
EasyChair Preprint
№ 13854

Assessing the FAIRness of Software Repositories
Using RDF and SHACL

Tobias Hummel, Leon Martin and Andreas Henrich

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

August 6, 2024



Assessing the FAIRness of Software
Repositories using RDF and SHACL

Tobias HUMMEL aLeon MARTIN a,1Andreas HENRICH a

a Media Informatics, University of Bamberg, An der Weberei 5, 96047 Bamberg.
ORCiD ID: Tobias Hummel https://orcid.org/0009-0000-5561-8471, Leon Martin

https://orcid.org/0000-0002-6747-5524, Andreas Henrich
https://orcid.org/0000-0002-5074-3254

Abstract. Purpose: A previous paper proposed the usage of SHACL to assess the
FAIRness of software repositories. Following this call to action, this paper intro-
duces and discusses the changes made to QUARE, a SHACL-based tool for vali-
dating GitHub repositories against sets of quality criteria, to facilitate this task.
Methodology: An operationalization of the abstract FAIR best practices from pre-
vious work is devised to enable a FAIRness assessment based on concrete qual-
ity criteria. Afterwards, a SHACL shapes graph implementing these constraints is
introduced, followed by a discussion of the efficient generation of suitable RDF
representations for GitHub repositories. Improvements regarding the usability of
QUARE are examined, as well. An evaluation on the FAIRness of 223 GitHub
repositories and on the runtime performance of the assessment is conducted.
Findings: On average, trending repositories comply with fewer FAIR best practices
than repositories expected to be FAIR. However, the latter still exhibit deficiencies,
for example, regarding the correct application of semantic versioning. The low av-
erage runtime of the FAIRness assessment of respectively 3.50 and 5.73 seconds
per repository permits the integration of QUARE in, e.g., CI/CD pipelines.
Value: The FAIR principles are often mentioned as a measure to tackle the repro-
ducibility crisis, which continues to have a significant impact on science. To im-
plement these principles in practice, it is crucial to provide tools that facilitate the
automated assessment of the FAIRness of software repositories. The enhanced ver-
sion of QUARE introduced in this paper represents our proposal for this demand.

Keywords. FAIR software, GitHub repositories, SHACL

1. Introduction

In computer science and various other disciplines, large amounts of research software
are produced [1]. Research software encompasses “source code files, algorithms, scripts,
computational workflows and executable files that were created during the research pro-
cess or for a research purpose” [2, p. 16]. To develop and publish research software,
GitHub2 and other Git3-based platforms are a common choice [1]. In 2016, a survey [3]

1Mail: leon.martin@uni-bamberg.de.
2https://github.com (visited 2024-03-28)
3https://git-scm.com (visited 2024-03-28)

leon.martin@uni-bamberg.de
https://github.com
https://git-scm.com


found that 52 percent of the respondents saw a “significant crisis” [3, p. 452] and 38
percent a “slight crisis” [3, p. 452] regarding reproducibility in science. According to
the Association for Computing Machinery, an experiment is reproducible if another team
that uses the same setup observes the same or very similar results as stated by the orig-
inal team4. A literature review on reproducibility studies [4] in computer science from
2023 yields results similar to the 2016 survey. In four of the nine considered studies, the
reproduction was successful, in three only in parts, and in two it was unsuccessful. This
indicates that reproducibility in research is still an issue today. To mitigate this issue,
the DFG (German Research Foundation) and others recommend that researchers should
publish results following the FAIR principles [5]. These principles require the data to be
Findable, Accessible, Interoperable, and Reusable [1,6].

In [7], the authors present ten FAIR best practices and a pipeline approach leveraging
RDF-star [8] to assess the FAIRness of repositories in GitHub organizations, i.e., shared
accounts with multiple associated repositories. They also state that a future approach
could use SHACL [9] to validate repositories against the FAIR principles. Following this
call to action, we adapt and expand the already existing SHACL-based research proto-
type QUARE5, which supports the validation of GitHub repositories against predefined
project types. In this context, a project type corresponds to a set of quality criteria de-
scribing desired requirements for a repository [10]. The present paper introduces a new
project type to validate repositories against the FAIR best practices from [7]. Moreover,
we improve the usability of the application and evaluate how FAIR popular repositories
on GitHub are, also considering the runtime performance of the new QuaRe version.

The remainder of this paper is structured as follows: Section 2 gives an overview of
theoretical foundations and related work. Based on this, Section 3 explains our concept
for the FAIRness assessment, followed be a presentation of the implementation in Sec-
tion 4. Subsequently, Section 5 discusses the implementation and the evaluation results.
Finally, a summary and an outlook in Section 6 conclude the paper.

2. Foundations & Related Work

The FAIR principles have been designed as “domain-independent, high-level princi-
ples” [6, p. 4] for data developed by the community. They are not only designed for hu-
man data users but also for machines [6]. Since the word FAIR suggests a judgment, some
authors state to “explicitly describe FAIR as a spectrum, and a continuum; that there is no
such thing as ‘unfair’ being associated with the FAIR principles, except maybe the spe-
cific case of data that are not even findable” [11, p. 52]. To support research software de-
velopers, the Netherlands eScience Center and Data Archiving and Networked Services
(DANS) launched a website6 with five research software specific FAIR recommendations
in 20197. Mainly members of the Netherlands eScience Center also developed howfairis,

4https://www.acm.org/publications/policies/artifact-review-and-badging-current

(visited 2024-03-28)
5The implementation and all resources required to reproduce the evaluation results presented within this

paper are available in the repository at https://github.com/uniba-mi/quare, which is also indexed in
the Software Heritage Project’s archive (https://archive.softwareheritage.org; visited 2024-03-28).

6 https://fair-software.eu (visited 2024-03-28)
7https://www.esciencecenter.nl/news/netherlands-escience-center-and-dans-launch-

new-fair-software-website-2 (visited 2024-03-28)

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://github.com/uniba-mi/quare
https://archive.softwareheritage.org
https://fair-software.eu
https://www.esciencecenter.nl/news/netherlands-escience-center-and-dans-launch-new-fair-software-website-2
https://www.esciencecenter.nl/news/netherlands-escience-center-and-dans-launch-new-fair-software-website-2


Table 1. Ten FAIR best practices for research software, adopted from [7, p. 2]. The original column labeled
Source has been omitted.

ID Best practice FAIR Principle

BP1 A description (long or short) is available F
BP2 A persistent identifier (e.g., DOI) is available F
BP3 A download URL is available A
BP4 A semantic versioning scheme is followed A
BP5 Usage documentation (including I/O) is available I,R
BP6 A license is declared R
BP7 An explicit citation is provided R
BP8 Software metadata (programming language, keywords, etc.) is available F,R
BP9 Installation instructions are available R
BP10 Software requirements are available R

a “command line tool to analyze a GitHub or GitLab repository’s compliance” [12] based
on the five recommendations. The analysis result is listed in the terminal and provided
as a badge that can be included in the README file of the respective repository. The
GitHub organization8 of the howfairis repository has several similar repositories, for ex-
ample one9 that checks the FAIR compliance as a GitHub Action10. There are also other
publications regarding FAIR principles for research software. Motivated by the differ-
ences between pure data and research software, BARKER ET AL. [13] tailored the FAIR
principles from WILKINSON ET AL. [6] to the research software domain in a community
project. The result is a collection of guiding principles that specify the four foundational
FAIR principles more concretely. Repositories can be checked against these principles
with an online checklist11. After completing the checklist, a badge with the result can
be included in the repository’s README file. The tool was released by the Netherlands
eScience Center and the Australian Research Data Commons12. Another possibility to
assess the compliance of research software with the FAIR principles and an important
basis for the present paper is the work by IGLESIAS-MOLINA and GARIJO [7,14]. They
mention the howfairis tool and state that it is limited to only a subset of the FAIR prin-
ciples. Additionally, they identify a general lack of tools for checking compliance with
all FAIR principles on a GitHub organization level. As a consequence, they developed a
pipeline approach for this task [7]. Their approach is based on the ten FAIR best practices
shown in Table 1, which they have sourced from two other publications [15,16].

Before we summarize the implementation details of IGLESIAS-MOLINA and GAR-
IJO [7,14] and present the QUARE tool, we briefly introduce relevant semantic web
standards as context. The Resource Description Framework (RDF) [17] describes re-
sources using triples where each triple comprises a subject, a predicate, and an object.
Sets of such triples constitute RDF graphs. Subjects and objects correspond to nodes
in these graphs, which can be Internationalized Resource Identifiers (IRIs), literals, or

8https://github.com/fair-software (visited 2024-03-28)
9https://github.com/fair-software/howfairis-github-action (visited 2024-03-28)
10https://docs.github.com/en/actions (visited 2024-03-28)
11https://fairsoftwarechecklist.net (visited 2024-03-28)
12https://www.esciencecenter.nl/news/new-self-assessment-tool-to-promote-fair-

research-software (visited 2024-03-28)

https://github.com/fair-software
https://github.com/fair-software/howfairis-github-action
https://docs.github.com/en/actions
https://fairsoftwarechecklist.net
https://www.esciencecenter.nl/news/new-self-assessment-tool-to-promote-fair-research-software
https://www.esciencecenter.nl/news/new-self-assessment-tool-to-promote-fair-research-software


GitHub
organisation

RS code
repositories

RML-star
mapping

RS metadata
knowledge graph

RS extracted
metadata

Result
presentation

SPARQL
queries

(a) Pipeline-based validation process using RDF-star. The figure is adapted from [7].

Shapes graph

GitHub 
organisation or user

RS code
repository

PyGithub 
and internal 
processing

Data graph (repository
representation)

pySHACL
and internal 
processing

Result
presentation

(b) SHACL-based validation process with QUARE [10]

Figure 1. Simplified diagrams of the validation processes by IGLESIAS-MOLINA and GARIJO (1a) and by
MARTIN and HENRICH (1b). RS is short for research software.

blank nodes. The predicates, which represent the edges, are IRIs that express proper-
ties, i.e., relations between subjects and objects. Since IRIs are a generalization of Uni-
form Resource Identifiers (URIs), absolute URIs also qualify as valid IRIs. Literals hold
values of a specified datatype, for instance strings. RDF-star, an extension of RDF, ad-
ditionally allows making statements about triples using other triples [8]. There is also
a query language for RDF graphs, the SPARQL Protocol And RDF Query Language
(SPARQL) [18]. The Shapes Constraint Language (SHACL) [9] allows the validation
of an RDF graph (the data graph) against conditions formulated in another RDF graph
(the shapes graph). The validation is done by a processor which outputs the results in a
validation report [9]. The shapes in the shapes graph are either node or property shapes.
Node shapes specify conditions on the level of nodes, whereas property shapes specify
conditions about property or path values of a node. A node shape generally has one or
more property shapes [19].

Figure 1 compares the validation process by IGLESIAS-MOLINA and GARIJO with
the validation process underlying QUARE. The approach shown in Figure 1a leverages
an existing application, the Software Metadata Extraction Framework (SOMEF) [20], to
extract metadata from all repositories of a GitHub organization. Based on this data, an
RDF-star representation of the repositories is created using a mapping language [7]. Af-
terwards, SPARQL queries are issued to test the compliance of the repository representa-
tion with the FAIR best practices. The validation results are then presented as plots. This
approach does not use SHACL but its authors state that it opens “up the way towards de-
signing validation mechanisms (e.g., SHACL shapes)” [7, p. 4]. QUARE, in comparison,
is a single-page application that allows to check whether a given GitHub repository con-
forms with a selected project type. The user interface features two pages: On the specifi-
cation page, available project types and associated quality criteria can be viewed. On the
validation page, GitHub repositories of interest and desired project types can be selected.
Afterwards, one can issue the validation. Originally, two approaches have been imple-
mented for the specification and validation of quality criteria, one based on OWL [21],
the other on SHACL. However, the study in [10] revealed that SHACL is better suited
as it is significantly faster, the resulting report contains all and not only one of the viola-



tions, and the project types are easier to maintain. Consequently, the OWL approach has
been deprecated and is not considered in the present paper. Figure 1b shows a simplified
version of the validation process. Initially, QUARE fetches the required repository data
from the GitHub API and creates a repository representation in RDF, the data graph,
based on this data. A SHACL processor validates the created data graph against a shapes
graph that reflects the project types and their associated quality criteria. The resulting
validation report and a basic verbalized version are then presented on the validation page.

3. Concept

To assess the FAIRness of repositories, their compliance with the best practices from
Table 1 needs to be measurable. For this, an operationalization of the rather abstract best
practices is necessary. However, IGLESIAS-MOLINA and GARIJO provide details in this
regard only for a selection of best practices in their paper [7]. Their repository documen-
tation is more detailed in this respect but often still vague [14]. For instance, for BP10,
they write in a README file: “Are there any requirements specified anywhere?” [14,
l. 14]. This is not a problem for their approach since they delegate the operationalization
to a metadata extraction tool [7,20]. In contrast, QUARE is standalone. Thus, concrete
quality criteria are required. To tackle this problem, the two original publications [15,16]
have been consulted. The candidate quality criteria developed in the process have been it-
eratively refined through a manual inspection of relevant repositories regarding the align-
ment between our operationalization and the actual characteristics of these repositories.
The following list presents the final quality criteria that constitute the new project type
FAIRSoftware with respect to the original best practices:

BP1. “A description (long or short) is available”: The GitHub repository must have a
README file or13 a short description. This interpretation is in line with the one
of IGLESIAS-MOLINA and GARIJO [7].

BP2. “A persistent identifier (e.g., DOI) is available”: Such an identifier points “to
the same version and location for long, specified amount of time” [16, p. 18], for
example, for 20 years [16]. For this best practice, at least one of the following has
to be fulfilled:

• There is at least one release, and for each release, the version tag matches
the semantic versioning regular expression14. Note that tags such as latest
contradict the idea of persistence.

• The homepage attribute on GitHub is filled with a DOI.
• The README file contains a DOI.

Compared to IGLESIAS-MOLINA and GARIJO [14], we additionally include re-
leases since they are expected to be available for a long time and identify particular
repository versions, as well. This rule could be further extended based on Software
Heritage Identifiers15[15,16]. Note that some DOIs may also be false positives in
cases where they are pointing to papers instead of the associated code.

13In this list, the term or means that at least one option must be fulfilled (not exclusive).
14 https://semver.org (visited 2024-03-28)
15https://www.softwareheritage.org (visited 2024-03-28)

https://semver.org
https://www.softwareheritage.org


BP3. “A download URL is available”: IGLESIAS-MOLINA and GARIJO interpret this
as a call for releases [14]. With a focus on GitHub, we interpret this rule differ-
ently, though. By default, a release contains the code from a particular point in time
for download16. However, repositories can also be cloned or downloaded with-
out explicit releases. The only prerequisite is that the repository can be accessed.
Therefore, we require repositories to be public to conform with this best practice.

BP4. “A semantic versioning scheme is followed”: This criterion cannot be validated
without a release. Therefore, at least one release is required, and for each release,
the version tag must match the semantic versioning regular expression (as in BP2).
Additionally, the increment between two consecutive version numbers must be
valid. Semantic versions have three positions, called major, minor, and patch with
an optional suffix14. Hence, a valid increment is as follows: If major is increased,
minor and patch have to be set to zero. If minor is increased, patch has to be set to
zero. If patch is increased, major and minor have to be unchanged. Finally, the new
version must have a (different) suffix if all three positions are unchanged. These
criteria are stricter than those from IGLESIAS-MOLINA and GARIJO who check
compliance of the latest release with the semantic version naming scheme [14] but
without an increment check. This way, a newer release could have a lower version
number, which is not semantic.

BP5. “Usage documentation (including I/O) is available”: There must be at least one
section in the README file where the lower-cased title contains usage, how to
use, or user manual.

BP6. “A license is declared”: The repository must include a LICENSE file. This en-
ables the GitHub API to return a license17 for the repository.

BP7. “An explicit citation is provided”: IGLESIAS-MOLINA and GARIJO check
whether there is a README file with citation information or a .cff file [14]. We
adopt and detail the examples from the original publication [15] as they are more
extensive. Thus, at least one of the following has to be fulfilled:

• A CITATION.cff file is present in the root directory of the default branch.
• Exactly one .bib file is present in the root directory of the default branch.
• A README file located in the root directory of the default branch contains at

least one section where the lower-cased title contains citation, cite, or citing.

BP8. “Software metadata (programming language, keywords, etc.) is available”:
For this best practice to be fulfilled, IGLESIAS-MOLINA and GARIJO require that
the programming language, the creation date, a description (as in BP1), and at least
one topic are specified explicitly and that one release is present [14]. Conversely,
we only require at least one topic or the about attribute to be specified. An explicit
mention of the programming language is not necessary since it is automatically
determined by GitHub based on the files in the repository18. Similarly, the creation
date can be estimated via the date of the first commit. BP4 already checks for
releases such that this aspect can be ignored here.

16https://docs.github.com/en/repositories/releasing-projects-on-github/about-

releases (visited 2024-03-28)
17https://docs.github.com/en/rest/licenses/licenses (visited 2024-03-28)
18https://docs.github.com/en/repositories/managing-your-repositorys-settings-

and-features/customizing-your-repository/about-repository-languages (visited 2024-03-
28)

https://docs.github.com/en/repositories/releasing-projects-on-github/about-releases
https://docs.github.com/en/repositories/releasing-projects-on-github/about-releases
https://docs.github.com/en/rest/licenses/licenses
https://docs.github.com/en/repositories/managing-your-repositorys-settings-and-features/customizing-your-repository/about-repository-languages
https://docs.github.com/en/repositories/managing-your-repositorys-settings-and-features/customizing-your-repository/about-repository-languages


BP9. “Installation instructions are available”: There must be at least one section in
the README file where the lower-cased title contains install, setup, set up, or
setting up.

BP10. “Software requirements are available”: There must be at least one section in the
README file where the lower-cased title contains dependencies, requirements,
or prerequisite. Alternatively, depending on the main programming language, pre-
cisely one file specifying the requirements must be present in the root directory of
the default branch. Currently, this is limited to only four popular languages and a
selection of admissible files:

• For JavaScript and TypeScript: a package.json file
• For Python: a requirements.txt, environment.yaml or environment.yml file
• For Java: a pom.xml or build.gradle file

Note that this approach does not work for repositories with software components
located in separate folders as there is no single requirements file in the root direc-
tory. The QUARE repository5 is an example of this setup. In these cases and for
languages other than the supported ones, the approach using the README file
must be employed.

Based on this list, the SHACL shapes graph shown in Figure 2, which represents the
FAIRSoftware project type, has been compiled. The naming of the shapes differs from
that of the best practices for two reasons. First, other project types unrelated to FAIR
data might also employ them in the future. Second, descriptive shape names reflect our
interpretation of the best practices better. As depicted in the figure, the shapes graph has
a modular structure and comprises property, node, and project type shapes. Project type
shapes are nodes that combine all relevant node and property shapes for a project type.
In standard SHACL terminology, these are regular node shapes, though.

3.1. Revision of the Repository Representation

To be able to validate software repositories against the FAIRSoftware shapes graph,
data graphs that encompass their relevant characteristics have to be created, first. For
this purpose, the Software Description Ontology is employed. It extends the ontolo-
gies schema.org and CodeMeta for organizing information about software and its meta-
data19 [22]. IGLESIAS-MOLINA and GARIJO use this ontology [7], as well, with D. Gar-
ijo being one of its authors [22]. Figure 3 visualizes our repository representation on-
tology. In cases where the Software Description Ontology lacks appropriate properties,
custom properties in the props namespace are introduced.

As shown in [10], creating the repository representation by retrieving the necessary
data via the GitHub API has taken around 90 percent of the total validation time. The rea-
son for this is that QUARE used to fetch all data required by the supported project types,
even if the respective project type is not selected in the user interface. To mitigate this,
the shapes graph now also provides information about which repository characteristics
are necessary for the selected project type through the optional sh:description property
attached to each project type node. Hence, the repository representations are now created
as a composite of one or more of the following building blocks:

19https://w3id.org/okn/o/sd (visited 2024-03-28)

https://w3id.org/okn/o/sd


sh:property

sh:property

sh:property

sh:property

sh:property

SoftwareRequirements

ExplicitCitation

LanguageSpecificRequirementsFile

DescriptionOrAtLeastOneTopic

DescriptionOrReadme

PersistentId

SemanticVersioning

ExactlyOneLicense

InstallationInstructionsInReadme

PublicRepository

ValidVersionIncrement

SemanticVersioningTags

ReadmeFileExistent

DoiAsHomepage

ReadmeFileWithDoi

DescriptionFilled

AtLeastOneTopic

CitationOrBibFileInDefaultBranch

SoftwareRequirementsInReadme

CitationInformationInReadme

MainLanguageJava

PackageJsonFileInDefaultBranch

ExactlyOneJavaRequirementsFileInDefaultBranch

MainLanguageJavaScript

ExactlyOnePythonRequirementsFileInDefaultBranch

MainLanguagePythonOR

AND

AND

OR

OR

OR

OR

OR

AND

AND

AND

UsageNotesInReadme

sh:node
FAIRSoftware

sh:property

sh:property

sh:node

sh:and sh:property

sh:or

sh:property

sh:property

sh:property

sh:or

sh:property

sh:property

sh:node

sh:node sh:or

sh:property

sh:or sh:property

sh:property

sh:node

sh:property

sh:or sh:propertysh:node

sh:node

sh:or

sh:property

sh:property

sh:property

sh:property

MainLanguageTypeScript

sh:and

sh:and

sh:and

sh:and

sh:property

sh:property

Figure 2. The fragment of the SHACL shapes graph representing the FAIRSoftware project type; other project
types are omitted here. The project type shape for the FAIRSoftware project type is depicted in blue, the
corresponding node and property shapes are light yellow and turquoise. sh refers to the SHACL namespace.

• Branches (optionally with files in the root directory of the default branch)
• Description (about attribute)
• Homepage
• Issues (not used in the FAIRSoftware project type, but potentially in others)
• License
• Main programming language
• README file (optionally with sections or the check for a DOI, or both)
• Releases (optionally with a check for the correct increment)
• Topics
• Visibility

An example value for the sh:description is: “The following repository properties
are required to validate this project type: Visibility, Topics, Description, [. . . ].” The sen-
tence before the enumeration ensures readability and explains the enumeration to new
developers. Once the validation process is triggered, the shapes graph is queried for the
sh:description property of the selected project type, and the enumeration is extracted as
a list. For each code word in the list, a function is called that retrieves the associated data
and attaches it to the data graph.



Repository

Boolean

String

String

Website

String

Release

props:isPrivate (1)

sd:keywords (*)

sd:description (1)

sd:website (1)

sd:programmingLanguage (*)

props:versionsHaveValidIncrement (1)

String
sd:hasVersionId (1)

Boolean

Branch
props:hasBranch (*)

String
sd:name (1)

props:isDefaultBranch (1)

props:hasFileInRootDirectory (*)

Boolean

String

String
sd:hasInstallationInstructions (*)

Issue
props:hasIssue (*)

String
props:hasState (1)

License
sd:license (1)

String
sd:name (1)

Readme File Boolean
props:containsDoi (1)

String

String

String

String

sd:readme (1)

sd:hasUsageNotes (*)

sd:hasPurpose (*)

sd:softwareRequirements (*)

sd:citation (*)

sd:hasVersion (*)

Figure 3. An abstract visualization of the ontology underlying the repository representations (data graphs).
IRIs are depicted in blue, literals in green. The cardinality is given in brackets. sd refers to the Software
Description Ontology namespace, and props to the namespace for additional custom properties.

3.2. Improving the Usability of QUARE

Apart from the introduction of the FAIRSoftware project type, QUARE’s usability has
been improved for the present paper, as well. Previously, the verbalized explanation
of the validation report on the validation page has been generated using violation-type
specific templates. However, explanations generated this way were vague and included
no information about the changes required to avoid the violations [10]. To enhance the
verbalization, we first conducted tests with the large language models ChatGPT20 and
Google Bard (now Google Gemini21), focusing on ChatGPT because of more convincing
results. When the prompt provided to ChatGPT included the raw validation report, the
answer was not concrete enough and also contained hallucinations, though. For example,
when the node shape ExplicitCitation was violated, ChatGPT incorrectly stated that this
might be caused by missing information about software sources. When the shapes graph
is added to the prompt, the responses improved but were still error-prone. For instance,
ChatGPT regularly failed to mention that there are different ways to fulfill quality crite-
ria. Moreover, the content was frequently paraphrased incorrectly: For example, it stated
that it is sufficient that some .cff file is present to comply with BP7, which is, however, in-
correct as explained above. Nevertheless, the results are promising but a follow-up paper

20https://chat.openai.com (visited 2024-03-28)
21https://gemini.google.com (visited 2024-03-28)

https://chat.openai.com
https://gemini.google.com


focusing on prompt engineering and user feedback is required before the verbalization
of SHACL validation reports can be implemented using large language models.

As an interim solution, the sh:message, an optional shape property “for example to
communicate additional textual details to humans” [9] is employed. When this property
is added to shapes in the shapes graph and the shapes in question are violated, its value
is automatically included in the validation report through the property sh:resultMessage.
This way, hand-crafted yet informative static messages can be added to validation re-
ports. Consequently, this option was leveraged to add information about the causes of
a violation and recommended actions to all relevant shapes. For instance, the message
“No citation information was found. Make sure they are included in the README file
or there is a file CITATION.cff or a .bib file in the root directory of the default branch.”
was attached to the node shape ExplicitCitation. During validation, the backend extracts
the custom messages from the raw validation report and displays them in a accessible list
format. For a quick overview, an interface element revealing the share of fulfilled quality
criteria was implemented, as well. Further details and screenshots follow in Section 4.

On the specification page, users can see available project types and their quality cri-
teria. Previously, the quality criteria were presented in the SHACL notation. We intro-
duce verbalization using sh:description and set similar values as for sh:message. How-
ever, here, the focus is on the target state and how it can be reached in detail. We also
include the shape’s name for developers and traceability. As with sh:message, we set
sh:description at the node and property shape level. Although shapes can be referenced in
different project types (see Figure 2), they only need to be described once. We use Mark-
down to provide formatting options such as lists because the employed operationalization
of best practices often includes alternatives. Here, the formatting contributes to a quick
understanding of the quality criteria. The backend fetches the project type nodes from the
shapes graph and, for each of these nodes, looks up nodes connected via the properties
sh:node and sh:property, i.e., node and property shapes. Their values for sh:description
are extracted, and one list per project type is created and then displayed.

4. Implementation

Based on the insights from Section 3, we adapted and expanded QUARE with its Svelte
frontend and Python backend. The frontend interacts with an HTTP API provided by the
backend to retrieve project types and submit repositories for validation. The response
to the latter contains the validation results, including the verbalized explanation. Apart
from the frontend, other tools could also access the API, for instance, a GitHub Action in
a CI/CD scenario. QUARE’s backend uses the same libraries as before, with the excep-
tion that OWL-related libraries have been removed. The libraries include Flask22 as the
basis for the HTTP API, RDFLib23 and pySHACL24. Moreover, we use PyGithub25 as a
wrapper for the GitHub API, and Beautiful Soup26 to process sections of the README

22https://github.com/pallets/flask (visited 2024-03-28)
23https://github.com/RDFLib/rdflib (visited 2024-03-28)
24https://github.com/RDFLib/pySHACL (visited 2024-03-28)
25https://github.com/PyGithub/PyGithub (visited 2024-03-28)
26https://www.crummy.com/software/BeautifulSoup (visited 2024-03-28)

https://github.com/pallets/flask
https://github.com/RDFLib/rdflib
https://github.com/RDFLib/pySHACL
https://github.com/PyGithub/PyGithub
https://www.crummy.com/software/BeautifulSoup


Figure 4. A screenshot of the validation page: In response to a click on the submit button, a repository has
been validated against the new project type FAIRSoftware. Afterwards, the button labeled View was clicked,
revealing the raw and verbalized explanations.

file, for example. The frontend now also depends on marked27, which we use to convert
the Markdown strings from the sh:description properties to HTML.

Figure 4 shows a screenshot of the revised validation page. It displays the results
of validating a repository against the new project type FAIRSoftware. On the right, the
additional interface element displaying the share of fulfilled criteria is located. As de-
picted, the GitHub repository RDFLib/rdflib complies with seven of the ten quality cri-
teria of the FAIRSoftware project type as of 2024-03-28. The shown verbalized explana-
tion is generated based on the values of the sh:message properties of the violated node
and property shapes. In this case, the screenshot shows the messages for the violations
of the node shapes SemanticVersioning and SoftwareRequirements.

Figure 5 shows a snippet of the specification page’s current state, depicting informa-
tion about the last two quality criteria of FAIRSoftware. The quality criteria are presented
as an unordered list with tables as items. Due to the complexity of shapes like the node
shape SoftwareRequirements from the screenshot, tables are used as they provide a better
overview. The first row of each table is a one-sentence summary of the respective quality
criterion. Further details can be looked up on demand in the second row. The last row
provides the shape name for reference. Apart from tables and lists, we also use a hyper-
link to the semantic versioning regular expression28 in corresponding shapes (not in the

27https://github.com/markedjs/marked (visited 2024-03-28)
28https://semver.org/#is-there-a-suggested-regular-expression-regex-to-check-a-

semver-string which links to https://regex101.com/r/Ly7O1x/3 (visited 2024-03-28)

https://github.com/markedjs/marked
https://semver.org/#is-there-a-suggested-regular-expression-regex-to-check-a-semver-string
https://semver.org/#is-there-a-suggested-regular-expression-regex-to-check-a-semver-string
https://regex101.com/r/Ly7O1x/3


Figure 5. A screenshot of QUARE’s specification page showing the specification of two quality criteria.

figure) such that users can look up the original source, see valid and invalid examples,
and test their tags.

5. Evaluation & Discussion

To evaluate the FAIRness assessment capabilities of the updated QUARE, we ran the
tool on six repositories expected to be compliant with the FAIR best practices and 217
trending GitHub repositories. The former include:

• The repository of IGLESIAS-MOLINA and GARIJO [14].
• One repository29 that lists fair-research-software as one of its topics.
• One repository30 that lists fair-software as one of its topics.
• Three repositories31,32,33 with a green howfairis badge.

29 https://github.com/comses-education/wolf-sheep (visited 2024-03-28)
30https://github.com/zenodraft/zenodraft (visited 2024-03-28)
31 https://github.com/fair-software/howfairis (visited 2024-03-28)
32 https://github.com/GrainLearning/grainLearning (visited 2024-03-28)
33 https://github.com/online-behaviour/machine-learning (visited 2024-03-28)

https://github.com/comses-education/wolf-sheep
https://github.com/zenodraft/zenodraft
https://github.com/fair-software/howfairis
https://github.com/GrainLearning/grainLearning
https://github.com/online-behaviour/machine-learning


BP1 BP2 BP3 BP4 BP5 BP6 BP7 BP8 BP9 BP10
0

10
20
30
40
50
60
70
80
90

100

Pe
rc

en
ta

ge
 o

f C
om

pl
ia

nt
 R

ep
os

ito
rie

s
Repositories Expected to be FAIR (N=217)
Trending Repositories (N=6)

Figure 6. Compliance of the examined repositories with the FAIR best practices from Table 1

The 217 comprise the 20 most trending GitHub repositories as of the 15th of each
month, from March 2023 to February 2024, without duplicates and without two repos-
itories that are not available anymore. Notably, many of the examined repositories are
closely related to artificial intelligence, which is reflected by the employed programming
languages. Addressing the FAIRness first, Figure 6 shows the percentage of compliant
repositories with respect to each best practice.

As expected, the results show that the repositories expected to be FAIR are generally
at least as compliant with the FAIR best practices as the trending repositories with the
exception of BP10. The reason for this is that three of the repositories expected to be
FAIR happen to use ways of documenting the software requirements that are not yet cov-
ered by our operationalization: One uses a “Preparation”29 section, another a setup.py
file33 and the last one mentions the software requirements in the installation section32.
The biggest discrepancy between the two repository groups can be observed for BP7,
indicating the maintainers of the examined trending repositories do not prioritize explicit
citations. For BP1, BP3, BP6, and BP8, both groups perform very well. For BP3, this
is no surprise since all examined repositories had to be public such that we can access
them for the evaluation, which, at the same time, also fulfills this best practice. For BP4
and BP5 both groups perform poorly. In some cases, there are no releases, which directly
results in a violation of BP4, but often the semantic versioning scheme is not applied
correctly for all available releases. Largely due to the different formulations for usage
documentation or its implicit inclusion in the installation instructions, BP5 is frequently
violated. In many cases, this is not a flaw of the repositories but rather of our operational-
ization of the FAIR principles, though. The definition of FAIR principles generally leaves
room for interpretation. However, tools like QUARE need a concrete operationalization
for the validation. Our operationalization is intended as a next step for the community
efforts on the FAIRness assessment of software, as it provides one compiled list of con-
crete quality criteria for all best practices established in previous work. That being said,
this operationalization is neither final nor complete. Its maturation, which, for example,
includes the introduction of additional alternatives that occur in practice, strongly relies



100 101 102 103

Repository Size

0
5

10
15
20
25
30
35
40
45
50
55
60

Ru
nt

im
e 

Du
ra

tio
n 

in
 S

ec
on

ds
Trending Repositories
(N=217)
Repositories Expected to
be FAIR (N=6))

Figure 7. The runtime of the FAIRness assessment with respect to the size of the examined repositories. The
size equals the sum of the branches and releases within a repository.

on discussion with the community. Potentially, there will always be room for error since
it appears impossible to cover all alternatives to, for example, provide usage documen-
tation in software repositories. At the same time, a good approximation should already
be enough in practice. Currently, the validation page does not indicate what alternatives
were found in the repository and with what confidence. Improving the explainability,
a future version could provide additional information on provenance, confidence, and
technique, like the approach of IGLESIAS-MOLINA and GARIJO does. The provenance
of identified data includes, for example, whether something was identified in a separate
file or in a section in the README file [7].

Compared to QUARE which uses ten best practices, howfairis (see Section 2) uses
five recommendations for the FAIRness assessment. For the recommendations regard-
ing registry and checklist, howfairis checks if a corresponding badge is present in the
README file. QUARE does not need this preparation of badges. Furthermore, the inter-
faces differ as howfairis is a tool for the command line or a GitHub Action and QUARE a
single-page application. Furthermore, howfairis prompts its results as text in the terminal
and generates a badge [12], while QUARE provides a user-friendly visualization of the
share of fulfilled criteria, a validation report and a verbalized explanation.

Addressing the runtime of QUARE’s FAIRness assessment next, Figure 7 shows the
duration of the validation process with respect to the size of the examined repositories.
Here, the repository size refers to the sum of the releases and branches a repository com-
prises since these artifacts are the major factors determining the size of the data graph
due to their cardinality (cf. Figure 3). As shown, the repositories expected to be FAIR
are small in size, demonstrating that the size of repositories does not correlate with their
FAIRness. The large majority of the trending repositories also has a size of less than
100. Unsurprisingly, for repositories of this dimension the FAIRness assessment takes
the shortest time, i.e., well below ten seconds34. The results contain two outliers: The

34The runtime benchmarks have been executed on a PC with an AMD Ryzen 7 7700X processor and 32
GB of RAM. Clearly, internet connection and other factors also affect the measurements. Nevertheless, the
benchmarks give a realistic impression of the relative runtime for the repositories.



assessment of one repository35 with a size of 2311 took 58.87 seconds. Less drastically,
the assessment of another repository36 with a size of 1563 took 35.4 seconds. That being
said, these repositories are not representative. In fact, the average duration of the FAIR-
ness assessment is 3.50 seconds for the repositories expected to be FAIR and 5.73 sec-
onds for the trending repositories. At first glance, these numbers appear weak considering
their similarity to the results presented in [10], though. However, the new FAIRSoftware
shapes graph is significantly more complex than the shapes graphs of the previously ex-
amined project types, which also leads to more interactions with the GitHub API. Hence,
the results are actually commendable as they indicate that the time saved through the
optimization of the repository representation generation and the time increase resulting
from the more complex project type effectively cancel each other out. Overall, the results
confirm the feasibility of efficiently assessing the FAIRness of GitHub repositories using
SHACL. The duration of the validation process for typical repositories is low enough to
integrate the tool in software development processes. This includes its addition to CI/CD
pipelines using GitHub Actions, for example.

6. Conclusion

In this paper, we extended the SHACL-based research prototype QUARE with a new
project type to assess the FAIRness of GitHub repositories. The quality criteria are based
on a work by IGLESIAS-MOLINA and GARIJO [7], with a more detailed and partly dif-
ferent operationalization. Moreover, we presented the usability improvements applied to
the tool. The evaluation gives an overview of how FAIR (trending) GitHub repositories
are and how long the FAIRness assessment using QUARE takes.

In addition to the leads on future work mentioned above, we want to point out the
following ideas, as well. To mature the application of FAIR best practices, it might be
worthwhile to introduce a prioritization to the quality criteria. Currently, all quality cri-
teria of FAIRSoftware (and also of the other project types) are considered equally im-
portant in QUARE. However, depending on the concrete repository, some FAIR best
practices might be more relevant than others [7]. Using SHACL’s sh:severity property,
violations could be categorized on a quality criteria level into sh:Info, sh:Warning or
sh:Violation [9]. This additional information could then be displayed on the validation
page by ranking the violated quality requirements. Regarding QUARE itself, the next
step is to extend the capabilities of the specification page such that users can create new
quality criteria and compose new project types directly in the user interface. As an alter-
native to GitHub, GitLab37 and other platforms are employed to develop and distribute
(research) software, as well. As long as appropriate APIs and, in the best case, Python
wrappers38 are available, QUARE can be adapted to interact with other platforms.

35https://github.com/ggerganov/llama.cpp (visited 2024-07-03)
36https://github.com/nextui-org/nextui (visited 2024-07-03)
37https://gitlab.com (visited 2024-03-28)
38In the case of GitLab, there is https://github.com/python-gitlab/python-gitlab (visited 2024-

03-28), for example.

https://github.com/ggerganov/llama.cpp
https://github.com/nextui-org/nextui
https://gitlab.com
https://github.com/python-gitlab/python-gitlab


References

[1] Hasselbring W, Carr L, Hettrick S, Packer H, Tiropanis T. From FAIR research data toward FAIR and
open research software. it - Information Technology. 2020 Feb;62(1):39-47.

[2] Gruenpeter M, Katz DS, Lamprecht AL, Honeyman T, Garijo D, Struck A, et al.. Defining Research
Software: a controversial discussion. Zenodo; 2021.

[3] Baker M. 1,500 scientists lift the lid on reproducibility. Nature. 2016 May;533(7604):452-4.
[4] Hummel T, Manner J. A Literature Review on Reproducibility Studies in Computer Science (short pa-

per). In: Böhm S, Lübke D, editors. Proceedings of the 16th ZEUS Workshop, Ulm, Germany, February
29-March 1, 2024. vol. 3673 of CEUR Workshop Proceedings. CEUR-WS.org; 2024. p. 54-62. Avail-
able from: https://ceur-ws.org/Vol-3673/paper9.pdf.

[5] Deutsche Forschungsgemeinschaft. Guidelines for Safeguarding Good Research Practice. Code of Con-
duct. Zenodo; 2022.

[6] Wilkinson MD, Dumontier M, Aalbersberg IJ, Appleton G, Axton M, Baak A, et al. The FAIR Guiding
Principles for scientific data management and stewardship. Scientific Data. 2016 Mar;3(1).

[7] Iglesias-Molina A, Garijo D. Towards Assessing FAIR Research Software Best Practices in an Orga-
nization Using RDF-star. In: Keshan N, Neumaier S, Gentile AL, Vahdati S, editors. Proceedings of
the Posters and Demo Track of the 19th International Conference on Semantic Systems co-located with
19th International Conference on Semantic Systems (SEMANTiCS 2023), Leipzig, Germany, Septem-
ber 20 to 22, 2023. vol. 3526 of CEUR Workshop Proceedings. CEUR-WS.org; 2023. Available from:
https://ceur-ws.org/Vol-3526/paper-09.pdf.

[8] Arndt D, Broekstra J, DuCharme B, Lassila O, Patel-Schneider PF, Prud’hommeaux E, et al.. RDF-
star and SPARQL-star. Final Community Group Report; 2021. Visited 2024/03/28. Available from:
https://w3c.github.io/rdf-star/cg-spec/.

[9] Knublauch H, Kontokostas D. Shapes Constraint Language (SHACL). W3C Recommendation; 2017.
Visited 2024/03/28. Available from: https://www.w3.org/TR/shacl/.

[10] Martin L, Henrich A. Specification and Validation of Quality Criteria for Git Repositories using RDF
and SHACL. In: Reuss P, Eisenstadt V, Schönborn JM, Schäfer J, editors. Proceedings of the LWDA
2022 Workshops: FGWM, FGKD, and FGDB, Hildesheim (Germany), Oktober 5-7th, 2022. vol. 3341
of CEUR Workshop Proceedings. CEUR-WS.org; 2022. p. 124-35. Available from: https://ceur-
ws.org/Vol-3341/WM-LWDA_2022_CRC_1149.pdf.

[11] Mons B, Neylon C, Velterop J, Dumontier M, da Silva Santos LOB, Wilkinson MD. Cloudy, increasingly
FAIR; revisiting the FAIR Data guiding principles for the European Open Science Cloud. Inf Serv Use.
2017;37(1):49-56.

[12] Spaaks JH, Verhoeven S, Tjong Kim Sang E, Diblen F, Martinez-Ortiz C, Etuk E, et al.. howfairis; 2022.
Visited 2024/03/28. Available from: https://github.com/fair-software/howfairis.

[13] Barker M, Chue Hong NP, Katz DS, Lamprecht AL, Martinez-Ortiz C, Psomopoulos F, et al. Introducing
the FAIR Principles for research software. Scientific Data. 2022 Oct;9(1).

[14] Iglesias-Molina A, Garijo D. oeg-upm/oeg-software-graph: v1.0.0. Zenodo; 2023.
[15] Gruenpeter M, Granger S, Monteil A, Chue Hong N, Breitmoser E, Antonioletti M, et al.. D4.4 - Guide-

lines for recommended metadata standard for research software within EOSC. Zenodo; 2023.
[16] Martinez PA, Erdmann C, Simons N, Otsuji R, Labou S, Johnson R, et al.. Top 10 FAIR Data & Software

Things. Zenodo; 2019.
[17] Cyganiak R, Wood D, Lanthaler M. RDF 1.1 Concepts and Abstract Syntax. W3C Recommendation;

2014. Visited 2024/03/28. Available from: https://www.w3.org/TR/rdf11-concepts/.
[18] Harris S, Seaborne A. SPARQL 1.1 Query Language. W3C Recommendation; 2013. Visited 2024/03/28.

Available from: https://www.w3.org/TR/sparql11-query/.
[19] Gayo JEL, Prud’hommeaux E, Boneva I, Kontokostas D. Validating RDF Data. Springer International

Publishing; 2018.
[20] Kelley A, Garijo D. A framework for creating knowledge graphs of scientific software metadata. Quant

Sci Stud. 2021;2(4):1423-46. Available from: https://doi.org/10.1162/qss_a_00167.
[21] Hitzler P, Krötzsch M, Parsia B, Patel-Schneider PF, Rudolph S. OWL 2 Web Ontology Language

Primer (Second Edition). W3C Recommendation; 2012. Visited 2024/03/28. Available from: https:
//www.w3.org/TR/owl-primer/.

[22] Garijo D, Ratnakar V, Gil Y, Khider D. The Software Description Ontology; 2020. Revision: 1.8.0,
visited 2024/03/28. Available from: https://w3id.org/okn/o/sd/1.8.0.

https://ceur-ws.org/Vol-3673/paper9.pdf
https://ceur-ws.org/Vol-3526/paper-09.pdf
https://w3c.github.io/rdf-star/cg-spec/
https://www.w3.org/TR/shacl/
https://ceur-ws.org/Vol-3341/WM-LWDA_2022_CRC_1149.pdf
https://ceur-ws.org/Vol-3341/WM-LWDA_2022_CRC_1149.pdf
https://github.com/fair-software/howfairis
https://www.w3.org/TR/rdf11-concepts/
https://www.w3.org/TR/sparql11-query/
https://doi.org/10.1162/qss_a_00167
https://www.w3.org/TR/owl-primer/
https://www.w3.org/TR/owl-primer/
https://w3id.org/okn/o/sd/1.8.0

