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Abstract

Goldbach’s conjecture is one of the most difficult unsolved problems in
mathematics. This states that every even natural number greater than
2 is the sum of two prime numbers. In 1973, Chen Jingrun proved that
every sufficiently large even number can be written as the sum of either
two primes, or a prime and a semiprime (the product of two primes). In
2015, Tomohiro Yamada, using the Chen’s theorem, showed that every
even number > exp exp 36 can be represented as the sum of a prime
and a product of at most two primes. In 2002, Ying Chun Cai proved
that every sufficiently large even integer IN is equal to p + P>, where
P; is an almost prime with at most two prime factors and p < N©-%5
is a prime number. In this note, we prove that for every even num-
ber N > 32, if there is a prime p and a natural number m such
that n < p < N—1,p+m = N, N > o(m) and p is
coprime with m, then m is necessarily a prime number when o (m) is
the sum-of-divisors function of m, N = 2 - n and > means “much
greater than”. Indeed, this is a trivial and short note very easy to
check and understand which is a breakthrough result at the same time.
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1 Introduction

As usual o(n) is the sum-of-divisors function of n

>4

d|n
where d | n means the integer d divides n. Define s(n) as @ In number
theory, the p-adic order of an integer n is the exponent of the highest power of
the prime number p that divides n. It is denoted v, (n). Equivalently, v,(n) is
the exponent to which p appears in the prime factorization of n. We can state
the sum-of-divisors function of n as

vp(n)+1 _ 1
—1

o(n) = pri

pln

with the product extending over all prime numbers p which divide n. In
addition, the well-known Euler’s totient function ¢(n) can be formulated as

¢(n):n.1‘[<1—;>.

Chen’s theorem states that every sufficiently large even number can be written
as the sum of either two primes, or a prime and a semiprime (the product of
two primes) [1]. Tomohiro Yamada using an explicit version of Chen’s theorem
showed that every even number greater than e¢” as 1.7 - 101872344071110343 jq
the sum of a prime and a product of at most two primes [2]. A natural number
is called k-almost prime if it has k prime factors [3]. A natural number is prime
if and only if it is 1-almost prime, and semiprime if and only if it is 2-almost
prime. Let N be a sufficiently large even integer. Ying Chun Cai proved that
the equation
N=p+P, p< N,

is solvable, where p denotes a prime and P, denotes an almost prime with at
most two prime factors [3]. In mathematics, two integers a and b are coprime,
if the only positive integer that is a divisor of both of them is 1. Putting all
together yields the proof of the main theorem.

Theorem 1 For every even number N > 32, if there is a prime p and a natural
number m such thatn <p < N—1,p+m = N, N > o(m) and p is coprime with m,
then m is necessarily a prime number when N = 2 -n and > means “much greater
than”.
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2 Proof of Theorem 1

Proof Suppose that there is an even number N > 32 which is not a sum of two
distinct prime numbers. We consider all the pairs of positive integers (n — k,n + k)
where n = g, k < mn is a natural number, n + k and n — k are coprime integers and
n + k is prime. By definition of the functions o(z) and ¢(x), we know that
2N =o((n— k) (n+K) ~ el(n— k) (n+ k)
when n — k is also prime. We notice that
2-N<o((n—k)-(n+k)—p((n—Fk) - (n+k))
when n — k is not a prime. Certainly, we see that (n — k) + (n + k) = N and thus,
the inequality
2-((n—k)+(n+k)+e((n—k)  -(n+k) <o((n—Fk) - (n+k))
holds when n — k is not a prime. That is equivalent to
2-(n—k)+(n+k)+en—k)  -on+k)<on—=k) ocn+k)
since the functions o(z) and ¢(x) are multiplicative. Let’s divide both sides by (n —
k) - (n+ k) to obtain that
9. (n—k)+ (n+k) n p(n—k) ¢n+k)
(n—k)-(n+k) n—k n+k
We know that

< s(n—k)-s(n+k).

s(n—k)-s(n+k)>1
since s(m) > 1 for every natural number m > 1 [4]. Moreover, we could see that

m—k)+n+k)\ 2 2
2'<(n—k).(n+k))_n+k+n—k

and therefore,
2 2 on—k) on+k)
1 . .
>n+k+n—k+ n—=k n+k

It is enough to see that
2 2 2 2 2 on—k) on+k)
1>=+=+=> .
>23+9+3*n+k+n7k+ n—k n+k
when n+k is prime and n — k is composite for N > 32. Under our assumption, every
of these pairs of positive integers (n — k,n + k) implies that
2-N<o((n—k)-(n+k)—p((n—kK) - (n+k))
holds when n = %, k < n is a natural number, n + k and n — k are coprime integers
and n + k is prime. Now suppose that N > o(n — k), where > means “much greater
than”. Besides, we deduce that
2=0(n+k)—en+k)
when n + k is prime. Hence, we have
(o(n+k) —p(n+k) - N < o((n—k)- (n+ k) — p((n—k) - (n+ k)

that is equivalent to

o(n—k)
N

w(n —k)

(c(n+k)—pn+k))< N

Co(n+k) - p(n + k)

and
1 1 1 p(n—k)
k) | ——— — = k) - — .
o(n+k) (a(n—k) N><“0(”+ ) (U(n—k) N-o(n—k)
However, we can assure that the previous inequality does not hold when N > o(n —
k). For that reason, we obtain the desired contradiction. By reductio ad absurdum,
the natural number n — k is necessarily prime. O




Goldbach’s conjecture

4 Deep on Goldbach’s conjecture

References

[1] C. Jing-Run, On the representation of a larger even integer as the sum of
a prime and the product of at most two primes. Sci. Sinica 16, 157-176

[2] T. Yamada, Explicit Chen’s theorem. arXiv preprint arXiv:1511.03409v1
(2015)

[3] Y.C. Cai, Chen’s Theorem with Small Primes. Acta Mathematica Sinica
18(3) (2002). https://doi.org/10.1007 /5101140200168

[4] R. Vojak, On numbers satisfying Robin’s inequality, properties of the
next counterexample and improved specific bounds. arXiv preprint
arXiv:2005.09307v1 (2020)


https://doi.org/10.1007/s101140200168

	Introduction
	Proof of Theorem 1

