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ABSTRACT Wall-distance, defined as the distance
from the closest surface, is used in the formulation of
several turbulence modelling strategies like Detached
Eddy Simulations or in turbulence models such as Spalart
Allmaras and k-ω SST. In the current work, a solver
is developed to compute wall distances based on the
differential equations: Eikonal, Hamilton-Jacobi (H-J) and
Poisson. The baseline solver, which employs first-order
up-wind scheme for the spatial discretization of advection
term, has been validated against several test cases.
Subsequently, the upwind schemes are replaced with high
order Explicit/Compact schemes up-to 6th order accuracy.
High-order schemes outperformed the accuracy of first order
up-wind scheme when solving the H-J equation. Dispersion
errors due to the hyperbolic nature of the Eikonal equation,
as expected, has affected the wall-distance accuracy of high
order schemes despite using a 10th order filter. The solver
is further extended to compute unsteady wall distances,
which is applicable to the flow simulations in which the
walls/bodies are moving inside the computational domain.
Results of an oscillating cube and a bouncing cube are
demonstrated to be in agreement with the exact solution.
Wall distance evolution inside the combustion chamber of a
solid rocket motor due to burnback of star grain propellant
is also presented.

Keywords: Wall distance; Hamilton-Jacobi; Eikonal;
Poisson; Compact scheme; Unsteady wall distance

I. INTRODUCTION
Wall distance computations play a vital role in several

turbulence modelling strategies such as Detached Eddy Sim-
ulations (DES), Reynolds Averaged Navier Stokes (RANS)
and also in peripheral flow applications incorporating addi-
tional solution physics (such as multiphase flow and elec-
trostatic particle force modeling). There are various search-
based algorithms available in the literature to estimate the
wall distance. However, search algorithms are computation-
ally expensive and suffer from weak scalability specifically
on large meshes and with increase in the number of wall
faces present in the domain. On the other hand, the differ-
ential equation based wall-distance algorithms (Ref. [1], [2],
[3]) are both accurate and scalable. Such strategies can also
be used to alter the dissipation term in the turbulence models
or introduce surface roughness effects by locally altering
the length scales of flow using wall-distance [7], [8]. The
algorithm proposed by Tucker et. al. [1], employs first-order

accurate schemes to drive the wall-distance equations to a
steady state solution. In the current work, we examine the
suitability of high-order methods to estimate wall distance by
solving different differential equations: Eikonal, Hamilton-
Jacobi (H-J) and Poisson. In addition, we extend the steady
solver to compute wall-distance in unsteady geometrical
environments with moving bodies. The pros and cons of the
numerical algorithms are brought out in the discussion.

II. GOVERNING EQUATIONS
In the literature, three differential equation based ap-

proaches are available to estimate the wall distance: Eikonal,
Hamilton-Jacobi (H-J) and Poisson. Of these, the Eikonal
equation based approach (Eqn.1) is the exact governing
differential equation for wall distance.
Eikonal equation:

|∇φ| = 1 ⇒ (∇φ)2 = 1 ⇒ U · ∇φ = 1 (1)

Poisson equation:
∇2φ′ = −1 (2)

φ = ±

√√√√∑
j=1,3

(
∂φ′

∂xj

)2

+

√√√√∑
j=1,3

(
∂φ′

∂xj

)2

+ 2φ′ (3)

Hamilton-Jacobi (H-J) equation:

U · ∇φ = 1 + (νφ)∇2φ (4)

The other two approaches, Poisson (Eqn.2, 3) and
Hamilton-Jacobi (Eqn.4) equations, are numerically stable
than the Eikonal equation due to the Laplacian operator.
Wall-distances estimated using these two approaches
are accurate close to the walls. Although the Laplacian
operator enhances stability, the accuracy deteriorates as the
distance from the wall increases particularly for the Poisson
equation. Nevertheless, for most of the turbulence modelling
strategies, it is sufficient to have accurate wall-distances
close to the wall where the viscous effects are dominant.
However, accurate wall distance away from the wall are
required for certain applications like Computer Aided
Design (CAD), computing minimal surfaces, automated
meshing, etc.

In the above equations, φ represents the wall distance,
U represents the Eikonal front propagation velocity and φ′

represents an arbitrary quantity from which the Poisson wall
distance is estimated using Eqn.3.
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III. NUMERICAL METHOD
The solver employs finite difference based schemes to

discretize and evaluate the derivative terms of the differ-
ential equations in general (curvilinear) coordinates. The
baseline solver uses 1st order up-wind scheme for spatial
discretization of advection analogues terms. The formulation
of derivative in x-direction is given in equations 5, 6 and
7 which is based on the formulation given in [1], [4].
The entire Poisson equation and the spatial derivatives of
Laplacian operator in H-J equation are discretized using
second order central difference scheme. In the enhanced
solver, higher order spatial discretization schemes namely
explicit second order (E2), explicit 4th order (E4), compact
4th order (C4) and compact 6th order (C6) schemes are
used to discretize all the spatial derivative terms to solve all
the terms in the differential equations. These higher order
schemes are based on the formulation discussed in the Ref.
[6]. As the Eikonal and H-J equations are hyperbolic and
have non-linear advection analogues terms, certain amount
of artificial dissipation (or filtering) is required to suppress
the dispersion errors. A 10th order filter is used for this
purpose [6].

∂φ

∂x
≈ ni−1F + ni+1B (5)

ni−1 = 0.25(1 + SIGN(1, F +B) (1 + SIGN (1, B)) (6)

ni+1 = 0.25(1− SIGN(1, F +B) (1− SIGN (1, F )) (7)

where,

F =
φi+1 − φi

∆xi+1
and B =

φi − φi−1
∆xi−1

All the three differential equations are marched in pseudo
time (t∗) with Runge-Kutta 4th order time integration by
solving Eqn.8 & 9. Local-time stepping is used to accelerate
the solution to a steady state. For unsteady cases, where
the body(s) or the wall(s) move w.r.t time, the new mesh
and boundary conditions are provided to the solver at ev-
ery physical time step. Pseudo iterations with local time-
stepping are used to drive the solution to a steady state
between two physical time steps. All the equations were non-
dimensionalized using the reference length scale Lref = 1
m and reference time scale τ = 1 sec, before solving them.

∂φ

∂t∗
+ U · ∇φ = 1 (8)

∂φ

∂t∗
+ U · ∇φ = 1 + (νφ)∇2φ (9)

IV. BOUNDARY CONDITIONS, GRID AND CASE
SET-UPS

Dirichlet boundary condition is imposed on all the grid
points on walls, where the value of wall distance is set to
zero. Wall distance (φ) is also set to zero at all the grid points
lying within the volume of the solid body/bodies. Following

[6], the filtering order is gradually reduced to 2nd order at
the boundaries of computational domain.

φwall = 0 (10)

Neumann boundary condition is imposed at the far-field
boundaries where the gradient of wall distance is set to zero.

∂φ

∂n
= 0 (11)

Here, n is the boundary-normal direction. The wall distance
(φ) values are initialized to zero inside the domain before
the starting of every simulation.

The solver has been tested and validated on four different
test cases. Uniform rectilinear grid is generated for all the
cases. Details of the test cases are listed below:
• Case-1 : A 3-Dimensional (3-D) cube of length 10×

10× 10, with all of its faces treated as walls. Grid
resolution is taken as 41× 41× 41.

• Case-2 : A 10×10 2-D square domain with multiple
geometric shapes engraved into it. Grid resolution
chosen for this case is 101× 101.

• Case-3 : An 2D unsteady case in which a square
body executes simple harmonic motion in vertical
direction about the origin. The frequency and am-
plitude of oscillating cube are specified to be 1.5

π Hz
and 2 units respectively. The domain size is taken
as 10× 10 with a grid resolution of 41× 41. While
the top and bottom boundaries are treated as walls,
far-field Neumann boundary condition is imposed
on the left and right boundaries.

• Case-4 : An unsteady 2D bouncing cube simulation.
In this case a square shaped object is dropped in
the presence of gravity. The cube bounces off from
the bottom surface with a momentum loss of 10%
every time after each bounce. The domain size is
taken as 10× 10 with a grid resolution of 41× 41.
Acceleration due to gravity was taken as 9.81 m/s2.
Boundary conditions for this test case are the same
as those of Case-3.

While cases 1 and 2 are used to validate the baseline solver,
cases 3 and 4 are used to validate the unsteady solver. Case-1
is also used to demonstrate the results obtained from the high
order schemes incorporated into the solver. Case-2, chosen
from Ref.[3], is used to demonstrate the capability of the
wall-distance solver in the presence of complex geometries
in the computational domain. In addition to these test cases,
wall distance evolution inside a solid rocket motor with star
shaped propellant grain is also simulated based on the 2-D
test case details presented in Ref.[9].

V. VALIDATION OF BASELINE SOLVER
The baseline solver, using upwind scheme, is validated

for case-1, as discussed in section IV, by comparing the
results against the exact solution (calculated manually as
the test cases chosen here are simple). Fig 1(a,b,c) shows
the contours of wall-distance solutions for case-1 at Z = 5
plane. Predictions from Eikonal, H-J and Poisson solvers
are compared. Contours of the absolute error (difference
between exact and computed solution), after deducting the
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Figure 1: Comparison of the wall distance field and error
magnitude obtained through: (a) Eikonal, (b) H-J and
(c) Poisson equations for case-1 with UW scheme. (d)
Comparison of wall distance along vertical line from
various equations. The results are shown at Z = 5 plane.

exact solution from the predictions, is also shown. Figure
1(d) compares the wall-distance estimated on a vertical line
passing through the domain’s geometric center. It is evident
that the error close to the walls is negligible for all the ap-
proaches. However, error increases with increasing distance
from the wall particularly using the Poisson approach. On
the other hand, the predictions of both Eikonal and H-J are
highly accurate in most of the domain. Predictions of the
Eikonal equation are superior to that of H-J due to the lack
of Laplacian operator in it.
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Figure 2: Wall distance field obtained using various
equations for case-2 using the base-line solver.

Fig 2 shows the computed wall distance contours for
case-2 using all the three differential equations. The contours
obtained are in agreement with the results reported in Ref.
[1]. This also demonstrates the robustness and performance
of the present solver in treating geometries with complex
shapes. Having validated the baseline solver using upwind
schemes, we have attempted to solve the same differential
equations with the higher order schemes.

A. Effect of higher order schemes on H-J equation
solution

Wall distance solutions are computed using H-J equation
for case-1 with the higher order schemes: Explicit 2nd
order (E2), Explicit 4th order (E4), Compact 4th order (C4)
and Compact 6th order (C6) [6]. Fig. 3(a,b) compares the
wall distance values and absolute error along the vertical
line passing through the origin using different schemes.
The superiority of the high-order schemes can be clearly
appreciated from the figure. The RMS values of error along
the mid vertical line and the filtering coefficients (αf ) used
to carry out the simulations are listed in the Table 1. The
RMS error using high-order schemes is clearly an order
of magnitude smaller than the first order up-wind scheme.
The CPU time consumed per 1000 iterations to solve H-
J equation for case-1 using upwind, explicit and compact
schemes are 5.78, 1.68 and 2.82 minutes respectively.

B. Effect of higher order schemes on Eikonal equation
solution

A similar analysis is also carried out for the solution of
Eikonal equation. Performance of various schemes is tested
using case-1 and the results are summarised in Table 2. The
wall distance and the error plots are shown in the Fig 4.
When compared to the H-J equation, the Eikonal equation
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Table 1: Net RMS errors with H-J equation along mid
vertical line excluding the part between y/Lref = 3 to 7,
using various schemes for case-1.

Scheme αf RMS error
E2 0.495 8.74× 10−4

E4 0.495 8.36× 10−4

C4 0.495 8.33× 10−4

C6 0.49 8.60× 10−4

UW - 2.48× 10−3
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Figure 3: Comparison of (a) Wall distances and (b) Wall
distance error, along mid vertical line using H-J equation
with schemes, E2, E4, C4, C6 and UW for case-1.

is hyperbolic and high-order schemes are susceptible to
stability issues due to the lack of Laplacian term. The effect
of dispersion error is clearly seen in the solutions from

Table 2: Net RMS errors with Eikonal equation along
mid vertical line using various schemes for case-1.

Scheme αf RMS error
E2 0.48 2.14× 10−2

E4 0.48 1.40× 10−2

C4 0.48 1.09× 10−2

C6 0.47 8.65× 10−3

UW - 2.42× 10−5
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Figure 4: Comparison of (a) Wall distances and (b) Wall
distance error, along mid-vertical using Eikonal equation
with schemes, E2, E4, C4, C6 and UW for case-1.

the high-order methods. Although the Gibbs phenomenon is
partially suppressed due to filtering, thereby enhancing the
stability, the RMS error due to high-order schemes is larger
when compared to the upwind scheme. Decreasing the filter
order or filtering coefficient can minimize the dispersion
error and improve the results. Simulations in these lines will
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be addressed in the final version of the paper. The CPU time
consumed per 1000 iterations to solve Eikonal equation for
case-1 using upwind, explicit and compact schemes are 3.33,
1.65 and 2.78 minutes respectively.

VI. RESULTS FOR UNSTEADY CASES
As discussed in section I, the solver has also been

enhanced to compute unsteady wall distances. In this section,
we demonstrate the results obtained on 2D test cases namely,
oscillating cube (case-3), bouncing cube (case-4) and star
grain burnback in solid rocket motor (case-5) using H-J
approach with E4 scheme. The computational set-up, grid
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Figure 5: (a) Temporal variation of wall distance field due
to oscillating cube present inside an enclosed space using
H-J equation (with E4 scheme, 10th order filtering and
αf = 0.495), at probe marked in the first snapshot. (b)
Temporal variation of wall distance at the probe location.

and boundary conditions for these cases are described in
section IV. Fig 5(a), Fig 6(a), and Fig 7 shows the temporal
variation of the wall-distance field for the 2D oscillating
cube, bouncing cube and star grain solid propellant burn-
back test cases respectively. It has been observed that the
simulation time for these unsteady cases reduced drastically
after first physical time-step, since the solution at the old
physical time step provides the initial condition for the new
physical time step. A probe, marked in Fig 5(a) and Fig 6(a),
is placed in the domain to record the temporal variation of
the wall-distance field. The corresponding temporal variation
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Figure 6: (a) Temporal variation of wall distance field
for case-5 (bouncing cube) using H-J equation (with E4
scheme, 10th order filtering and αf = 0.495) , probe
location marked in the first snapshot. (b) Temporal
variation of wall distance at the probe location.
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Figure 7: Temporal variation of wall distance field using
H-J equation inside the expanding combustion chamber
of a solid rocket motor with 2-D eight legged star like
propellant grain in it.

is compared against the exact solution in Fig 5(b) and
Fig 6(b). The predictions are in good agreement with the
analytical data. For the bouncing cube case, every time the
cube bounces off from ground it gradually looses energy
and settles down on the bottom surface. Fig 6(b). shows the
effect of bouncing on the evolution of exact and computed
wall distance (raise, fall and asymptotic convergence of
wall distance with increasing time) recorded at the probe.
Under this steady state, the probe is at a location which
is farthest from all the walls. It has been demonstrated in
Fig. 1 that H-J equation is less accurate away from the
walls. Hence, the error between the analytical and predicted
wall distance at t/τ = 10-15 is notable due to Laplacian
operator in H-J equation. From the snapshots of simulation
presented in Fig 7 it can be seen that, as the propellant burns
inside the solid rocket motor (SRM), the grain boundary
moves progressively away from the center, increasing the
wall distance at the central portion with time as expected.

VII. CONCLUSIONS
A differential equation based wall distance solver is

developed. Three different approaches of solving Eikonal,
Hamilton-Jacobi (H-J) and Poisson equations have been
demonstrated. The baseline version of the solver, using
first order up-wind scheme for the spatial discretization,
has been validated on simple and complex geometries.

The use of high-order schemes for wall-distance solvers
has been demonstrated. While solving the Hamilton-Jacobi
equation, the high-order schemes out-performed the up-
winding schemes by reducing the error by nearly an order
of magnitude. On the other hand, the high-order schemes
suffered with dispersion errors while solving the nonlinear
hyperbolic Eikonal equation.

An unsteady wall distance solver has also been developed
using H-J approach with an Explicit 4th order scheme.
The temporal variation of wall distance field for the 2D
oscillating and bouncing cube test-cases has been validated
against the analytical solutions. Also, the wall distance field
evolution inside the combustion chamber of a solid rocket
motor with star grain structure has been presented.

NOMENCLATURE

φ Wall distance
φ′ A scalar field from which Poisson equation

based wall distance can be estimated
U Front propagation velocity implied in Eikonal

equation
t Physical time
t∗ Pseudo time
Lref Length scale for non-dimensionalization
τ Time scale for non-dimensionalization
αf Filtering coefficient
E2 Explicit second order scheme
E4 Explicit fourth order scheme
C4 Compact fourth order scheme
C6 Compact sixth order scheme
UW First order up-wind scheme
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