identification of
fetal status while the baseline category has less impact, explain the prenatal
fetal monitoring model based on weighted random forests. In summary, our
study validate prenatal fetal monitoring clinical knowledge and provide an in-
terpretable reference for intelligent prenatal fetal monitoring models.

Keywords : Prenatal fetal monitoring , Cardiotocography , Structural
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Address(es) of author(s) should be given



2

1 Introduction

Cardiotocography (CTG) is important in fetal health monitoring. It helps
early diagnosis of abnormalities, such as congenital heart defects, fetal distress
or hypoxia, by responding to which obstetricians can take measures to pre-
vent irreversible damage to the fetus [1]. Non-stress testing (NST) was widely
introduced into prenatal fetal monitoring in the late 1960s and is still widely
used due to its low cost, ease of operation, and non-invasiveness [2]. In NST,
the interpretation of CTG, including fetal heart rate and uterine contraction
signals, has so far largely depended on obstetricians. However, the demand for
fetal monitoring has increased dramatically, while the shortage of specialist ob-
stetricians is still severe, and the level of fetal monitoring in primary or rural
hospitals is quite low [3]. Therefore, many researchers establish prenatal fetal
monitoring models, through the use of uterine contractions (UC) and fetal
heart rate ( FHR). In general, the current machine learning research methods
for prenatal CTG features interpretation are mainly classification algorithms,
lifting algorithms and hybrid algorithms. These methods achieved good exper-
imental results, which is a high accuracy rate. However, the ”accuracy rate”
only illustrates that the method is feasible in the knowledge category. For the
algorithm, transparency mainly reflects the interpretability of the model, that
is, whether humans can understand or explain the conclusions drawn by the
machine[4]. The reasoning process that cannot be explained artificially is likely
to be meaningless. It is even more difficult to accept in the medical field for
patients, due to the disease has complex risk correlation and is vital to life,
and must be very rigorous in development[5].

Strengthening the interpretability of the problem world in machine learn-
ing. On the one hand, it allows users to better understand the decision-making
process of the machine learning system, which is conducive to adding people’s
trust in the model. On the other hand, it can provide users with an operable in-
teraction mode, which enables people’s experience to intervene in data-driven
modeling and decision making, to realize traceability, supervision, guidance,
and correction of the analysis decision process, thereby improving system per-
formance and performance[6].

Based on the above-mentioned medical AI and strict medical reality, we
choose Sisporto data to use SEM model to achieve the following goals: 1) ex-
plore the causal relationship between hidden variables; 2) explore the causal
relationship of hidden variables to fetal status; 3) use Causality validates clin-
ical knowledge and interprets the results of the best machine learning model,
the result of weighted random forests.The experimental results show that the
variant category predicts the baseline category and that the contraction has
a predictive effect on the deceleration category, validating the SisPorto 2.0[7]

(CTG analysis program) and prenatal fetal monitoring clinical knowledge, re-
spectively. In addition, the variability category and the acceleration category
have a greater impact on the identification of fetal status, while the base-
line category has less impact, explaining the importance distribution of CTG
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forests.

2 Related works

2.1 CTG and its interpretations in antenatal fetal monitoring

During antenatal fetal monitoring, it is necessary to record cardiotocog-
raphy (CTG), including fetal heart rate (FHR) and uterine contraction (UC)
[8−9]. Obstetricians usually assess fetal health status based on the characteris-
tics of CTG, such as baseline, variation, deceleration, and uterine contraction.
There are two existing evaluation methods for antenatal CTG, namely ”scor-
ing methods” and ”ranking methods”.

As for the scoring methods, there have NST, Krebs, Fischer, and modi-
fied Fischer, but these scoring methods have some shortcomings. Firstly, the
scoring systems are not uniform, ranging from 10 to 12. Secondly, the scoring
items are inconsistent [9−11]. Moreover, these methods cannot directly define
whether the status of the fetus is normal.

In the ranking methods for antenatal CTG, differences exist in different
countries. The mainstream antenatal fetal monitoring guidelines include Cana-
dian SOGC [12], American ACOG, British NICE, International Federation
of Obstetrics and Gynecology FIGO [13−14] and Chinese expert consensus.
SOGC, ACOG, NICE and FIGO all adopt three-level evaluation among them.
But in Chinese experts’ consensus, the conditions of fetuses are only divided
into two levels, namely as “reactive” and “non-response”[15]. Besides, in Chi-
nese “Obstetrics and Gynecology”, SOGC is adapted in antenatal fetal mon-
itoring . In general, although the existing grading methods can define the
specific conditions of the fetus, they have high sensitivity and low specificity
in practical clinical applications [2−3,9,16]. Especially when the CTG case is
less than 40 minutes, it is prone to false positives, which will lead to overdiag-
nosis of fetal distress and unnecessary cesarean section for pregnant women [17].

2.2 The machine-learning-based models for antenatal fetal monitoring

At present, many scholars at home and abroad mainly use machine learn-
ing methods to classify the CTG dataset of prenatal fetal monitoring research
by Ayresde et al. in SisPorto 2.0 Portugal [18], through the use of uterine
contractions (UC) and fetal heart rate (FHR). The properties of the data
obtained by the signal are classified. In the literature [19] (2015) to evaluate
the classification performance of eight different machine learning methods on
prenatal CTG data, the study shows that the accuracy of the classifier is not
much different. In the literature [20] Yang Zhang (2017) used hybrid PCA and
AdaBoost to successfully classify CTG data and assess fetal status with an ac-
curacy of 98.6%. In the literature [21] Vinayaka Nagendra (2017) used RF and
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SVM to perform a three-class study of the fetal status, and the results showed
that the accuracy was higher than 96%. In the literature [22] Zhao Z (2018)
through the statistical test (ST), area under the curve (AUC) and principal
component analysis (PCA) for feature selection, and then use three repre-
sentative machine learning algorithm decision tree (DT) The support vector
machine (SVM) and adaptive enhancement (AdaBoost) are classified into two
categories. The experimental results show that the combination of AdaBoost
and ST has strong classification ability, the accuracy is 92%, the sensitivity
is 92%, and the specificity is 90%. In general, the current machine learning
research methods for prenatal CTG feature interpretation are mainly classifi-
cation algorithms, lifting algorithms and hybrid algorithms. The accuracy in
the standard data set is not much different, and basically, good experimental
results are obtained.

3 Material and methods

3.1 Dataset description

Based on the strict medical,the data comes from the SisPorto2.0,a program
for automated analysis of cardiotocograms that closely follows the FIGO guide-
lines, analyses ante- and intrapartum tracings, performs no signal reduction,
and has the possibility of simultaneously recording twins. SisPorto2.0 has been
tested in over 6000 pregnancies. The system’s FHR baseline was compared with
an average of three experts’ estimates, and the difference was under 8 bpm
in all cases. A fair to the good agreement was found with experts’ identifi-
cation of accelerations, decelerations, contractions, and normal/reduced vari-
ability (proportions of agreement 0.64-0.89). This dataset contains 2126
Portuguese pregnant women CTG records from 29 to 42 gestational weeks.
Each CTG record has 21 features, among the 2126 CTG records, record has
21 features,among the 2126 CTG records, 1655, 176 and 295 cases respectively
belonged to the normal, suspicious or abnormal state.

From Fig.1, it was obvious that the proportion of the fetal status was not
uniform, the sample in the normal state accounted for 78%, and the total of
suspicious and abnormal samples only accounted for 22%. It could be seen
that there was a serious classification imbalance in the CTG dataset.

3.2 SEMs for interpreting antenatal fetal monitoring

The relationship between observed variables and latent variables is ex-
pressed as a matrix equation.

x = Λxξ + δ (1)
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Fig. 1. CTG data distribution

y = Λyη + ε (2)

Where x and y are prenatal fetal monitoring features, ξ and η are latent
variables(baseline category, variability category, acceleration category, decel-
eration category, uterine contraction), δ and ε are unique factor vectors. The
simple form of the structural equation model is a multiple regression model
with only one dependent variable. The formula is as follows, where η is deter-
mined by y and ε .

η = βη + Γ ξ + ζ (3)

3.3 Intelligent antenatal fetal monitoring based on random forests

In the proposed weighted random forest model, the normal, suspicious and
abnormal labels of CTG was defined as y =0, 1 and 2, n is total number of
CTG cases. where m, l and n − m − l denoted the number of samples with
labels 0,1 and 2; and w0, w1 and w2 were the weights of categories 0, 1, and 2.

W0 =
n

3m
,w1 =

n

3l
, w2 =

n

3(n−m− l)
(4)

Based by the above, it can be seen that the penalty items of CTG categories
were inversely proportional to the number of input samples. The larger the
penalty items of a certain category, the higher the cost of misclassification
would be considered. Hence, the WRF model is more sensitive to suspicious
and abnormal categories

H(x) = argmax

n∑
k=1

Π(ht(x) = y) (5)
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Fig. 2. CTG feature measurement model

After that, the WRF model randomly chose K CTG features to obtain a
subset xi. Then, it would construct decision tree hi(Di), and made up ran-
dom forest h1 (D1 ), h2 (D2 ), h3 (D3 ). . . . . . hi−1 (Di−1 ), hi(Di).Finally,the out-
put prediction result was H1 (x ),H2 (x ),H3 (x ). . . . . .Hi−1 (x ),Hi(x )

4 Results and discussion

4.1 The experimental results of the SEMs models

4.1.1 The result of measurement model assumptions

With SisPorto 2.0: A program for automated analysis of Cardiotocograms,
FIGO scoring, and clinical experience [23−25], combined with feature screening,
classify 17 features into four categories as shown in Fig.2.

Table 1 reports the p-values of all factor loads are less than 0.001 (three
stars), indicating that the interpretation of the measured variables (scale data)
for the four latent variables (baseline, acceleration, deceleration, variant) is
meaningful [32].

It can be seen from the p-value that the baseline and the acceleration
class reach a significant level of 0.05. The estimated values of the baseline
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and variant classes are positive 22.463, indicating a correlation between the
baseline and the variant of the hidden variable.

Table. 1. Estimated weighting factor

Relationship Estimate C.R. P

LB ←− BCategory 0.789
Mean ←− BCategory 0.949 54.434 ***

Median ←− BCategory 0.999 58.593 ***
Mode ←− BCategory 0.934 53.124 ***
DP ←− DCategory 0.478
DL ←− DCategory 0.495 22.202 ***
AC ←− ACategory 0.328
FM ←− ACategory 0.177 6.929 ***

ALTV ←− VCategory 0.55
MSTV ←− VCategory -0.784 -25.456 ***
ASTV ←− VCategory 0.376 15.154 ***
UC ←− UC 0.285

Nmax ←− ACategory 0.706 14.188 ***
Nzeros ←− DCategory 0.195 11.066 ***
Width ←− VCategory -0.855 -26.586 ***

Variance ←− VCategory -0.704 -23.95 ***

4.1.2 The result of prenatal CTG feature structure model

The purpose of this model is to derive the causal relationship between
the variable category (baseline category, variability category, acceleration cat-
egory, deceleration category, uterine contraction) in the measurement model.

This structural model has no variables outside the model, and the variables
that are interpreted are interpreted by variables within the model. Combined
with the measurement model results, the model are obtained according to the
model fit degree [26−28] which is shown in Fig.3.

The implicit factor causal relationship [33,34] correlation coefficient is shown
in Table 2. From the p-value, the causal relationship of the three hidden fac-
tors has reached a significant level of 0.05. The model validates explain that
the model hypothesis is established, the fetal heart rate contraction is verified
to be the cause of fetal heart rate deceleration. The results also show that the
variant class is the baseline class [35], which verifies the content of SisPorto 2.0:
A Program for Automated Analysis of Cardiotocograms: the baseline value is
adjusted according to the variation of the variant class to determine the value
of the baseline of the heart rate.

In addition, the acceleration class and the deceleration class do not appear
at the same time, so the Estimate value is quite high, but the acceleration
does not appear to decelerate does not necessarily occur, so the S.E value is
also large, and the knowledge of the fetal supervision is also consistent.

According to the fetal monitoring literature and books [23−25] , it is known
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Fig. 3. Structural model of prenatal CTG features

that uterine contraction will block the blood flow between the uterus pla-
centa, and the fetal oxygen supply will decrease, leading to a slowing of the
fetal heart rate. When the rules are contracted, normal heart rate decelera-
tion occurs, which is manifested as early deceleration. After the contraction
slows down, the blood flow returns to normal, and the fetal heart rate quickly
returns to normal. When the contractions are too strong or do not coordinate
the uterine contractions, Cause fetal abnormalities such as late fetal decelera-
tion or variability deceleration. So the model verifies that contractions are the
cause of deceleration.

Table. 2. Implicit factor causality correlation estimate

Relationship Estimate C.R. P

DCategory ←− UC 1.22 11.032 ***
ACategory ←− DCategory 0.891 13.188 ***
BCategory ←− VCategory 0.338 13.38 ***
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Fig. 4. Prenatal fetal state classification interpretative structural equation model

4.1.3 The result of interpretative structural equation model for prenatal fetal
status classification

Prenatal fetal status NSP was added to the structural model of prenatal
CTG features to explore the effects of four hidden factors on prenatal fetal sta-
tus, providing interpretability for machine learning classification. According to
the model fitting adjustment [29−31], the interpretable fetal state classification
can be finally obtained as shown in Fig.4.

Table 3 reports the p-values of all factor loads are less than or equal
to 0.001, indicating that the interpretation of the measured variables (scale
data) by the four latent variables (baseline, acceleration, deceleration, vari-
ant) is meaningful. And the interpretation of the fetal state NSP by potential
variables is also meaningful.

4.2 The experimental results of intelligent fetal monitoring model based on
RF

With the outbreak of big data and artificial intelligence, the progress of
the intelligent fetal evaluation methods is dramatically driven by computer
science and engineering. Many scholars have researched on the intelligent fetal
monitoring models based on machine learning. The sensitivity, specificity, F1
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Table. 3. Correlation coefficient in the model

Relationship Estimate C.R. P

DCategory ←− UC 1.22 11.032 ***
ACategory ←− DCategory 0.891 13.188 ***
BCategory ←− VCategory 0.338 13.38 ***

LB ←− BCategory 0.789
Mean ←− BCategory 0.949 54.434 ***

Median ←− BCategory 0.999 58.593 ***
Mode ←− BCategory 0.934 53.124 ***
DP ←− DCategory 0.478
DL ←− DCategory 0.495 22.202 ***
AC ←− ACategory 0.328
FM ←− ACategory 0.177 6.929 ***

ALTV ←− VCategory 0.55
MSTV ←− VCategory -0.784 -25.456 ***
ASTV ←− VCategory 0.376 15.154 ***
UC ←− UC 0.285

Nmax ←− ACategory 0.706 14.188 ***
Nzeros ←− DCategory 0.195 11.066 ***
Width ←− VCategory -0.855 -26.586 ***

Variance ←− VCategory -0.704 -23.95 ***
NSP ←− BCategory -0.063 -3.203 0.001
NSP ←− VCategory -2.557 -8.358 ***
NSP ←− ACategory -2.687 -7.871 ***

Fig. 5. CTG Multi-classification ROC curve

score and ROC curve area of the six machine learning models for prenatal
fetal monitoring are shown in the table. Compared to other machine learning
methods, the WRF model greatly improved sensitivity (0.99 and 0.98) and
specificity (0.96 and 0.95) in the suspicious and anomalous categories. At the
same time, according to the ROC curve area comparison chart (Fig.5), the
WRF model is superior to other machine learning models in reducing the
probability of misdiagnosis, and has the highest accuracy and the shortest
running time. Therefore, the WRF model was chosen as the best representative
of the machine learning model. Next, the SEM model was used to interpret
the reason for the good performance of fetal status in fetal monitoring.

Compared with the existing antenatal CTG classification model (Table
4), the WRF model had best classification performance in imbalanced fetal
monitoring data.
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Table. 4. Comparison of overall accuracy and classification performance of existing CTG
discriminant models

Model Feature Normal Suspicious Abnormal F1 Accuracy

BP[36] 22 97.84% 45.14% 97.24% 80.07% 91.31%

GRNN[37] 21 95.70% 73.92% 84.88% 84.83% 91.86%

PNN[37] 21 95.91% 73.81% 85.45% 85.06% 92.14%

MLPNN[37] 21 95.00% 68.43% 80.50% 81.31% 90.36%

RF[38] 21 96.40% 79.60% 91.20% 89.07% 93.60%

IAGA[39] 6 96.83% 79.15% 89.41% 88.46% 93.89%

DT-AdaBoost[40] 21 97.15% 83.69% 92.84% 91.23% 95.01%

DA[41] 10 89.69% 58.50% 65.58% 71.26% 82.03%

LS-SVM-PSO-BDT[42] 21 96.02% 72.98% 79.18% 82.73% 91.58%

DT[41] 10 93.31% 60.09% 66.43% 73.28% 86.31%
RF 10 96.53% 77.36% 89.16% 87.68% 93.43%

WRF 10 99.75% 97.68% 95.24% 97.85% 99.71%

4.3 Interpreting prenatal fetal monitoring using SEMs models

The important features of the fetal state classification in the excellent rep-
resentative WRF of the machine learning model are shown in Fig.6. The figure
shows the importance of Median, Mean, Mode and LB in the Baseline cate-
gory similar to the presence of ASTV, ALTV, MSTV in the Variation category.
On the one hand, this can be explained by the larger estimate of the varia-
tion class Baseline category in the CTG feature structure model (22.463). On
the other hand, the prenatal fetal state classification interpretative structural
model concludes that the Baseline category has a smaller effect on fetal status
discrimination, so the Variation category is more important than the Baseline
category.

The correlation coefficient between Acceleration category and Deceleration
category in the CTG feature structure model is large (0.677), but the predicted
estimate is 0,which verify that there is a difference in the importance of the
Acceleration category and the Deceleration category in the machine learning
model.There is a huge difference between the Deceleration category and the
fetal state in the prenatal fetal status classification interpretable structural
model so that the relationship between Deceleration category and NSP can-
not be smoothly converged in the model. More importantly, the model derives
three hidden variables that contribute significantly to the determination of
fetal status, verifying that machine learning yields feature categories that con-
tribute significantly to fetal state discrimination.

5 Conclusion

The experimental results show that the variant category predicts the base-
line category and that the contraction has a predictive effect on the decelera-
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Fig. 6. CTG feature importance

tion category, validating the SisPorto 2.0 (CTG analysis program) and prena-
tal fetal monitoring clinical knowledge respectively. In addition, the variability
category and the acceleration category have a greater impact on the identifi-
cation of fetal status, while the baseline category has less impact, explaining
the importance distribution of CTG features in weighted random forests.
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