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Abstract: This paper introduces the utilization of the latest small You Only Look Once version 

8 – YOLOv8s convolutional neural network in an automatic electric vehicle charging 

application study. The employment of a deep learning based object detector is a novel and 

significant aspect in robotic applications, since it is both, the initial and the fundamental step 

in a series of robotic operations, where the intent is to detect and locate the charging socket 

on the vehicle’s body surface. The aim was to use a renowned and reliable object detector to 

ensure the reliable and smooth functioning of the deployed robotic vision system in an 

industrial environment. The experiments demonstrated, that the deployed YOLOv8s model 

detects the charging socket successfully under various image capturing conditions, with a 

detection rate of 97.23%.  

Keywords: YOLOv8s; Electric vehicle charging socket; Image processing; Object detection; 

Robotic applications; Automotive applications. 
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1 Introduction  

The global surge in electric vehicle adoption is an ongoing trend, with projections 

indicating a substantial increase in their presence on roads worldwide. One of the 

primary limitations to wider electric vehicle (e-vehicle) adoption lies in their 

batteries. Despite ongoing efforts, there has yet to be a significant breakthrough in 

battery technology, resulting in limitations in both capacity and lifespan. 

Consequently, this leads to a restricted driving range for electric vehicles. To 

address these challenges, there is active research into the development of high-speed 

chargers and novel charging techniques for electric vehicles. Present-day 

automotive consumers demand products that cater to their mobile information and 

entertainment needs. These offerings should be seamlessly integrated into 

innovative automotive applications, including those related to autonomous electric 

car charging and automated vehicle washing, etc. [1-4]. 

The accelerated advancement of electric vehicles will lead to a growing demand for 

associated applications in the coming years. [4-6]. Certainly, one of the fundamental 

and decisive task is the recharging of electric vehicle batteries. This underscores the 

significance of applications designed to facilitate this process. Given that the 

charging of electric vehicles is a time-consuming endeavor, there exists a clear 

demand from both users and operators for automation to align with customer needs. 

Consequently, once a vehicle is parked at a charging station, the user's involvement 

in the charging process is minimal, limited to simply opening the charging port 

door. The entirety of the procedure is orchestrated by robots, affording the user the 

freedom to engage in other activities while the vehicle charges. [7-8]. Thus, the 

concept of seamless electric vehicle charging, devoid of human involvement, holds 

great appeal for customers, prompting numerous companies to delve into related 

research. Moreover, as advancements in autonomous driving and driverless parking 

technologies continue to unfold, automated charging will assume even greater 

significance. In these scenarios, a robot will assume full responsibility for the 

charging process once the vehicle autonomously parks, eliminating the need for 

human intervention in the process. Embracing automation technology signifies a 

departure from the manual charging practices of today. Naturally, specific 

challenges inherent to this application must be thoroughly examined and addressed. 

These include the need for precise parking, maneuvering of robots around parked 

vehicles, ensuring adequate lighting for charging socket detection cameras, as well 

as the ability to promptly halt and disconnect the charging process, etc. 

This paper presents an initial study within an automotive industrial project whose 

aim is to develop a robotic-based application for automatic charging of electric 

vehicles utilizing image processing and object detection techniques. As a result, a 

novel approach for electric vehicle charging socket detection using the novel state-

of-the-art You Only Look Once version 8 (YOLOv8) [9] object detection 

framework will be introduced.  
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The main task of this study is the deployment of a lightweight and efficient object 

detector for the detection of the Combined Charging System 2 (CCS2) socket of 

electric vehicles using a renowned and reliable object detector model. Thus, the 

socket detection procedure in complex image scenes is based on the latest YOLOv8 

framework introduced in 2023 by Ultralytics, which is the sequel of the earlier 

versions of well known YOLO object detectors. The main demand of this task is to 

initially detect the charging socket in compound scenes in order, that in the later 

stage of the operation, the robotic arm with a specialized short range 3D camera 

will approach the detected socket in order to accurately determine its position in 

space. Further, one of the main project requirements was to use a well known, 

reliable and fast object detector framework intending to ensure the smooth operation 

of the whole system. It should be noted, that in the subsequent stages, the Universal 

Robot 10e (UR10e) equipped with a built-in force-torque sensor will be employed 

as the robotic arm for the implementation of an autonomous charging application 

[1-3]. A detailed description of the robot and its work is not within the scope of this 

paper, and it will be fully depicted in a future research paper. 

Finally, using the strict instructions about the simplicity and reliability by the 

project client, a novel YOLOv8-based procedure was developed for the automatic 

CCS2 socket detection. This initial study entirely fulfilled the goal set by the project 

task, and in the future the testing will be performed with a special camera mounted 

on the robot’s arm.  

The contribution of this study in terms of an industrial research project is a 

development of novel, trained and reliable object detector for the detection of a 

CCS2 charging socket for the automated electric vehicle charging application. The 

use of the new YOLOv8 for charging socket detection purposes is not yet published 

in the scientific literature, as well as in papers related to any industrial research with 

the aim of the charging socket detection. Thus, this approach, offers a solution to 

the challenge of electric vehicle charging socket detection for upcoming industrial 

applications with a novel state-of-the art object detector.  

The paper can be summarized as follows. The first section is the introduction, the 

second section is the literature overview, the third section introduces the YOLOv8 

framework and the proposed method. Section four shows the experiments and 

results. Finally, the conclusions are drawn with the future works plan.  

2 Related Works  

The identification and isolation of the object’s position is a common challenge in 

robotic vision systems [15-26]. This task becomes particularly critical in specific 

applications where the determination and extraction of certain shapes from the 

background are imperative. Multiple techniques exist to carry out this segmentation 

process. It's worth noting, that there is a limited body of research and solutions 
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addressing the detection of electric vehicle charging sockets in the existing 

literature. Further, the YOLOv8 framework and its predecessors are very popular 

for the development of highly accurate, precise and flexible object detectors with 

acceptably fast execution [9]. Thus, due to all the mentioned features, YOLOv8 

framework is suitable for a wide range of applications, which include the detection 

of various shapes and objects. This section will provide a concise overview of the 

relevant studies in these domains. 

Pan et al. [27] introduced a charging socket detection algorithm with three main 

steps: recognition, localization and inlay. For the charging socket localization, a 

convolutional neural network-based (CNN) approach is used. During the socket 

localization procedure an adapted pose solving method was utilized based on circle 

features. In the insertion step an AUBO-i3 robot was exploited. Authors stated an 

accuracy rate of 98.9%. Zhang and Jin [28] developed a new method built on 

computer vision for electric vehicle charging socket detection and localization with 

an aim to solve the space and low efficacy limitations in charging operation for e-

vehicles. A specific image segmentation process is used based on Hue Saturation 

Intensity (HSI) color model to educe the features of the charging socket targeted the 

subpixel precision. Further, the image segmentation method involves thresholding 

in the Hue component of the input image, edge detection using Canny edge operator 

and morphological operations. The HALCON vision platform is utilized for the 

development. Authors reported, that the proposed method can successfully detect 

and locate the charging socket position with the accuracy rate of 100%. Mišeikis et 

al. [29] proposed an automatic robot-based vehicle charging application using 3D 

computer vision operations. The system is established on a 3D computer vision 

system, an UR10 cobot and a charging station. A shape-based matching procedure 

is utilized for identification and exact pose determination of the socket. An 

analogous approach is used for camera-cobot system calibration. Finally, a three-

step cobot motion planning procedure is applied for charger plugin. According to 

the experiments, the introduced method operates in laboratory conditions under 

indoor lighting with a self-made charging socket holder. Quan et al. [30] suggested 

an automatic model for the recognition and positioning of charging sockets of e-

vehicles. The system is divided into two parts: the coarse and the precise 

positioning. The coarse positioning relies on the Hough circle and the Hough line 

transformations, and it locates the position data of the charging socket itself. The 

precise positioning step utilizes the Canny edge operator to ascertain the contour 

data of the input and edge-detected images respectively. Finally, the Perspective-n-

Point (PNP) algorithm is executed to determine the pose data of the charging socket. 

The AUBO-i10 6-DOF (degree of freedom) robot is used to test the recognition and 

inlay accuracies in various conditions and environments. Authors claimed, that the 

detection rate of the coarse positioning is 97.9%, while the average success rate is 

94.8%. Quan et al. [31] proposed a group of efficient and exact procedures for 

determining the position of an e-vehicle charging connector. The process is divided 

in two steps: the search step and the aiming step. In the search step, the feature circle 

procedure is utilized to fit the ellipse information to obtain the pixel coordinates of 
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the feature point. In the aiming step the contour matching and logarithmic 

assessment indicators are utilized in the cluster template matching algorithm 

proposed in their study to obtain the matching position of the socket itself. In the 

end, the Efficient PNP algorithm is used to determine the pose information of the 

charging socket. The reported accomplished plug-in rate is 95%. Lou and Di [32] 

proposed a 4-DOF cable-guided automatic-charging robot built from a 3-DOF 

cable-guided serial manipulator with a moving platform. The end-effector of their 

robot is an flexible plug that has the ability to resist negligible flexible deformation. 

Authors showed in their testing the achievability and the efficacy of utilizing the 

cable-guided automatic-charging robot to realize automated e-vehicle charging 

application. Lin et al. [33] presented a model-independent collision detection and 

classification procedure for cable-guided serial manipulators. First, relied on the 

dynamic features of the manipulator, data sets of terminal collision were 

implemented. Next, the collected data sets were applied to build and train a collision 

localization and classification system, which involves a double layer CNN and a 

Support Vector Machine (SVM). Authors reported, that the developed system can 

extract features without human intervention and can handle with collision when the 

contact surface is irregular. The experiments and results demonstrated the validity 

of their model with promising prediction accuracy. Li et al. [34] introduced a high-

precision method to detect and localize the charging ports based on Scale-Invariant 

Feature Transform (SIFT) and Semi-Global Block Matching (SGBM) algorithms. 

The feature detection procedure based on SIFT was adjusted to produce the 

Difference of Gaussian (DOG) for scale space construction, and the feature 

matching algorithm with nearest-neighbor search was used to get the set of 

matching points. The disparity calculation has been done with a semi-global 

matching (SGM) procedure to get high-precision positioning data for the charging 

socket pose. The viability of the procedure was verified using OpenCV and 

MATLAB platforms. Chablat et al. [35] presented a robotic system with parallel 

structure for automatic e-vehicle charging where the charging socket of the vehicle 

is at its front side. They used a QR code stuck next to the plug in order to localize 

the socket on the vehicle. When the robot moves, the QR code detected by the vision 

sensor is employed to tune the trajectory before starting the inlay of the plug. A 

prototype of the robot was successfully accomplished. Authors noted, that the 

research on the robotic charging system will be continued. Tadic [36] utilized the 

ZED 2i depth sensor for the detection and extraction of the charging socket on the 

electric vehicle’s body surface. The socket detection and extraction were performed 

using common image processing and morphological. The test showed, that the 

developed method extracts the charging socket and determines the tilt angles and 

socket coordinates successfully under various depth measurement conditions, with 

the success rate of 94%. Hussain [37] provided a detail review of the YOLO 

evolution from the original YOLO framework to the recent release YOLOv8 from 

the perspective of industry. His review analyzes the main architectural advantages 

of the YOLO object detectors for industrial applications. Slimani et al. [38] 

employed YOLOv8 to improve the efficiency and precision of rust disease 
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classification in a fava bean field images. They demonstrated, that the proposed 

model developed with transfer learning has a higher recognition rate than other 

models. They claimed, that the detection accuracy in their model is reaching 95.1%. 

Sharma et al. [39] proposed a real-time parking time violation tracking procedure 

with closed-circuit camera and deep learning models with a tracking algorithm to 

persist the information from one frame to its subsequent frame. The algorithm 

employs the state-of-the-art object detection model YOLOv8 to identify vehicles 

within a parking lot. In their future works, they will explore the synchronization of 

the proposed algorithm with two or more cameras. Talaat and ZainEldin [40] 

introduced an advanced fire detection approach for smart cities based on the 

YOLOv8 model, which utilizes the strengths of deep learning to detect fire specific 

features in real time using cameras. Authors claimed, that the proposed method 

achieved a state-of-the-art performance in terms of precision rate of 97.1%. Bai et 

al. [41] showed a comprehensive investigation and improvement of the YOLOv8n 

algorithm for object detection, focusing on the integration of Wasserstein Distance 

Loss, FasterNext, and Context Aggravation strategies. During the experiments, each 

approach was evaluated individually and collectively in detail to assess its 

contribution to the model's performance. As it was shown in their study, the 

proposed YOLOv8n framework achieved a good balance between accuracy and 

model complexity, and it outperforms other frameworks in terms of model 

complexity, model accuracy and model inference speed. Finally, it should be noted, 

that numerous deep learning models [38-44] are analyzed and tested in recent years 

for various applications and the development of many deep learning models is 

expected in the upcoming period. 

3 Methods   

3.1 YOLOv8 Framework 

YOLOv8 is the latest version of the renowned real-time object detection and image 

segmentation model. Since it is introduced in 2023, a related official documentation 

about the framework and its architecture is not published yet. Only the Ultralytics 

website provides formal information related to the model.  

YOLOv8 leverages the forefront of deep learning and computer vision, delivering 

unmatched speed and precision. Its refined architecture enables versatility across 

diverse applications and seamless adaptation to various hardware platforms [45]. 

Unlike the Region-based Convolutional Neural Network (R-CNN) and Fast R-CNN 

models, which use a multi-stage process to detect objects in image, all YOLO 

models use a single neural network (single shot detection) to predict both, the 

bounding boxes and class probabilities of objects in images [46]. This property 

makes YOLO models mostly faster than other object detection models, however 
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also potentially less accurate in some examples [46]. Further, all YOLO models use 

direct prediction to predict the class probabilities and bounding boxes of objects in 

images, without learning on region proposals. This feature enables each YOLO 

model to accomplish object detection in a single forward pass of the network, which 

is much faster than models that require multiple detection stages [45-46]. YOLO 

uses a grid-based prediction process, where it splits the original input image into a 

grid of cells and predicts the presence of shapes in each cell. Then, each cell is 

responsible for predicting a set of bounding boxes and class probabilities for the 

shapes within its area. This enables YOLO models to manage multiple objects of 

different scales in a single image, or video frame [37], [46].  

YOLOv8 can be used for the three main computer vision tasks: 

1. Classification; Classification is a straightforward task where the object 

detector model is tasked with identifying and providing a single class that 

is predominantly present in the input image. The result of a classification 

consists of a class index and a corresponding confidence score. Typically, 

classification is beneficial when the goal is to ascertain the presence of a 

specific class in the input image. It's essential to emphasize that, in this 

context, the location of the object is not determined, thus the object 

detector model can only confirm its presence. 

2. Object detection; The object detection is an evolution of the classification 

task. Here, the goal is to not only identify various classes within an image, 

but also to precisely locate them. The specific locations of the detected 

objects are visually indicated with bounding boxes. 

3. Segmentation; Segmentation represents a step beyond the object detection. 

While object detection involves pinpointing the location of objects and 

estimating their position using bounding boxes, than the segmentation 

takes it further by identifying individual pixels belonging to each object in 

the image. 

Earlier YOLO models use anchor boxes [45], which are predefined bounding boxes 

in order to enhance the accuracy of its predictions. The anchor boxes are used to 

represent the prior knowledge of the network about the shapes and aspect ratios of 

objects. In the YOLOv8 anchor boxes are not needed, since YOLOv8 directly 

predicts the bounding boxes and class probabilities for each object in the input 

image [45]. Hence, YOLOv8 is an anchor-free model and this means, that the model 

predicts directly the center of an object inside the image instead of the offset from 

a known anchor box. The anchor free object detection reduces the number of box 

predictions, which speeds up the Non-Maximum Suppression (NMS), a 

complicated post processing step in the model that sifts through candidate 

detections after inference [45]. Thus, this method reduces the complexity of the 

model and enables for more flexibility in detecting objects of diverse sizes and 

aspect ratios [45-46].  
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The second key difference is the use of mosaic augmentation in YOLOv8 [45]. Data 

augmentation is the addition of new artificially derived data from existing training 

data. These techniques include resizing, flipping, rotating, cropping, padding, etc. 

It helps to address issues like overfitting and data scarcity, and it makes the model 

robust with better performance. One of the well-known and powerful annotation 

and augmentation tools is the Roboflow Framework [47] that is used in this 

research. Hence, in the training process of YOLOv8 models, various pre-processing 

tasks and augmentations are applied to training images, including the mosaic data 

augmentation too. This technique involves combining four distinct images, creating 

a mosaic, and then presenting this composite image as input to the model during 

training [45]. Thus, the model learns to recognize actual objects in diverse positions 

and under conditions of partial occlusion. Where each quadrant of the image 

includes an arbitrary crop from one of the four input images, then this image is used 

as an input for the YOLOv8 model [45,47]. Despite its advantages, the mosaic 

augmentation is disabled for the last 10 epochs in YOLOv8, since it can reduce 

performance if it is used throughout the entire training process [45].  

The activation function utilized in YOLOv8 is the Sigmoid Linear Unit (SiLU) 

function [45-46]: 

𝑆𝑖𝐿𝑈(𝑥) = 𝑥𝜎(𝑥)                                                                                           (1) 

where the 𝜎(𝑥) is the Sigmoid function defined as [46]: 

𝜎(𝑥) =
1

1+𝑒−𝑥
                                                                                                         (2) 

The activation function plays a crucial role in determining whether a neuron should 

be activated. It is achieved by computing the weighted sum and incorporating bias. 

The primary objective of the activation function is to inject non-linearity into the 

neuron's output [45-46,48]. 

Further, the loss of the YOLOv8 model is determined with two functions, the Binary 

Cross Entropy (BCE) calculates the classification loss, while for the bounding box 

loss the Complete Intersection over Union (CIoU) and the Distribution Focal Loss 

(DFL) is calculated [46,48]. A loss function serves as a metric to assess the disparity 

between the predicted and target output values, quantifying how effectively the 

neural network represents the training data. During the training process, the goal is 

to minimize this loss, thereby enhancing the network's ability to accurately predict 

target outputs [45-46,48]. 

The BCE and CIoU functions are defined as: 

𝐵𝐶𝐸 = −
1

𝑁
∑ 𝑦𝑖 log(𝑝(𝑦𝑖)) + (1 − 𝑦𝑖)log⁡(1 − 𝑝(𝑦𝑖))
𝑁
𝑖=1                                   (3) 

𝐶𝐼𝑜𝑈 = 1 − 𝐼𝑜𝑈 + |
𝜌2(𝑏,𝑏𝑔𝑡)

𝑐2
| + 𝛽𝑣                                                                      (4) 

where b and bgt are the central point of the predicted bounding box B and the central 

point of the ground-truth box Bgt, where gt denotes the ground-truth and N is the 
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number of object classes. The 𝜌 parameter denotes the Euclidean distance, 𝑦 ∈
{1,0} specifies the ground-truth class, 𝑝 ∈ [0,1] is the probality for the class label 

𝑦 = 1 and c denotes the diagonal length of the smallest enclosing box that masks 

the two boxes [46,48]. The 𝛽 parameter represents the trade-off and the v parameter 

measures the consistency of the aspect ratio. The v and 𝛽 are represented as follows 

[46]: 

𝑣 =
4

𝜋
(𝑎𝑟𝑐𝑡𝑎𝑛

𝑤𝑔𝑡

ℎ𝑔𝑡
− 𝑎𝑟𝑐𝑡𝑎𝑛

𝑤

ℎ
)2                                                                          (5) 

𝛽 =
𝑣

1−𝐼𝑜𝑈+𝑣
                                                                                                           (6) 

where w and h are the width and the height of the bounding box respectively. The 

Intersection over Union (IoU) is determined with the predicted bounding box B and 

the ground-truth box Bgt with the next equation [46]: 

𝐼𝑜𝑈 =
𝐵∩𝐵𝑔𝑡

𝐵∪𝐵𝑔𝑡
⁡                                                                                                          (7) 

The CIoU in equation (4) consideres the overlapping area, the aspect ratio and the 

central point distance into account. It is an improved variant of IoU, and its  

consequence is, that it converges more faster and it is more efficient in executing 

the bounding box regression [45-46]. 

Further, the problem with a classic loss functions such as the BCE loss function is 

that suchlike functions handle the missclassifications equally. In the object 

detection this can be an issue, since the huge majority of the image regions do not 

contain any object/shape and this could lead to a class inequity problem. Thus, the 

focal loss function treats this issue by down-weighting the loss allotted to well-

classified samples. Further, the DFL is built upon by including the class distribution 

information into the focal loss function. The aim is to learn a dynamic weighting 

scheme for the loss function built on the distribution of classes in the training data. 

This allows the YOLOv8 model to assign more weights to the low-represented 

classes and less weights to the over-represented classes which can lead to more 

precise bounding box assessment [46,48]. 

When the continuous distribution of the regression value is converted to the discrete 

domain, the assessed regression value can be written as follows [46]: 

�̂� = ∑ 𝑃(𝑦𝑖)
𝑛
𝑖=0 𝑦𝑖                                                                                                  (8) 

where the �̂� is the estimated regression value and the n is the number of classes in 

this case. 

Using the Softmax functions [48]: 

𝑆𝑖 =
𝑦𝑖+1−𝑦

𝑦𝑖+1−𝑦𝑖
                                                                                                            (9) 

𝑆𝑖+1 =
𝑦−𝑦𝑖

𝑦𝑖+1−𝑦𝑖
                                                                                                       (10) 
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�̂� can be written as follows [46,48]: 

�̂� = ∑ 𝑃(𝑦𝑖)
𝑛
𝑖=0 𝑦𝑖 = 𝑆𝑖𝑦𝑖 + 𝑆𝑖+1𝑦𝑖+1 =

𝑦𝑖+1−𝑦

𝑦𝑖+1−𝑦𝑖
𝑦𝑖 +

𝑦−𝑦𝑖

𝑦𝑖+1−𝑦𝑖
𝑦𝑖+1=y                  (11) 

Finally, the DFL can be expressed as [46,48]: 

𝐷𝐹𝐿(𝑆𝑖 , 𝑆𝑖+1) = ((𝑦𝑖+1 − 𝑦)(𝑆𝑖) + (𝑦 − 𝑦𝑖)log⁡(𝑆𝑖+1))                                    (12) 

As an evaluation metric, the image recognition community decided to use the mean 

Average Precision (mAP) for object detector models [45-46]. The mAP is a 

combination of recall and precision values determined over multiple confidence 

thresholds, the IoU.  The variation of the IoU threshold will result in different True 

Positives (TP) and False Positives (FP) predictions in image.  

The precision is defined as the fraction of TP detections among all detections made 

at a specific IoU threshold [46]: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                                              (13) 

The recall is defined as the fraction of TP detections found among all possible 

detections made at a specific threshold [46]: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                                                   (14) 

where FN are False Negatives predictions in the image. 

Finally, the formula for mAP is defined as [46]: 

𝑚𝐴𝑃 =
1

𝑁
∑ 𝐴𝑃𝑖
𝑁
𝑛=1                                                                                               (15) 

where APi is the average precision for the i-th class and N is the number of object 

classes. 

The architecture of YOLOv8 is built upon the previous models of YOLO object 

detectors. The best description of the YOLOv8 model architecture is provided by 

RangeKing [49]. The architecture is presented in Figure 1. YOLOv8 uses a CNN 

network that can be divided into two main parts: the backbone and the head [45-

49]. The backbone of YOLOv8 is based on a modified version of the Cross Stage 

Partial (CSP) Darknet53 architecture, featuring 53 convolutional layers [45, 49]. 

This architecture incorporates cross-stage partial connections to enhance the flow 

of information between the various layers [45, 49]. In the head of YOLOv8 there 

are several convolutional layers followed by a sequence of fully connected layers. 

These layers play a crucial role in predicting bounding boxes, object scores, and 

class probabilities for the detected objects in an image [45, 49]. YOLOv8 

incorporates an important feature in its head: the integration of a self-attention 

mechanism. Positioned in the network's head, this mechanism enables the model to 

selectively focus on distinct areas of the image, dynamically adjusting the 

significance of various features based on their relevance to the given task [45, 49]. 

In addition, YOLOv8 has the capability of performing multi-scaled object 
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detection. To achieve this task, the model employs a feature pyramid network that 

facilitates the detection of objects across various sizes and scales within an image. 

This network comprises multiple layers dedicated to detecting objects at different 

scales, enabling the model to effectively identify both large and small objects 

present in the image [45, 49]. 

 

Figure 1 

YOLOv8 model architecture (provided by RangeKing [48]) 

Further, YOLOv8 supports five different neural network sizes that vary in the 

amount of parameters present in the neural network: YOLOv8n (n-nano), 

YOLOv8s (s-small), YOLOv8m (m-medium), YOLOv8l (l-large) and YOLOv8x 

(x-extra large) [45]. It is obvious, that “n” model has the smallest number of 

parameters, while the “x” model has the largest number of parameters. The 

parameters are referring on the number of biases and weights in the network [45-

49]. While YOLOv8n is the smallest and the fastest model, on the other hand the 

YOLOv8x is the most accurate and slowest among the YOLOv8 models. Based on 

the requirements of the application itself, the appropriate model could be selected 

[45]. Since the aim of the research is to detect the charging socket of the e-vehicle 

with reliable accuracy in a short time, the YOLOv8s model has been chosen to 

accomplish this task. According to Ultralytics test on Microsoft Common Objects 

in Context (MS COCO) dataset [45-48], the YOLOv8s model is to a lesser extent 

slower than the YOLOv8n model, and it is significantly faster than the other 

YOLOv8 models according to Open Neural Network Exchange (ONNX) results, 

while the mean Average Precision on the validation dataset (mAPVAL) is not 

significantly lower compared to larger models (Table 1). Thus, based on the 

recommendations [45-46] and test results, the decision fell on the YOLOv8s model 

in this research. 
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Table 1 

Comparison of YOLOv8 models on COCO dataset [45]  

Model Image Size 

(pixels) 

mAPVAL Speed CPU 

ONNX (ms) 

YOLOv8n 640 37.3 80.4 

YOLOv8s 640 44.9 128.4 

YOLOv8m 640 50.2 234.7 

YOLOv8l 640 52.9 375.2 

YOLOv8x 640 53.9 479.1 

3.2 Dataset Preparation and YOLOv8s Training  

The overall pipeline of the dataset preparation, training and deployment of the 

YOLOv8 models is presented in Figure 2. The first step is the dataset preparation 

which includes the collecting of images and their annotation which can include 

some arbitrary pre-processing such as contrast adjustment, resizing, etc. [45, 47]. 

After annotation and pre-processing, the next step involves augmentation, where 

training examples are generated based on selected augmentation options such as 

mosaics, rotation, shear, bounding box orientation, etc. [45, 47]. As it was noted, 

the Roboflow Framework and its annotation tool was utilized in this research which 

includes optional pre-processing and augmentation options [47]. Later, the 

annotated images can be split in training, validation and testing folders, while the 

annotated labels are saved in *.txt files, according to the YOLOv8 models 

requirements [47]. Finally, the prepared dataset can be exported to YOLOv8 models 

format and used for training, validation and testing [47]. The second step is the 

training of the YOLOv8s model object detector according to Ultralytics guidelines 

[45] in this research and finally the third step is the deployment of the trained 

network on sample images. 

 

Figure 2 

The overall pipeline of the YOLOv8 model [45]  
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The dataset utilized in this initial study contains 1125 self-created images in order 

to avoid any authorship issues. Further, all the images were captured with a modest 

quality camera, since the industrial camera will be procured with the UR10e cobot 

in future steps of the project. Since the goal was to train a robust object detector, 

the images were captured under various capturing conditions which includes 

various lighting, shadow, distance, background, etc. It should be mentioned, that 

the CCS2 socket is black and its near background is very dark, mostly black. This 

fact is important, since it is obvious that the detection of this kind of socket is a 

difficult task for all object detection frameworks. Thus, even the training of the 

YOLOv8s is a challenging job. After the images were uploaded to Roboflow, the 

annotation is performed with the frameworks built-in annotation tool [47]. The part 

of the annotated image dataset can be seen in Figure 3. All the annotated images are 

labelled appropriately and the labelling data is saved in the corresponding *.txt file 

[47]. The annotation was followed by an optional pre-processing steps that are 

included in the online platform [47]. The resizing to 128x70 pixels, automatic 

contrast adjustment and automatic orientation options were chosen for the image 

dataset pre-processing and it was executed according to the Roboflow’s built-in pre-

processing algorithm [47]. 

 

Figure 3 

The examples of annotated images [47]  

The pre-processing is followed by the augmentation step. As it was mentioned, the 

data augmentation is an addition of new artificially derived data from existing 

training data with a goal to enhance the training of the neural network [45, 47]. In 

this study 10 augmentation options were included as it can be seen in Table 2. All 

these augmentation operations are randomly applied to the whole dataset according 

to Roboflow’s built in algorithm [47]. Finally, the dataset was split in three folders 
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according to Roboflow’s recommended splitting procedure. After the split is 

performed, the new folders are: the training folder, validation folder and test folder. 

Hence, the training folder contains 975, the validation 93 and the test 57 images 

respectively. The next step is the exportation of the dataset in ZIP file in the 

appropriate YOLOv8 format provided by Roboflow with the corresponding *.yaml 

file that contains the information related to dataset folders, number of object classes 

(“nc”) and the objects names (“names”) [47]. Later, the ZIP file should be extracted 

in a main folder, where the training process will be performed. All this information 

are required during the training, validation and testing process of the YOLOv8s 

model, thus the *.yaml file should be included in the main folder with the dataset 

folders [45-49]. If the *.yaml file is not provided, or it is incorrectly configured, the 

YOLOv8s network will not find the suitable data for the training. Finally, after the 

YOLOv8 framework is installed and set up in the main folder, the training process 

can start, followed by the validation and testing steps in later stages [45-49]. 

Table 2 

Data augmentation using Roboflow [47]  

Augmentation Options/Values 

Rotation Between -5° and +5° 

Shear ±5° Horizontal, ±5° Vertical 

Hue Between -25° and +25° 

Saturation Between -25% and +25% 

Brightness Between -10% and +10% 

Exposure Between -10% and +10% 

Cutout 1 box with 5% size each 

Bounding Box: Orientation Between -5° and +5° 

Bounding Box:Shear ±5° Horizontal, ±5° Vertical 

Bounding Box: Exposure Between -25% and +25% 

Mosaic Applied 

The training process is performed according to Ultralytics instructions, mainly with 

the default settings provided by the framework itself in Command Line Interface 

(CLI) in Command Prompt on Windows 10 platform [45]. The utilized hardware 

platform is CPU Intel CORE(TM) i7-10700 2.90GHz with 16GB RAM (without 

Graphical Processing Unit - GPU), while the software platform is Ultralytics 

Yolov8.0.2.212, Python-3.10.9, torch-1.13.1. The training process was done with 

the YOLOv8s model, with 100 epochs, image size of 640 pixels and number of 

images per batch 32 [45-48], while all the other parameters were remained default 



Acta Polytechnica Hungarica  

 

[45]. The one epoch is when an entire dataset is passed forward and backward 

through the neural network only once, while the number of batches is a divided 

dataset into smaller sets or parts (called batches) that are passed through the neural 

network [45, 47]. The batch size is the total number of training examples present in 

a single batch [45, 47]. The training time was 21.133 hours and the achieved mAP50 

was 0.928, the mAP50-95 was 0.745, the recall was 0.889, the precision was 0.947 

and the inference time was 100.6ms on the training dataset. The mAP50 refers to 

the calculation of the average precision across different levels of recall, up to a limit 

of 50 detections per image. This metric helps assess how well a model is performing 

in terms of both precision and recall, with a focus on the top 50 predictions [45]. 

The mAP50-95 is an extension of the mean mAP metric, specifically considering a 

range of IoU thresholds. The mAP50-95 is calculated by averaging the Average 

Precision (AP) values over a range of IoU thresholds, typically from 0.5 to 0.95, in 

increments of 0.05. The diagrams of the training results are shown in Figure 4, 

where the X axis represents the number of epochs, and the Y axis represents the 

corresponding parameter: the precision, recall, mAP50 and mAP50-95 respectively. 

Obviously, the training time would be shorter with an available GPU [45]. 
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Figure 4 

The training results diagrams [45]  

 

In order to show the detecting capabilities of the trained YOLOv8s model, Figure 

5. presents several detecting results from the validation dataset. As it can be noticed, 

the detection results are considerably accurate and acceptable, even in the examples 

were the CCS2 socket is poorly visible and distinguishable from the background. 
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Figure 5 

The results from the validation dataset  

Further, Figure 6. presents several detecting results from the test dataset. As it can 

be seen, the detection results are also very accurate and acceptable, although the 

images are of poor quality. 

 

Figure 6 

The results from the test dataset  

In the end, the training results of the YOLOv8s are considered as acceptable and 

they fulfilled the goal of the study. In later developments, an industrial computer 

with an GPU should be acquired for the work and the control of the whole robotic 

system that should provide an adequate hardware support for the possible novel 

YOLOv8s model training. Also, it should be noted that when the UR robot arrives, 

the industrial camera will be installed on the robotic arm and the testing will be 

executed in real time on the vehicle body model with a built-in CCS2 socket and 

with e-vehicles. In the final stage when the system is verified and certified, the 

testing will be extended to other available e-vehicles. 

4 Experiments and Results  

In this section, a comprehensive explanation of the conducted experiments and the 

corresponding results will be presented. As it was highlighted in the Introduction, 

the primary objective of this initial study is to exclusively employ established and 

verified CNN object detector in the development of the CCS2 socket detection 
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procedure. Hence, the trained YOLOv8s model’s performance was assessed using 

artificial vehicle body model equipped with CCS2 socket. A diverse range of 

capturing conditions were deliberately examined to thoroughly assess and delineate 

the capabilities and constraints inherent in the implemented object detector. It 

should be noted, that one of the main aspects in the development of the object 

detector model is the generation of a high-quality, usable input image appropriate 

for industrial applications that would be ensured in the real application. In addition 

to the use of high-quality capturing devices, the main requirement is the formation 

of an appropriately illuminated environment without disturbing effects, which can 

ensure the repeatability of a quality image capturing later in the commercial use on 

the parking lot. Herein, in the experiments, a modest quality camera was utilized in 

order to determine and examine the possibilities of the trained and deployed 

YOLOv8s model for an initial study purposes. The study dataset was generated 

internally using a test vehicle body model equipped with an original CCS2 socket, 

and it contains 975 images. The images were captured across diverse recording 

conditions, deliberately including instances under less-than-ideal capturing 

conditions in numerous examples in order to examine the robustness and the 

limitations of the trained YOLOv8s object detector. Different capturing conditions 

includes: various camera distance and angle position, intentional shading, various 

illumination conditions, hazy images, etc.  

Since this is an initial study, utilizing the self-created internal image database serves 

the purpose of avoiding potential legal repercussions that may arise from the use of 

images depicting proprietary vehicles. Thus, the testing on real e-vehicles will be 

arranged at a later stage of the project, when all the equipment with the constructed 

charging station will be available, with legally rented and insured vehicles by the 

project management. The self-created dataset is not public since it is a part of a 

commercial industrial project (2020-1.1.2-PIACI-KFI-2020-00173), and it can be 

provided only with the permission of the project management and the project client. 

The testing and the prediction with YOLOv8 object detector has been executed 

automatically on the whole dataset placed in a custom folder, with a proposed 

prediction options [45]. The prediction was launched with the command line 

interface (CLI), where the confidence threshold was set to 0.2, the image 

augmentation to prediction sources was turned on during the testing and the result 

saving option was activated [45]. All the other parameters remained the default and 

the detection results were saved in a separate folder for evaluation purposes [45]. 

The testing and prediction results achieved a considerable accuracy, since in 948 

images the detection was correct while in 27 images the detection failed (in 13 

samples were no detection, and in 14 samples were false detection). This detection 

resulted with a 97.23% accuracy on the available self-developed image dateset. 
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Figure 7 

The detection results from the self-created dataset  

Figure 6. displays 25 samples with correctly detected CCS2 sockets (from the 948 

correct samples). As it can be noticed, all the samples are captured under various 

capturing conditions, mostly with poor quality, since the aim was to assess the 

capabilities and limitations of the trained YOLOv8s object detector. Further, it can 
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observed, that even under excessive slant, hazy image, or shadow the socket is 

successfully detected with a lower confidence level, however the bounding box is 

correctly drawn around the detected object. Also, in examples where the small part 

of the CCS2 is missing due to the excessive slant, a correct detection is achieved. 

One of the reasons of successful detection under inordinate image capturing 

conditions is the activated augmentation option during the prediction according to 

the related documentation [45]. Therefore, this is also a great advantage of the 

YOLOv8s model in applications where an incorrect input images are expected 

during the work.  Naturally, in the real application an appropriate lighting source 

will be mounted on the parking lot, and an industrial AD/3D camera is intended to 

be used with a special speckle-free blue laser. All these will contribute to a much 

better quality input image, which will certainly facilitate and improve the detection 

result of the trained YOLOv8s object detector. 

In the end, this initial study entirely fulfilled the aim of the project, and the detection 

of the charging socket with a renowned YOLOv8s object detector was achieved. 

The practical application of the obtained results will be tested in the future, where 

the experiments will be executed with an UR10e robot on electric vehicles with 

adequate industrial vision and sensing equipment. The future managerial 

implications are the legal rent of a certain number of electric vehicles for testing 

purposes and the construction of an adequate real-world parking lots for 

experiments with the robot in an industrial environment. 

 

Conclusions 

Herein, both the training concepts and the deployment of the YOLOv8s object 

detector for the detection and extraction of the CCS2 charging socket for the 

automated electric vehicle charging application were introduced. The main steps of 

the dataset preparation, training and deployment process were presented. The aim 

of this study was to develop a robot vision system with a well-known and reliable 

CNN object detector to secure the work of the robot’s running process. Suitable 

experiments were conducted on self-created vehicle body model with a built-in 

CCS2 socket. All experiments were achieved successfully and the trained 

YOLOv8s model showed considerable accuracy, as well as an adequate robustness 

and resistance to adverse illumination conditions, slant and poor capturing 

conditions. Based on the experiments, the main limitations of the algorithm in terms 

of inadequate lighting, excessive slant and capturing conditions were determined, 

and in the future, they will be avoided with a special, high quality industrial camera 

on the built e-charging station. During the deployment of the YOLOv8s object 

detector-based system, all the project requirements and instructions were utilized. 

As a result, the goal of this study was fully achieved, and the further development 

of the system will be continued with an installed industrial camera on the UR10e 

robot and electric vehicles on the conveniently built parking lot. 
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