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Abstract—As the usage of photovoltaic is emerging to 

palliate the degradation of the atmosphere and the natural 

environment. Photovoltaic (PV) systems appear to be the key 

for green energy production for households and industrial 

sectors. However, due to the dynamic change of load for a PV 

system or the variations of weather conditions, most PV 

systems are equipped with a maximum power point tracker 

(MPPT) to operate at their optimum capabilities. However, the 

efficiency of the MPPT controller varies from the techniques 

and algorithms used thus affecting the operations of the PV 

system. This paper proposes a hybrid technique based on 

Artificial neural network (ANN) combines with perturbation 

and observation (P&O) or incremental conductance (IC) 

algorithms using MATLAB Simulink for tracking the ideal 

maximum power point under uniform and sudden change of 

weather conditions. A comparison is depicted with 

conventional techniques, the findings suggest that the hybrid 

ANN-IC technique has an improved accuracy of 98% and 

response time 0,154 seconds to MPP under uniform weather. 

The model presents a fast-tracking response under rapidly 

changing conditions for a convergence time of 𝟏. 𝟎𝟏𝟑 𝝁𝒔. 

Keywords—Maximum power point (MPP) tracker, artificial 

neural network (ANN), perturbation and observation (P&O), 

incremental conductance (IC). 

I. INTRODUCTION 

Moving toward renewable energy sources has 
quickened, because of increased awareness of issues such as 
global warming which affect our environment such as air 
pollution, nature degradation, and greenhouse gases on the 
atmosphere. When compared to other clean energy sources, 
solar photovoltaic (PV) energy has stood out as being 
particularly accessible [1]. A survey on solar energy 
technology adoption and diffusion was conducted by authors 
[2] on micro-, small, medium enterprises where important 
criteria were deducted such as the enterprise size, the ease of 
use as well as the reliability of the system in contrast with 
the cost of production. It was demonstrated in [3], that the 
trends towards rooftop solar PV installation is galvanized by 
local governments for environment preservation, education 
and household’s perception. In fact, authors in [4], describe 
that energy harvest from PV systems has become more 

common as a result of lower PV module prices, intentional 
government provisions, and innovative business models in 
homes, businesses, and grid power systems. However, PV 
system’s efficiency mainly depends on several factors 
including the system configuration, the shading patterns, the 
irradiation and temperature as well as the aging effect [5]. 
Authors in [6], describe that PV system’s performance is 
strongly dependent on ambient temperature and the solar 
radiation which are unevenly dispatched over the panel 
module causing multiples local maximum power points. 
Also, if a solar panel is directly coupled to a load, its 
operational point is the intersection of the PV module's I-V 
curve and the load curve. However, this operating point may 
not always correspond to the PV module's maximum power 
point (MPP). [7]. 

Therefore, to get the most power out of the PV system, 
an MPP tracking algorithm that seeks to find the general 
peak point under all conditions and fine tune the array's 
voltage or current to this point is necessary. In addition, to 
control the voltage or current of the array, a DC-to-DC 
converter connects the PV array to the load [1, 8, 9]. The 
maximum output power is obtained by controlling the duty 
cycle from the converter injected in the PV panel to meet the 
highest point of the P-V curve characteristics [10]. Some 
guidelines are provided by authors in [10, 11], for a proper 
MPPT system including several points such as: 

• The MPPT system should be simple and must be 
easily adapted to different types of PV systems. 

• The MPPT system must have the best possible 
accuracy for the true global MPP and tracking efficiency in 
various weather conditions. 

• A rapid response in sudden change of weather 
conditions when tracking the MPP is important. 

• A minimum or no oscillations around the MPP is 
also mandatory. 

The MPPT management technique is a difficult subject 
of study because hardly any methods could be acknowledged 
as the best. For starters, most techniques have not been tested 
and confirmed in real-time. Second, all operating limitations 
are not taken into account, and results are supplied with only 



a few or none at all. Third, when comparing the cost of 
power produced by a PV array to alternative options, the 
MPPT approach must be designed with cost-effectiveness in 
mind [11]. Therefore, this paper will outline the different 
techniques and findings for MPPT system from various 
authors in section 2, then our model and considerations will 
be presented in section 3. In section 4 we will discuss the 
findings and interpretation of our system and the paper will 
be concluded in section 5. 

II. LITERATURE REVIEW 

Several techniques and algorithms have been used by 
various authors to fulfil the characteristics of the maximum 
power point tracker system, each carries its advantages and 
drawbacks. Researchers in [12], classifies MPP algorithms 
based on measurements, calculations, intelligence scheme 
and hybrid scheme. Measurement algorithms work by 
performing computation of the PV’s voltage or current and 
comparing the outcomes to previous calculations or a 
predefined MPP parameter. Calculation algorithms depend 
solely on a predefined formula of the MPP, the intelligent 
scheme refers to advanced computations that can predict the 
MPP and the hybrid scheme refers to the mixture of 
conventional methods and advanced intelligent algorithms. 
Authors in [10], have categorized techniques for MPP as 
conventional and modern techniques. Conventional 
techniques include perturbation and observations (P&O), 
incremental conductance (IC), fractional open circuit 
voltage/short circuit current (FOVC) and hill climbing (HC). 
Meanwhile modern techniques include artificial neural, 
network (ANN) techniques, fuzzy logic (FL), and 
metaheuristic-based techniques. 

Research for an improved maximum power point 
tracking controller for PV systems using artificial neural 
network was conducted in [13],the authors present a model 
based on ANN with feedback propagation for a faster 
response time for MPP tracking to respond to environmental 
changes. The model uses solar radiation and temperature 
data as well as temperature coefficients of short current (ISC) 
and open voltage (VOC) to find the optimum output power. 
The model’s results are compared to simplified method of 
perturbation & observation (P&O) to show its superior 
tracking efficiency of 95.51% for ANN against 85.99% for 
P&O. Fuzzy logic and adaptive neuro fuzzy logic 
interference system (ANFIS) algorithms were used in papers 
[14, 15] for MPP tracking and control. The simulations were 
compared to conventional methods for MPP such as 
incremental conductance and P&O on criteria such as speed, 
efficiency, stability, and precision with an overall superiority 
of the models proposed. Similarly, investigation in paper 
[16] were made to determine the MPP under partial shaded 
conditions using a hybrid constant-voltage and fuzzy logic 
methods which consist of observational tracking of MPP 
using fuzzy logic under constant irradiance while under 
partial shaded the MPP is determined using constant voltage 
method. The results claim an improvement of output power 
of 10% compared to the conventional P&O method. 

However, approaches based on fuzzy logic algorithm have 
challenges in both design and hardware implementation; 
precision is low under low irradiance conditions; periodic 
tuning is necessary; and excellent system understanding is 
required for building membership functions. These 
complexities make the methods system-dependent [11]. An 
MPP controller algorithm using neural network was 
investigated in paper [17], whereby the authors used the 
variations of power and voltage given by P&O algorithms to 
feed the neural network in order to determine the duty cycle 
required for the system. The paper claims to have a better 
response time to the variation of irradiance of 0,035 seconds 
and good tracking efficiency. A gene expression 
programming based MPPT technique is developed for micro 
inverter application in paper [18], the authors claim that the 
genetic algorithm based MPPT system is less complex since 
it is derived from an equation. The obtained results claim 
that the suggested MPPT technique shows promising 
improvements in the overall system's efficiency, overshoot 
rate, convergence speed, tracking accuracy, and dynamic 
response. The system's efficiency shows an increase of 4% 
on average for the total system. Overshoot is decreased by at 
least 0.6 A, while convergence speed is raised by 1.4 seconds. 
A comparative study between P&O and incremental 
conductance algorithms for MPP was performed in research 
[19], the authors compared both techniques over efficiency, 
voltage, current and output power using three types of DC-
DC converter under various irradiances. The result 
demonstrates a net superiority of the incremental 
conductance methods. An improved particle swarm 
optimization (PSO) method for MPPT under partial shading 
or failure conditions was developed in [20], the model was 
constructed for tracking speed and accuracy using a 
PIC18F8720 and PSO exponential form parameter control to 
reduce iteration numbers and improve tracking effectiveness. 
This strategy used exponential increases or decreases in the 
cognition-only learning factor, the social-only learning 
factor, and the inertia weight. The proposed method claims 
to reduce the number of iterations to 21,1 while a traditional 
PSO stands at 38,3. Another technique using a tracking 
electronic device was developed in paper [21] for obtaining 
the maximum power of a PV system. The system includes 
two stepper motors controlling two PV panels via an AT 
Mega IC which tracks the sun from 9 AM to 4PM. The 
results display an improved augmentation of output voltage 
from tracking compared to no tracking device. An economic 
and technical classification of MPPT methods was 
investigated in paper [22]. The authors claimed that methods 
such as curve fitting, look up table, fractional shot circuit 
current (FSCC), fractional open circuit voltage (FOCV), 
constant voltage (CV), and load base method are suitable for 
small-scale applications, where cost trumps efficiency and 
precision, such as household solar chargers. Meanwhile, 
methods involving perturbation, differential, numerical and 
conductance are all appropriate for commercial and 
everyday applications. State space and intelligent 
approaches are used in high-sensitivity situations where 
efficiency, accuracy, and speed are critical, such as in space 



 

applications. Another economical study for MPPT 
techniques on wind and solar systems was developed in [23], 
the chosen criteria were the capacity of utilization, the 
system cost, the energy generated, the energy produced 
revenue, the payback time period, and the stability of the 
method. The analysis was made on methods including P&O, 
IC, HC, FL, ANN and PSO. The result claimed that particle 
swarm method is the best overall from the chosen criteria. 

Different methods were elaborated for tracking the MPP 
on PV systems, each with their own perspectives and 
analysis reports. The following section will discuss the 
implementation and analysis of the proposed methodology. 

III. MODEL PRESENTATION 

A. System architecture 

1) Partial shading conditions (PSC):To maximize PV 

system energy generated, PV panels are arranged in parallel 

to increase the output current or they can be connected in 

series to maximize the output voltage of the system [24]. 

However, in industrial PV systems some PV panels might 

not receive the same amount of radiations as other in the 

system due to clouds, trees around some panels, or other 

environmental factors thus creating hotspots or resistances 

where energy dissipation occurs, this phenomenon is called 

partial shading [25]. If PSC happens on the series-connected 

PV strings, the cell with the lower irradiance value will 

operate as a load and waste some power, causing the cell 

temperature to rise. As a result, the cell will be destroyed. To 

remedy this issue, bypass diodes are linked across the PV 

modules, bypassing the less shaded modules during the PSC. 

In addition, a blocking diode is connected at the output of 

the combined panels to prevent current reversal [23, 26]. The 

following figures depict the PV system configuration under 

PSC and the output effect on the I-V/P-V curve 

characteristics. The PV system uses Kyocera solar 

KC200GT for four different radiations (1000 W/m2, 750 

W/m2, 500 W/m2, 250 W/m2). 

 

Figure 1: PSC Simulink diagram under various irradiations 

(1000 W/m2, 750W/m2, 500 W/m2 and 250 W/m2). 

 

Figure 2: Effect of PSC on I-V characteristics. 

 

Figure 3: Effect of PSC on P-V characteristics. 

The MPPT controller should be able to converge rapidly 
to the global MPP (GMPP) with maximum efficiency. 

2) PV cell model. The solar cell is the basic unit of a 

photovoltaic module, and it is responsible for directly 

converting the sun's rays or photons into electric power [27]. 

The solar cell is defined as a p-n junction with nonlinear 

properties, whereby a current source is connected in parallel 

with a diode 𝐷 and a resistance 𝑅𝑆𝐻, in addition, a resistance 

𝑅𝑆  equivalents to the series connected cell is added to 

complete the circuit of a solar cell as depicted in the figure 3 

[24]. 

 

Figure 4: Equivalent circuit of a solar cell. 



The output current is defined by the following 
equations[24]. 

  𝐼 =  𝐼𝑝ℎ − 𝐼𝑜 (exp (
𝑉+𝐼𝑅𝑆

𝑎∗𝑉𝑡
) − 1) −

𝑉+𝐼𝑅𝑆

𝑅𝑆𝐻
 (1) 

  𝐼𝑝ℎ =  𝐼𝑠𝑐_𝑆𝑇𝐶 + 𝐾𝑖(𝑇 − 𝑇𝑆𝑇𝐶)
𝐺

𝐺𝑆𝑇𝐶
 (2) 

  𝑉𝑡 =  
𝑘∗𝑇

𝑞
 (3) 

  𝑉𝑡1 =  
𝑘∗𝑇𝑆𝑇𝐶

𝑞
 (4) 

  𝐼𝑜 =  𝐼𝑜_𝑆𝑇𝐶(
𝑇

𝑇𝑆𝑇𝐶
)

3

𝑎[exp (
−𝑞∗𝑉𝑔

𝑎∗𝑘
∗ (

1

𝑇
−

1

𝑇𝑆𝑇𝐶
))] (5) 

  𝐼𝑜_𝑆𝑇𝐶 =  
𝐼𝑠𝑐_𝑆𝑇𝐶

exp(
𝑉𝑜𝑐

𝑎∗𝑉𝑡1
)−1

 (6) 

  𝑋𝑉 =
𝐼𝑜_𝑆𝑇𝐶

𝑎∗𝑉𝑡1
∗ exp (

𝑉𝑜𝑐

𝑎∗𝑉𝑡1
) (7) 

  𝑑𝑉/𝑑𝐼𝑉𝑜𝑐 = −
𝑉𝑔

2∗𝑁𝑠
 (8) 

  𝑅𝑠 = −𝑑𝑉/𝑑𝐼𝑉𝑜𝑐 −
1

𝑋𝑉
 (9) 

Where I, Iph and Io are respectively the output current 
from the panel, the photo-current generated from the cell p-
n junction and the reverse current from the diode. V, Vt and 
Vg are the PV cell voltage, thermal voltage and the band 
gape voltage, ISC_STC, VOC_STC, TSTC, and GSTC are the short 
current, open circuit voltage, temperature and irradiance 
under standard test conditions (STC) defined by a 
temperature of 25°C, irradiance of 1000 W/m2 and wind 
speed of 1 m/s. Ki is coefficients for short current, while a is 
a constants for ideality factor(1,2 for monocrystalline, 2 for 
polycrystalline), q is a constant for electric charge (1,6 ∗
10−19𝐶) and k is the Boltzmann constant (1,38 ∗ 10−23𝐽/𝐾). 

Programmatically on MATLAB, the solution for 
calculating the output current given that the parallel 
resistance is extremely high is defined as: 

 𝐼 = 𝐼 +
𝐼𝑝ℎ−𝐼−𝐼𝑜(exp(

𝑉𝑐+𝐼𝑅𝑠
𝑉𝑡

)−1)

𝐼𝑜𝑅𝑠(exp(
𝑉𝑐+𝐼𝑅𝑠

𝑉𝑡
)−1)

𝑉𝑡
+1

 () 

The following figure describes the curves for I-V and P-
V: 

 

Figure 5: I-V and P-V characteristics. 

3) Boost converter application.  To transfer PV power 

effectively from the panels to the load at optimum operating 

conditions, MPPT controllers are built-in with a DC-to-DC 

converter [28]. These converters are generally designed as a 

buck converter to step down the input voltage, a boost 

converter to step up the input voltage or a cuck converter to 

inverse the polarity of the input signal [19]. For the purposes 

of this paper, our simulations will be based on a DC-to-DC 

boost converter to maintain the optimum operating power 

levelled at the input and output. Boost converters are known 

for their stabilities and efficiency because their can easily 

regulate the load impedance effect from the input voltage of 

the PV system [29].  

 
A design for a boost converter is given in figure 6. 

 

Figure 6: Boost converter diagram. 

A booster converter is generally composed of a voltage 
source VS which will be replaced by our PV generated power, 
an input capacitor C1, a boost inductance L, a diode D, a 
switch S, an output capacitor C2 and an output resistance R. 
When switch S is turned on, the current in the boost inductor 
grows linearly. Meanwhile, diode D is turned off. When 
switch S is turned off, the energy stored in the inductor is 
released to the input RC circuit via the diode. The Faraday’s 
law equation is therefore given for the boost inductor [30]: 

  𝑉𝑆 ∗ 𝑑 ∗ 𝑡 = (𝑉𝑂 − 𝑉𝑆)(1 − 𝑑) ∗ 𝑡 (11) 

 
𝑉𝑆

𝑉𝑂
=

1

1−𝑑
 (12) 

Where Vo is the output voltage, t is the period given by 
the switching on-off frequency of switch S and d is the duty 
cycle. The boost inductance L is defined by 𝐿 > 𝐿𝑏: 

 𝐿𝑏 =
𝑑∗𝑅(1−𝑑)2

2𝑓
 (13) 

Author [31], define the boost inductance formula as: 

 𝐿 =
𝑉𝑆(𝑉𝑂−𝑉𝑆)

𝑓∗𝑉𝑂∗∆𝐼𝐿
 (14) 

 ∆𝐼𝐿 =
𝑉𝑂

𝑉𝑆
∗ 𝐼𝑜𝑢𝑡_𝑚𝑎𝑥 ∗ (0.2 𝑡𝑜 0.4) (15) 

Where ∆𝐼𝐿  is the inductor ripple current which is 
estimated between 20% to 40% of the output current 
𝐼𝑜𝑢𝑡_𝑚𝑎𝑥. 



 

The minimum value for the output capacitor C2 is given 
by [30]: 

 𝐶𝑚𝑖𝑛 =
𝑑∗𝑉𝑜

𝑉𝑟𝑅𝑓
 (16) 

Where f is the switching frequency, Vr is allowable ripple 
voltage given by: 

 𝑉𝑟 = 𝑉𝑜 ∗ 𝑝 (17) 

Where p is the ripple percentage of the output voltage Vo. 
The input capacitor C1 is chosen to be two times greater than 
the output capacitor for proper operation. 

 𝐶1 ≈ 𝐶2 ∗ 2 (18) 

To manage the switch state when utilizing a DC-DC 

converter for tracking the maximum power on buck, or boost 

type, a proper control signal is necessary. The inclusion of a 

control circuit to the converter and the use of pulse width 

modulation (PWM) techniques are standard methods for 

producing the switch control signal. [28]. 

B. Perturbation & observation and incremental 

conductance models 

1) Perturbation & observation (P&O) algorithm:. 

Among the conventional methods for MPPT controller, 

P&O method has been the most used on PV systems because 

of its simplicity, low cost and easy implementation, in 

addition this method does not require a deep knowledge of 

the PV system’s parameters [14, 24]. The principle of the 

algorithm is to alter the voltage or current of the PV module 

in fractional steps and observe the effect on the produced 

power. The power of the previous step is then compared to 

the power of the following step to determine whether to 

increase or decrease the voltage or current [32]. If the 

variation of power ∆𝑃𝑝𝑣  is positive, the fractional 

perturbation should be maintained in the same direction, 

whereas if ∆𝑃𝑝𝑣  is negative the perturbation should be done 

in the opposite direction [24], a constant C of 0,1𝑉 for the 

perturbation is usually recommended. The following figure 

represents the flow chart of the algorithm. 

 

Figure 7: P&O algorithm for MPPT. 

The drawback using this method is the ongoing 
oscillation around the MPP which increases dissipation. 

2) Incremental conductance (IC) algorithm. This 

method has advantage to track the MPP under fast changing 

of irradiances and does not oscillate around the MPP 

although it also uses a constant for PV power iteration [19]. 

IC relies on the differentiation of power with respect to 

voltage in the following equations: 

 
𝑑𝑃𝑝𝑣

𝑑𝑉𝑝𝑣
= 𝐼𝑝𝑣

𝑑𝑉𝑝𝑣

𝑑𝑉𝑃𝑉
+ 𝑉𝑝𝑣

𝑑𝐼𝑝𝑣

𝑑𝑉𝑃𝑉
= 𝐼𝑝𝑣 + 𝑉𝑝𝑣

𝑑𝐼𝑝𝑣

𝑑𝑉𝑃𝑉
= 0 

  (19) 

 
𝑑𝐼𝑝𝑣

𝑑𝑉𝑃𝑉
= −

𝐼𝑝𝑣

𝑉𝑝𝑣
 (20) 

From the equation above: 

• If  
𝑑𝑃𝑝𝑣

𝑑𝑉𝑝𝑣
> 0 →

𝑑𝐼𝑝𝑣

𝑑𝑉𝑃𝑉
> −

𝐼𝑝𝑣

𝑉𝑝𝑣
, then the system is 

operating on the left side of the MPP. 

• If  
𝑑𝑃𝑝𝑣

𝑑𝑉𝑝𝑣
< 0 →

𝑑𝐼𝑝𝑣

𝑑𝑉𝑃𝑉
< −

𝐼𝑝𝑣

𝑉𝑝𝑣
, then the system is 

operating on the right side of the MPP. 

• If  
𝑑𝑃𝑝𝑣

𝑑𝑉𝑝𝑣
= 0 →

𝑑𝐼𝑝𝑣

𝑑𝑉𝑃𝑉
= −

𝐼𝑝𝑣

𝑉𝑝𝑣
, then the system is 

operating at the MPP. 

The following figures depict the operating regions and 
the flow chart of the algorithm. 



 

Figure 8: Incremental conductance operating region. 

 

Figure 9: Incremental conductance algorithm for MPP. 

C. ANN model 

Intensely parallel, non-algorithmic information 
processing systems called artificial neural network (ANN) 
can learn the correlation between input and output variables. 
through examples, such as previously recorded data. It is 
composed of a set of neurons arranged into layers of input, 
hidden and output layers. Neurons accept inputs through 
their incoming connections, combines them, conducts a 
nonlinear operation, and then outputs the results through 
interconnected weighted links that pass the signal [24]. For 
this paper a feedforward multilayer neural network (FFNN) 
with backpropagation will be used. Information travels in a 
"feedforward" fashion from the input layer to the concealed 
layer and then to the output layer, meanwhile the 
backpropagation implies that the weights of the links are 
fine-tuned after each iteration which lesser the rate of error 
[24]. The transfer function operated by each neuron is given 
by a sigmoid function 𝑓(𝑍𝑖). 

  𝑓(𝑍𝑖) =
1

1+𝑒𝑍𝑖
 (15) 

  𝑍𝑖 = ∑ 𝑤𝑖𝑗𝑥𝑗 + 𝛽𝑖
𝑛
𝑗=1  (16) 

Where n is the number of input neuron, 𝑍𝑖  the sum of 
inputs weights, 𝑥𝑗 is the input signal of the jth neuron of the 

input layer, 𝑤𝑖𝑗 is the weight defined between neuron j and i 

at the hidden layer while 𝛽𝑖 is the error defined at neuron i. 
Figure 8 shows a diagram of FFNN. 

 

Figure 10: Feedforward neural network diagram. 

IV. EVALUATION METRIC, RESULTS, AND DISCUSSION 

A. Evaluation metric 

The simulation of our system is based on ground data 
collected from the Southern African Universities 
Radiometric Network (SAURAN). Data collected to train 
our ANN model are hourly irradiation and temperature from 
Pretoria for the year 2022, the data considered in the 
timespan are from 6:00 am to 7:00 pm while the algorithm 
used for ANN is Levenberg-Marquardt. A partial 
presentation of the weather conditions is given in the 
following tables. 

Table1: Variations of irradiation and temperature. 

 

 

Our model is predicting the output current from a single 
panel Kyocera KC200GT where the measured output current 
is formulated by the empirical mathematical model given in 
the following equation [33]: 

UPR - GIZ University of Pretoria

TmStamp GHI_Avg Temp_Avg

W/m^2 Deg C

TmStamp Avg Avg

01/01/2022 06:00:00 12,80 15,00

01/01/2022 07:00:00 102,18 15,60

01/01/2022 08:00:00 395,17 16,92

01/01/2022 09:00:00 671,16 19,21

01/01/2022 10:00:00 860,21 20,95

01/01/2022 11:00:00 1027,49 22,41

01/01/2022 12:00:00 1004,00 23,52

01/01/2022 13:00:00 944,93 24,27

01/01/2022 14:00:00 858,20 24,87

01/01/2022 15:00:00 738,63 25,34

01/01/2022 16:00:00 673,55 25,81

01/01/2022 17:00:00 455,26 25,90

01/01/2022 18:00:00 272,75 26,36

01/01/2022 19:00:00 60,91 25,65



 

 𝐼𝑜𝑢𝑡(𝑡) =
𝑃𝑚(

𝐺(𝑡)

𝐺𝑆𝑇𝐶
)−𝛼𝑝(𝑇(𝑡)−𝑇𝑆𝑇𝐶)

𝑉(𝑡)𝑃𝑉
 (17) 

 𝛼𝑝 =
𝐾𝑣

𝑉𝑚𝑝
 (18) 

Where 𝛼𝑝  is the temperature coefficient of power, the 

maximum power is 𝑃𝑚 , V and T are the PV voltage and 
temperature, while 𝑇𝑆𝑇𝐶  is the temperature at standard test 
conditions (STC). 𝐾𝑣 is the temperature coefficient of 𝑉𝑂𝐶  
and 𝑉𝑚𝑝  is the maximum voltage at STC. The prediction’ 

results are given by the following figure: 

 

Figure 11: Statistical regression plots. 

 

Figure 12: Best validation means square error (MSE). 

 

Figure 13: Training state validation. 

Figure 11 describes a statistical regression plot which 
determines the accuracy of our model during training and 
validation process. A value of statistical analyses R closer or 
equals to 1 means that the performance of our model is very 
accurate, which is validated again with a means square error 
of 8,5256 ∗ 10−11  on figure 12. Figure 13 depicts the 
validation test of ANN algorithm, the test was run under 
1000 epochs and derived a gradient test value of 2,4864−7, 
which shows how close the optimal solution is to the true 
minimum. A lower gradient value indicates that the 
algorithm is converging successfully and taking tiny, steady 
steps towards the ideal solution. The algorithm successfully 
adjusts parameters to reduce the discrepancy between 
projected and real values, leading to enhanced accuracy. The 
validation check is at 0 and denoted an effective training and 
generalization of the data. These parameters denote the 
accuracy of our algorithm. 

The boost converter is designed to double the input 
voltage at the output while trying to preserve the required 
input power at the output by conservation of energy. The 
following table describes the considerations of our boost 
converter. 

Table 2: Boost converter considerations. 

 

B. Results and discussion 

Our first hypothesis for MPP tracking includes 
algorithms such as P&O, IC, hybrid P&O with ANN and 

Description Value Unit

Inductance (L) 6,750 x10^-4 H

Input Capacitance (C1) 0,0270 F

Output Capacitance (C2) 0,0135 F

Load Resistance (RL) 100 Ω

Switching frequency 100 kHz

Efficiency (η) 94,07 %

Boost converter parameters



hybrid IC with ANN conducted under uniform weather 
conditions for a temperature of 45 °C and irradiance of 1000 
W/m2. The results from table 3 depict that using P&O or IC 
algorithm, the maximum power is 182,8 W for a 
convergence time of 0,133 seconds. Meanwhile when each 
method is combined with ANN, the maximum power 
remains at 182,8 W and the convergence time to this peak is 
0,158 seconds due to process complexity. However, this 
complexity is rewarded with an efficiency of 98% for each 
algorithm ANN combined with P&O or ANN combined 
with IC. Meanwhile the efficiency of P&O or IC algorithm 
is measured at 92%. The tracking efficiency is defined as the 
percentage of the sum of measured power over the sum of 
theoretical maximum power on a specific period, the 
equation is given by:  

 (%)𝜂
𝑚𝑝𝑝

=
∑ 𝑃𝑡2

𝑡1

∑ 𝑃𝑚𝑎𝑥𝑡2
𝑡1

∗ 100 (18) 

The following table demonstrates the results of the 
simulation. 

 

Table 3: Models characteristics under uniform 
conditions. 

 

 

A comparative analyses of our results was made in table 
4 with findings of authors in [14], it follows that our 
algorithm converge faster to its maximum power point 
despite little loss in efficiency.  

 

Table 4: Comparative analyses under uniform conditions. 

 

 

The following figures show the graph’s behaviors of 
each algorithm. On figure 14 the fluctuations of maximum 
power using the conventional methods under constant 
irradiance are against the expected theoretical maximum 
power graph. We observe a quick convergence to MPP at 
0,133 𝑠  using conventional method against 0,158 𝑠  for 
hybrid method, which takes a little longer on figure 15 where 
the hybrid behavior is depicted against theoretical maximum 
power. However, the hybrid method presents a more 
predictable behavior with a seemingly constant output power 
with an efficiency of 98% against 92% for conventional 
method. 

 

 

Figure 14: P&O/IC vs Theoretical maximum power under 

uniform conditions. 

 

Figure 15: Hybrid method vs Theoretical maximum power 

under uniform conditions. 

Our second hypothesis for MPP tracking includes the 
previous cited algorithms under variable weather conditions 
for a change of irradiances of 1000 W/m2, 800 W/m2, 600 
W/m2, 400 W/m2, 200 W/m2, over a temperature of 25 °C. 
the results from table 5 show that the efficiency of IC and 
P&O are 94% whereas the hybrid methods (ANN ft IC or 
ANN ft P&O) efficiency is 93%. The time of convergence 
to MPP during fast changing irradiance is 1,013 𝜇𝑠  for 
hybrid method on figure 17 and 4,274 𝑚𝑠  for IC/P&O 
method on figure 16. On figure 18, the conventional methods 
(IC/P&O) demonstrates some fluctuations around the true 
MPP given by the theoretical graph however these 
fluctuations were getting less present as the irradiance was 
decreasing which increased the power efficiency at 94% 
meanwhile on figure 19 the same comparison was made with 
the hybrid method which depicts a high accuracy at a high 
irradiance but gradually decrease as the irradiance reaches 
200 W/m2 with a total power efficiency of 93%. 

 

Models Power Max (W) Convergence Time (s) Frequency(kHz) Efficiency (%)

P&O 182,8 0,133 5 kHz 92

IC 182,8 0,133 5 kHz 92

Hybrid (P&O,ANN) 182,8 0,158 5 kHz 98

Hybrid (IC,ANN) 182,8 0,158 5 kHz 98

Uniform conditions 1000 W/m2 @45°C

P&O / IC Hybrid(IC,ANN) P&O IC Fuzzy Logic

Efficiency (%) 92 98 96,98 97 99,22

Time (s) 0,133 0,158 2,95 2,97 0,8

Proposed model Other authors [14]

Uniform conditions 1000 W/m2 @45°C



 

The following table and figures depict our results. 

 

Table 5: Models characteristics under variable 
conditions. 

 

 

 

Figure 16: Convergence time for IC/P&O under variable 

conditions. 

 

Figure 17: Convergence time for hybrid method under variable 

conditions. 

 

Figure 18: P&O/IC method vs Theoretical maximum power 

under variable conditions. 

 

Figure 19: Hybrid method vs Theoretical maximum power 

under variable conditions. 

 

V. CONCLUSION 

This paper proposes a hybrid solution for tracking the 
maximum power under uniform and variable weather 
conditions. A neural network was designed to be combined 
with conventional methods (P&O or IC) to form the hybrid 
algorithm using Simulink MATLAB. A boost converter was 
also modelled to double the output voltage to preserve the 
input power of the PV panel from the law of energy 
conservation. Simulations for P&O and IC methods yields to 
the same results under uniform conditions with a response 
time of 0.133 𝑠𝑒𝑐  and a tracking of 4.274 𝑚𝑠 during fast 
changing conditions. In addition, they both yield an 
efficiency of 92% and 94% under uniform and variable 
weather conditions respectively. The hybrid solution made 
with P&O or IC provides a response time of 0,158 𝑠𝑒𝑐 and 
an efficiency of 98% under uniform irradiances. However, 
this efficiency drops to 93% with a fast-tracking response of 
1,013 𝜇𝑠 for variable radiations. 

Models Efficiency % Tracking times (s)

P&O 94 0,004274

Inc 94 0,004274

P&O Ann 93 0,000001013

Inc Ann 93 0,000001013

Variable conditions 1000 Wm2, 800 

W/m2, 600 W/m2,     400 W/m2, 200 

W/m2 @25°C



The proposed solution was compared to other research 
and found to be better for tracking changes with a very good 
efficiency as the comparison in table 4 described. However, 
this solution can be improved with non-exhaustive 
optimization techniques such as particle swarm optimization 
(PSO) or genetic algorithm optimization. In addition, the 
structure of the system can be mounted on a boost-buck 
converter for better power efficiency and could also be 
associated with other renewable energy such as wind or 
thermal energy. 
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