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Abstract

Ontologies based on Description Logic (DL) represent gen-
eral background knowledge in a terminology (TBox) and the
actual data in an ABox. DL systems can then be used to
compute consequences (such as answers to certain queries)
from an ontology consisting of a TBox and an ABox. Since
both human-made and machine-learned data sets may con-
tain errors, which manifest themselves as unintuitive or ob-
viously incorrect consequences, repairing DL-based ontolo-
gies in the sense of removing such unwanted consequences
is an important topic in DL research. Most of the repair ap-
proaches described in the literature produce repairs that are
not optimal, in the sense that they do not guarantee that only
a minimal set of consequences is removed. In a series of pa-
pers, we have developed an approach for computing optimal
repairs, starting with the restricted setting of an EL instance
store, extending this to the more general setting of a quanti-
fied ABox (where some individuals may be anonymous), and
then adding a static EL TBox.
Here, we extend the expressivity of the underlying DL con-
siderably, by adding nominals, inverse roles, regular role in-
clusions and the bottom concept to EL, which yields a frag-
ment of the well-known DL Horn-SROIQ. The ideas un-
derlying our repair approach still apply to this DL, though
several non-trivial extensions are needed to deal with the new
constructors and axioms. The developed repair approach can
also be used to treat unwanted consequences expressed by
certain conjunctive queries or regular path queries, and to
handle Horn-ALCOI TBoxes with regular role inclusions.

1 Introduction
Description Logics (DLs) (Baader et al. 2017) are a promi-
nent family of logic-based knowledge representation for-
malisms, which offer a good compromise between expres-
siveness and the complexity of reasoning and are the for-
mal basis for the Web ontology language OWL.1 The palette
of well-investigated DLs with optimized reasoning support
goes from the inexpressive and tractable DLs of the EL and
DL-Lite families (Baader, Brandt, and Lutz 2005; Calvanese
et al. 2007), on which the OWL 2 profiles OWL 2 EL and
OWL 2 QL are based, all the way up to the N2ExpTime-
complete DL SROIQ (Horrocks, Kutz, and Sattler 2006;
Kazakov 2008), which is the DL underlying OWL 2. The

1https://www.w3.org/TR/owl2-overview/

consequence-based reasoning approach developed for the
EL family (Baader, Brandt, and Lutz 2005) can be extended
to Horn fragments of more expressive DLs, which yields
practical “pay as you go” reasoning procedures for these
fragments, though they are no longer tractable (Kazakov
2009; Ortiz, Rudolph, and Šimkus 2010).

Like all large human-made digital artefacts, the ontolo-
gies employed in applications often contain errors, and this
problem is only exacerbated if parts of the ontology (e.g.,
the data) are automatically generated using inexact methods
based on information retrieval or machine learning. Errors
are usually detected when reasoning finds an inconsistency
or generates consequences that are unintuitive or obviously
wrong in the application domain. For the developers of a
DL-based ontology it is often quite hard to see how the on-
tology needs to be modified such that the unwanted conse-
quences no longer follow from the repaired ontology, but as
few as possible other consequences are lost.

Classical DL repair approaches based on axiom pinpoint-
ing compute maximal subsets of the ontology that do not
have the unwanted consequences (Parsia, Sirin, and Kalyan-
pur 2005; Schlobach et al. 2007; Baader and Suntisrivara-
porn 2008). Such repairs depend on the syntactic form
of the ontology: if a certain fact is expressed by a sin-
gle strong axiom rather than an equivalent set of weaker
ones, then too many consequences may be lost when re-
moving this strong axiom. To overcome this problem, more
fine-grained approaches for repairing DL-based ontologies
have been developed (Horridge, Parsia, and Sattler 2008;
Lam et al. 2008; Du, Qi, and Fu 2014; Troquard et al. 2018;
Baader et al. 2018). These approaches are, however, still
not optimal since they apply some restrictions on how the
ontology can be changed, based on its syntactic form. In
particular, they usually do not add new objects to the ABox.

To see why new objects may be needed to achieve op-
timality, assume that the ABox contains the information
that Kim, who is rich and famous, is Ann’s child, ex-
pressed by the assertions Famous(KIM ), Rich(KIM ), and
child(ANN ,KIM ), and that we want to remove the conse-
quence ∃child .(Rich ⊓ Famous)(ANN ). If we decide to
keep the assertion that Kim is Ann’s child, then we need to
remove either Rich(KIM ) or Famous(KIM ). However, if
we decide that this Kim is not Ann’s child after all, sim-
ply removing the role assertion child(ANN ,KIM ) would

https://www.w3.org/TR/owl2-overview/


also remove implied consequences for Ann. This can be
avoided by adding the assertions child(ANN , x), Rich(x),
child(ANN , y), and Famous(y), where x and y are anony-
mous individuals, which are formally represented in a quan-
tified ABox (qABox) by existentially quantified variables.
This example illustrates the main idea underlying the opti-
mal repair approach introduced in (Baader et al. 2020): the
use of quantified ABoxes and the construction of appropriate
anonymous copies of individuals. The main technical prob-
lem to solve in (Baader et al. 2020) was to find out which
copies with what properties are needed to achieve optimal-
ity. This work dealt with an input ontology consisting only
of a qABox, and assumed that the unwanted consequences
are instance relationships C(a) for EL concepts C.

In (Baader et al. 2021), we extended this approach to
a setting where, in addition to the qABox, the ontology
contains an EL TBox, which is assumed to be correct,
and thus cannot be changed during repair. To add conse-
quences implied by the TBox, we saturate the qABox by
using the concept inclusions as rewrite rules before repair-
ing the qABox. If, in our example, the TBox contained
the concept inclusion Celebrity ⊑ Rich ⊓ Famous and the
ABox contained Celebrity(KIM ) rather than Rich(KIM )
and Famous(KIM ), then saturation would add the latter two
assertions. If then Celebrity(KIM ) is removed in the repair,
these two consequences can still be preserved. However,
when repairing the saturated qABox, care must be taken that
the TBox cannot re-introduce assertions that have been re-
moved by the repair. For example, in the case where the
unwanted consequence is Rich(KIM ), it is not enough to
remove this assertion from the saturated qABox: one also
needs to remove Celebrity(KIM ) since together with the
TBox it implies Rich(KIM ). The problem with saturation
is that, in the presence of cyclic concept inclusions, such as
Rich ⊑ ∃child .Rich , it may not terminate. This is not just
a problem of our repair approach, but may prevent the exis-
tence of optimal repairs (see Example 9 below). In (Baader
et al. 2021), two approaches are considered to overcome this
problem. On the one hand, one can restrict the attention to
TBoxes that are cycle-restricted as introduced in (Baader,
Borgwardt, and Morawska 2012). On the other hand, if one
is only interested in answers to instance queries, one can
apply a weaker saturation operation, called IQ-saturation,
which always terminates for EL.

In this paper, we extend the expressivity of the DL used
to formulate the TBox and the unwanted consequences con-
siderably, by adding nominals, inverse roles, role inclusion
axioms, and the bottom concept to EL. To obtain a decid-
able DL and guarantee the existence of optimal repairs, we
restrict the set of role inclusion axioms to being regular, as
in the DL SROIQ. In addition, we first consider the case
without the bottom concept, and only later deal with the ad-
ditional problems caused by the fact that bottom may cause
the ontology to become inconsistent. Computability of the
set of optimal repairs and the fact that this set covers all re-
pairs (in the sense that every repair is entailed by an opti-
mal one) follows from a “small repair” property, which can
be shown using an adaptation of the well-known filtration
technique (Baader et al. 2017). However, even disregarding

the impracticality of an algorithm that computes the opti-
mal repairs by looking at all qABoxes up to a certain size
bound, this does not lead to a viable methods for choos-
ing an appropriate optimal repair since it would require the
knowledge engineer to choose among exponentially many
repairs of exponential size. In contrast, the canonical re-
pairs (which cover all optimal repairs) constructed by our
extension of the repair approach in (Baader et al. 2021) are
characterized by so-called repair seeds, which are of poly-
nomial size. The knowledge engineer can choose among
these by answering a polynomial number of instance queries
(i.e., queries about which instance relationships hold in the
application domain).

The added expressivity generates new challenges, which
require non-trivial adaptations of our approach for construct-
ing canonical repairs. Since nominals in the TBox can imply
equality between individuals, we extend qABoxes by equal-
ity assertions, to be able to represent such consequences
in the saturated qABox, and we also must repair unwanted
equalities. We deal with role inclusion axioms and inverse
roles by using finite automata, which can represent the in-
finitely many implied role inclusions in a finite way. Tech-
nically, this is where we make use of the restriction to reg-
ular sets of role inclusion axioms. To handle inconsistency
caused by bottom, we consider not only “local” unwanted
consequences of the form C(a), but also “global” ones of
the form ∃{x}.{C(x)}. If, in our example, the TBox addi-
tionally says that rich and poor are disjoint, using the con-
cept inclusion Poor ⊓ Rich ⊑ ⊥ , and the qABox states that
Ann has an (anonymous) child that is a poor celebrity, then
the entailed inconsistency can be repaired by preventing the
consequence ∃{x}.{(Poor ⊓ Rich)(x)}.

The added expressivity also allows us to specify in-
teresting kinds of unwanted consequences other than in-
stance relationships. On the one hand, we can deal with
regular reachability queries, which are similar to regular
path queries (Calvanese, Eiter, and Ortiz 2009). On the
other hand, we can also treat certain kinds of conjunctive
queries. The problem of repairing w.r.t. conjunctive queries
to qABoxes has already been considered, in the guise of
achieving compliance for relational datasets with labelled
nulls, in (Grau and Kostylev 2019). However, this work
does not allow for background TBoxes, and the notion of
optimality used there is different from ours since it restricts
the possible changes to the qABox to a sequence of certain
anonymization operations. Finally, our repair approach can
also deal with Horn-ALCOI-TBoxes together with sets of
regular role inclusion axioms.

Due to space restrictions, full proofs of our results are
given in (Baader and Kriegel 2022).

2 Preliminaries
First, we introduce the DL ELROI employed to formulate
terminological background knowledge, and the quantified
ABoxes with equalities used to represent the data. Then
we describe how such an ABox can be saturated w.r.t. the
terminological knowledge, and finally define regular sets of
role inclusions and show how to represent them using finite
automata.



2.1 The Description Logic ELROI
The DL ELROI extends EL with (complex) role inclu-
sions (R), nominals (O), and inverse roles (I). Let Σ be
a signature, i.e., a disjoint union of finite, non-empty sets
ΣI, ΣC, and ΣR of individual names, concept names, and
role names, respectively. A role is either a role name or an
inverse role r− for some role name r ∈ ΣR. For a role R
we write R− to denote r− if R = r is a role name and r
if R = r− is an inverse role. Concept descriptions C of
ELROI are constructed using the grammar rule

C ::= ⊤ | A | {a} | C ⊓ C | ∃R.C,

where A ranges over concept names, a over individual
names, and R over roles. An atom is a concept name A, a
nominal {a}, or an existential restriction ∃R.C. Each con-
cept description C is a conjunction of atoms, with ⊤ cor-
responding to the empty conjunction. We denote the set of
these atoms as Conj(C).

A concept inclusion (CI) is of the form C ⊑ D for con-
cept descriptions C,D, and a role inclusion (RI) is of the
form ε ⊑ S or R1◦· · ·◦Rn ⊑ S for roles R1, . . . , Rn, S and
n ≥ 1. In the following, when we write R1 ◦ · · · ◦Rn ⊑ S,
we assume that n ≥ 0, where R1 ◦ · · · ◦Rn for n = 0 stands
for ε. A TBox is a finite set of CIs, an RBox is a finite set
of RIs, and a pair (T ,R) consisting of a TBox T and an
RBox R is called a terminology. A concept assertion C(a)
is a shorthand for the CI {a} ⊑ C, and a role assertion
r(a, b) abbreviates {a} ⊑ ∃r.{b}. Furthermore, r−(a, b)
means r(b, a).

The semantics of ELROI is defined as usual (Baader et
al. 2017; Horrocks, Kutz, and Sattler 2006) using the no-
tion of an interpretation I = (Dom(I), ·I), which assigns
subsets CI of Dom(I) to concepts C and binary relations
RI on Dom(I) to roles R according to the semantics of the
constructors. Individual names a are mapped to elements aI
of Dom(I), without requiring the unique name assumption,
i.e., aI = bI is allowed for distinct individual names a, b.
Models of TBoxes and RBoxes are also defined in the usual
way. We say that the terminology (T ,R) entails a CI or RI
α (written (T ,R) |= α) if α holds in every model of T and
R. In case (T ,R) |= C ⊑ D we say that C is subsumed by
D w.r.t. (T ,R), and may write C ⊑T ,R D to express this.

Note that other interesting axioms concerning roles can
be expressed using RIs and inverse roles. Reflexivity, tran-
sitivity, and symmetry of r can respectively be enforced by
the RIs ε ⊑ r, r ◦ r ⊑ r, and r ⊑ r−, and range restrictions
Ran(r) ⊑ C can be expressed by CIs ∃r−.⊤ ⊑ C.

This last observation shows that subsumption in ELROI
is actually undecidable since it was shown in (Baader, Lutz,
and Brandt 2008) that subsumption in EL w.r.t. RIs and
range restrictions is undecidable. We will avoid this prob-
lem by imposing a restriction on RBoxes (see Section 2.4).

2.2 Quantified ABoxes with Equalities
Quantified ABoxes were first introduced in (Baader et al.
2020), but they were also considered, as relational datasets
with labelled nulls, in (Grau and Kostylev 2019), and their

existentially quantified variables correspond to the “anony-
mous individuals” in the OWL 2 standard. Also, as ex-
plained in (Baader et al. 2020), quantified ABoxes are ba-
sically the same as Boolean conjunctive queries. Here, we
extend this notion by allowing for equality assertions, but for
simplicity still use the name “quantified ABoxes” for the ex-
tended formalism. Equality assertions are used to represent
implied equality between individuals; e.g., the CI {a} ⊑ {b}
implies that a and b must always be interpreted by the same
element of the domain.

Let Σ be a signature. A quantified ABox (qABox) ∃X.A
over Σ consists of a finite set X of variables, which is dis-
joint with Σ, and a matrix A, which is a finite set of concept
assertions A(u), role assertions r(u, v), and equality asser-
tions a ≡ b, where A ∈ ΣC, r ∈ ΣR, u, v ∈ ΣI ∪ X , and
a, b ∈ ΣI. An object name of ∃X.A is either an element
of ΣI or a variable in X . We denote the set of these objects
as Obj(∃X.A). If X is empty, then we sometimes drop the
quantifier ∃ ∅.

The interpretation I is a model of ∃X.A (written I |=
∃X.A) if there is a variable assignment Z : X → Dom(I)
such that the augmented interpretation I[Z] that additionally
maps each variable x to Z(x) is a model of the matrix A,
i.e., uI[Z] ∈ AI for each A(u) ∈ A, (uI[Z], vI[Z]) ∈ rI for
each r(u, v) ∈ A, and aI = bI for each a ≡ b ∈ A. Given a
terminology (T ,R) and qABoxes ∃X.A and ∃Y.B, we say
that ∃X.A entails ∃Y.B w.r.t. (T ,R) (written ∃X.A |=T ,R

∃Y.B) if every model of ∃X.A and (T ,R) is also a model
of ∃Y.B. If both the TBox T and the RBox R are empty,
then we omit the suffix “w.r.t. (T ,R)” and write |= instead
of |=T ,R. Similar simplifications are made if one of them is
empty.

For qABoxes without equality assertions, it was shown
in (Baader et al. 2020) that entailment can be characterized
using homomorphisms. In our extended setting, we need to
adapt the definition of a homomorphism between qABoxes.
To this purpose, we consider the equivalence relation ≈∃X.A
on Obj(∃X.A) induced by the equality assertions in ∃X.A,
which is defined as the reflexive, symmetric, transitive clo-
sure of the relation { (a, b) | a ≡ b ∈ A }. We sometimes
write ≈ for ≈∃X.A if the qABox is clear from the context,
and denote the equivalence classes by [u]∃X.A. Since there
are no equality assertions involving variables, each equiva-
lence class of a variable is a singleton set.
Definition 1. A homomorphism h from a qABox ∃X.A to a
qABox ∃Y.B is a mapping h : Obj(∃X.A) → Obj(∃Y.B)
that satisfies the following conditions:
(Hom1) a ≈∃X.A b implies h(a) ≈∃Y.B h(b) for all indi-

vidual names a, b.
(Hom2) h(a) = a for each individual name a.
(Hom3) For each concept assertion A(t) ∈ A, there is an

object name v such that v ≈∃Y.B h(t) and A(v) ∈ B.
(Hom4) For each role assertion r(t, u) ∈ A, there are ob-

ject names v, w such that v ≈∃Y.B h(t), w ≈∃Y.B h(u),
and r(v, w) ∈ B.
Based on this notion of homomorphism, entailment be-

tween qABoxes with equality assertions can now be charac-
terized as follows.



Conjunction Rule. If B contains the assertion
(C1 ⊓ · · · ⊓ Cn)(t) for n ̸= 1, then remove it from B
and add the assertions C1(t), . . . , Cn(t) to B.

Existential Restriction Rule. If B contains the assertion
∃R.C(t), then remove it from B, add a fresh variable y
to Y , and add the assertions R(t, y) and C(y) to B.

Nominal Rule. If B contains the assertion {a}(t), then
remove it from B and, if t is an individual name, then
add the equality t ≡ a to B; otherwise replace every
occurrence of t in B by a and remove t from Y .

Concept Inclusion Rule. If T contains the CI C ⊑ D
and B entails the concept assertion C(t), but not D(t),
then add the concept assertion D(t) to B.

Role Inclusion Rule. If R contains the RI
R1 ◦ · · · ◦Rn ⊑ S and B entails the role asser-
tions R1(t0, t1), . . . , Rn(tn−1, tn), but not S(t0, tn),
then add the role assertion S(t0, tn) to B.

Figure 1: The saturation rules are exhaustively applied to a qABox
∃Y.B w.r.t. a terminology (T ,R), starting with ∃Y.B := ∃X.A
for an input qABox ∃X.A.

Proposition 2. The qABox ∃X.A is entailed by the qABox
∃Y.B iff there exists a homomorphism from ∃X.A to ∃Y.B.

As in the case of qABoxes without equality assertions,
this provides us with an NP decision procedure for entail-
ment. NP-hardness already holds without equality assertions
(Baader et al. 2020).

We often need to consider the matrix A of a quantified
ABox ∃X.A alone, without the quantifier prefix. We can
view A to be an “ordinary” ABox without quantifiers (or
equivalently as a qABox with empty quantifier prefix) by ex-
tending the signature to Σ ∪X , where variables are treated
as individuals. This allows us to evaluate entailment expres-
sions like A |= C(x), where C is a concept description and
x ∈ X , using interpretations and models for the extended
signature.

2.3 Saturation
The purpose of saturation is to extend a given qABox ∃X.A
with enough consequences derived using the terminology
(T ,R) such that entailment from ∃X.A w.r.t. (T ,R) is the
same as entailment from its saturation satT ,R(∃X.A) =
∃Y.B w.r.t. the empty terminology. The rules in Figure 1
extend the CQ-saturation rules in (Baader et al. 2021) such
that nominals, inverse roles, and RIs are taken into account.
Note that, during saturation, the matrix B may contain com-
plex concept assertions, but after termination all concept as-
sertions are again restricted to concept names. The seman-
tics of qABoxes with complex concept assertions is defined
in the obvious way.

In general, application of the saturation rules need not
terminate, already in the EL setting considered in (Baader
et al. 2021). But there the restriction to cycle-restricted
TBoxes guarantees termination, where an EL TBox T is
cycle-restricted if there is no concept C and roles r1, . . . , rn

(n ≥ 1) such that C ⊑T ∃ r1. · · · ∃ rn.C. For ELROI ter-
minologies, the RBox may cause non-termination even if the
TBox is cycle-restricted.
Example 3. Consider the ELROI TBox T := {A ⊑ ∃r.⊤,
∃s.⊤ ⊑ ∃s.A}, the RBox R := {r ⊑ s}, and the qABox
∃∅.A with A := {A(a)}. The TBox T is cycle-restricted
and saturation of ∃∅.A with (T , ∅) terminates after a has
received an r-successor x1. However, w.r.t. (T ,R), the role
inclusion rule makes x1 also an s-successor of a. The con-
cept inclusion rule then adds an s-successor y1 of a and the
assertion A(y1). But now y1 receives an r-successor x2,
which becomes an s-successor of y1, etc.

Since our repair approach works on saturated qABoxes, it
can only be applied in the presence of terminologies (T ,R)
that are terminating in the following sense.
Definition 4. The terminology (T ,R) is terminating if, for
each qABox ∃X.A, there is a finite sequence of applications
of the saturation rules in Figure 1 to ∃X.A resulting in a
qABox to which no more rule applies. We then denote this
qABox as satT ,R(∃X.A) and call it the saturation of ∃X.A
w.r.t. (T ,R).

We refrain here from giving our own decidable sufficient
condition for termination of a terminology (T ,R). Instead,
we point out that one can translate the concept inclusions
in T and the role inclusions in R into a set of existential
rules, and that saturation then corresponds to applying the
so-called chase. One can thus try to use one of the nu-
merous acyclicity conditions guaranteeing chase termination
proposed in the database and rules communities (see, e.g.,
(Grau et al. 2013)) to show termination of (T ,R). The satu-
ration obtained in case of termination has the following im-
portant property.
Theorem 5. Let (T ,R) be a terminating terminology and
∃X.A a quantified ABox. Then, for every qABox ∃Z.C, the
following statements are equivalent:

1. ∃X.A |=T ,R ∃Z.C.
2. satT ,R(∃X.A) |= ∃Z.C.
3. There is a homomorphism from ∃Z.C to satT ,R(∃X.A).

In (Baader et al. 2021), a different kind of saturation,
called IQ-saturation, was introduced, which always termi-
nates. Using IQ-saturation in the repair process was shown
to be sufficient if one is only interested in instance queries.
However, due to the presence of inverse roles in ELROI, it
is easy to see that finite IQ-saturations cannot always work
(see (Baader and Kriegel 2022) for an example).

2.4 Regular RBoxes
As pointed out at the end of Section 2.1, subsumption is
undecidable in ELROI if arbitrary RBoxes are allowed.
In (Baader, Lutz, and Brandt 2008), tractability of EL++

is ensured by restricting the interaction between range re-
strictions and RIs. Since, in our setting, range restrictions
are expressed using inverse roles and CIs, it is not clear
how to adapt this solution. Instead, we use the regularity
restriction imposed in (Horrocks, Kutz, and Sattler 2006;
Kazakov 2008) to make SROIQ decidable, which is re-
quired by our repair approach anyway.



Definition 6. An RBox R is regular if, for each role R, the
language LR(R) := { S1 · · ·Sn | S1 ◦ · · · ◦ Sn ⊑R R } is
regular. The sublogic of ELROI that only supports regular
RBoxes is denoted by ELRregOI.

Since ELRregOI is a fragment of Horn-SROIQ, it in-
herits the complexity upper-bound of 2ExpTime (Ortiz,
Rudolph, and Šimkus 2010). The exact complexity of sub-
sumption in ELRregOI is open, with the best lower-bound
of ExpTime inherited from ELI (Baader, Lutz, and Brandt
2008).

To the best of our knowledge, it is not known whether
RBox regularity is decidable. Decidability of the closely
related regularity problem for pure context-free grammars
has been open for a long time (Maurer, Salomaa, and
Wood 1980). However, there exist syntactic restrictions
that guarantee regularity (Horrocks, Kutz, and Sattler 2006;
Kazakov 2010), and if these restrictions apply then one can
effectively construct (exponentially large) finite automata
accepting the regular languages LR(R).

Let R be a regular RBox, and for each role R, let
AR = (QR,Σ

±
R , iR,∆R, FR) be a finite automaton (with

set of states QR, the alphabet Σ±
R of all roles, initial state

iR, transition relation ∆R, and set of final states FR) ac-
cepting LR(R), i.e., such that L(AR) = LR(R). We
assume without loss of generality (but in the worst-case
paid for by another exponential blowup) that each automa-
ton AR is deterministic. In addition, we assume that AR

does not contain states that are unreachable from the initial
state or from which no final state can be reached, and fur-
ther that the sets QR for different R are pairwise disjoint
and are all disjoint with the signature Σ. For each state
q ∈ QR, the automaton AR(q) := (QR,Σ

±
R , q,∆R, FR) is

obtained from AR by replacing the initial state iR with q.
We will use existential restrictions of the form ∃q.C for
q ∈ QR as abbreviations for the (possibly infinite) disjunc-
tion

⊔
{ ∃S1. · · · ∃Sn.C | S1 · · ·Sn ∈ L(AR(q)) }, i.e., in

each interpretation I, (∃q.C)I is defined to be⋃
{ (∃S1. · · · ∃Sn.C)I | S1 · · ·Sn ∈ L(AR(q)) }.

Entailment for such existential restrictions can be character-
ized as follows.
Lemma 7. Given a qABox ∃X.A, an object t of it, a ter-
minology (T ,R) with regular R, ELROI concept descrip-
tions C,D, and a state q. Then the following holds:

1. A |=T ,R ∃q.C(t) iff there is a word S1 · · ·Sn ∈
L(AR(q)) such that A |=T ,R ∃S1. · · · ∃Sn.C(t),

2. D ⊑T ,R ∃q.C iff there is a word S1 · · ·Sn ∈ L(AR(q))
such that D ⊑T ,R ∃S1. · · · ∃Sn.C.
If the terminology is terminating, we can decide whether

the conditions for entailment stated in Lemma 7 hold. Basi-
cally, to check whether A |=T ,R ∃q.C(t) holds, we simply
need to find an accepting run of the automaton AR(q) such
that the accepted word corresponds to a path in the saturation
satT ,R(∃X.A) that starts with t and ends with an instance
of C. This boils down to a reachability test in the product of
the automaton with the saturation. The second condition in
Lemma 7 can be reduced to the first one.

3 Optimal and Canonical Repairs
In this section, we first extend the notion of an (optimal)
repair, as introduced in (Baader et al. 2021), to the more ex-
pressive DL ELROI and a setting where the repair request,
which describes which consequences are to be removed, also
contains global unwanted consequences. For regular sets of
role inclusions, we show that every repair is entailed by a re-
pair containing a bounded number of individuals. From this,
we derive that the set of optimal repairs can effectively be
computed and covers all repairs. Then, we extend the con-
struction of canonical repairs of (Baader et al. 2021) from
EL to ELRregOI. The set of canonical repairs can effec-
tively be computed, covers all repairs and thus contains all
optimal repairs, and a repair seed determining such a canon-
ical repair can be chosen by answering a polynomial number
of instance queries. Throughout the section, we assume (un-
less specified otherwise) that ∃X.A is a quantified ABox, T
an ELROI TBox, R a regular RBox, all defined over the
same signature Σ, and that (T ,R) is terminating.

Definition 8. A repair request P is a union of a finite set
Ploc of ELROI concept assertions, the local request, and of
a finite set Pglo of ELROI concept descriptions, the global
request. A repair of ∃X.A for P w.r.t. (T ,R) is a quantified
ABox ∃Y.B that fulfills the following properties:

(Rep1) ∃X.A |=T ,R ∃Y.B,
(Rep2) ∃Y.B ̸|=T ,R C(a) for each C(a) ∈ Ploc,
(Rep3) ∃Y.B ̸|=T ,R ∃{x}.{D(x)} for each D ∈ Pglo.

This repair is optimal if there is no repair ∃Z.C such that
∃Z.C |=T ,R ∃Y.B, but ∃Y.B ̸|=T ,R ∃Z.C. We say that a
set of repairs S covers all repairs if every repair is entailed
w.r.t. (T ,R) by a repair in S.

Obviously, ∃X.A has a repair for P w.r.t. (T ,R) iff the
terminology alone does not imply any of the unwanted con-
sequences in P , since then the empty ABox is a repair. The
restriction to terminating terminologies and regular RBoxes
is needed to ensure that any repair problem has a finite set
of optimal repairs covering all repairs. The proof of Propo-
sition 2 in (Baader et al. 2018) contains an example with
non-terminating terminology where there is no optimal re-
pair, though there is a repair. However, in this proof it is
only shown that there cannot be an optimal repair that is an
ABox. While this proof can be adapted to deal also with
qABoxes, we present here a modified example with exactly
one optimal repair, which however does not cover all repairs.

Example 9. Assume that T := {A ⊑ ∃r.A, ∃r.A ⊑ A},
R := ∅, A := {A(a), B(a)}, and P := {(A⊓B)(a)}. Then
∃{x}.{A(a), A(x), B(x)} is an optimal repair of ∃∅.A for
P w.r.t. (T ,R). However, there are also repairs in which the
concept assertion B(a) is retained, and A(a) is removed. To
see that there cannot be an optimal repair containing B(a),
first note that A together with T does not imply the existence
of any role cycle, and thus no repair can contain such a cy-
cle. Consequently, for an optimal repair ∃Y.B containing
B(a), there is an upper bound n on the length of role chains
starting from a. Adding r(a, y1), r(y2, y3), . . . , r(yn, yn+1)
for fresh existentially quantified variables y1, . . . , yn+1 to



∃Y.B then yields a new repair that strictly implies ∃Y.B,
which contradicts the assumed optimality of this repair.

The following example shows that non-regularity of the
RBox may prevent all repairs from being covered by a finite
set of repairs.
Example 10. The RBox R := {r− ◦ s ◦ r ⊑ s} is not regu-
lar since LR(s) = {(r−)isri | i ≥ 0} is a context-free lan-
guage over the alphabet {r−, s, r} known to be non-regular.
Together with the TBox T := {∃s.A ⊑ A, ∃s.B ⊑ B},
this RBox yields a terminating terminology. Consider the
ABox A := {r(a, a), s(a, a), A(a), B(a)} and the repair re-
quest P = Pglo := {A ⊓ B}. It is not hard to see that, for
each n ≥ 1, the qABox ∃Xn.An is a repair of ∃∅.A for P
w.r.t. (T ,R), where Xn := {x1, . . . , xn} and

An := { r(a, x1), r(x1, x2), . . . , r(xn−1, xn),
s(a, a), s(x1, x1), . . . , s(xn, xn),
A(a), A(x1), A(x2), . . . , A(xn−1), B(xn) }.

Assume that S is a finite set of repairs of ∃∅.A for P w.r.t.
(T ,R) that covers all repairs, and let n be larger than the
maximal number of objects occurring in the elements of
S. Without loss of generality we assume that the elements
of S are saturated w.r.t. (T ,R). Then there must exist a
repair ∃Y.B in S such that there is a homomorphism h
from ∃Xn.An to ∃Y.B. Since B contains less than n ob-
jects, there must be i, j with 1 ≤ i < j ≤ n such that
h(xi) = h(xj). Consequently, h(xn) is reachable from
h(a) with the role r both in n steps and in m < n steps,
where m = n − (j − i). Since h(xm) is also reachable in
m steps from h(a) and s(h(a), h(a)) must be in B, the fact
that ∃Y.B is saturated implies that s(h(xn), h(xm)) must
belong to B. Since A(xm) ∈ An yields A(h(xm)) ∈ B, this
implies that A(h(xn)) ∈ B. However, since B(xn) ∈ An

also yields B(h(xn) ∈ B, this contradicts our assumption
that ∃Y.B is a repair for P .

The Small Repair Property If we restrict the attention to
terminating terminologies with regular RBoxes R, then we
can show that the repairs of a certain bounded size cover all
repairs. For an ELROI TBox T and a repair request P ,
let Sub(T ,P) denote the set of concept descriptions occur-
ring in T and P and Atoms(T ,P) the set of atoms in this
set. To take the RBox into account, we introduce the set of
R-extended atoms AtomsR(T ,P), which is obtained from
Atoms(T ,P) by replacing each ∃R.C ∈ Atoms(T ,P)
with the existential restrictions ∃q.C, where q ranges over
QR (i.e., the set of states of the automaton for LR(R)).
Proposition 11. Let (T ,R) be a terminating ELROI ter-
minology with regular RBox, P an ELROI repair request,
∃X.A a (w.l.o.g) saturated qABox with m objects, and
n := |Atoms(T ,P) ∪ AtomsR(T ,P)|. Then every repair
of ∃X.A for P w.r.t. (T ,R) is entailed w.r.t. (T ,R) by a
repair that contains at most m·2n objects.

This proposition can be shown by adapting the well-
known filtration technique, e.g., used in (Baader et al. 2017)
to prove the finite model property for ALC. Let ∃Y.B be
a repair of ∃X.A for P w.r.t. (T ,R), and assume with-
out loss of generality that it is saturated. Since ∃X.A en-
tails every repair and is also assumed to be saturated, there

is a homomorphism h from ∃Y.B to ∃X.A. For objects
u of ∃Y.B, we set t(u) := { C | C ∈ Atoms(T ,P) ∪
AtomsR(T ,P) and B |= C(u) }, and define the equiva-
lence relation ∼ on these objects as

u ∼ v iff t(u) = t(v) and h(u) = h(v).

Obviously, ∼ has at most m·2n equivalence classes [u]∼.
The filtration ∃Z.C has these equivalence classes as objects,
with the class [a]∼ standing for the individual a. The classes
inherit their concept and role assertions from the ones of
their elements in B (see (Baader and Kriegel 2022) for de-
tails). We can then show, for all C ∈ Atoms(T ,P) ∪
AtomsR(T ,P) and for all u ∈ Obj(∃Y.B), that

C |= C([u]∼) iff B |= C(u).

Since ∃Y.B is a saturated repair, this implies that ∃Z.C is
saturated w.r.t. T and does not entail (w.r.t. T ) any of the
unwanted consequences specified by P . The filtration ∃Z.C
need not be saturated w.r.t. R, but we can show that its sat-
uration w.r.t. R does not entail additional instance relation-
ships for atoms in Atoms(T ,P)∪AtomsR(T ,P). This im-
plies that, also w.r.t. (T ,R), the filtration does not entail
any of the unwanted consequences in P . Finally, it is easy
to check that u 7→ [u]∼ is a homomorphism from the repair
∃Y.B to the filtration ∃Z.C, and that [u]∼ 7→ h(u) is a ho-
momorphism from ∃Z.C to the input qABox ∃X.A. Thus,
the filtration ∃Z.C is a repair with at most m·2n objects that
entails ∃Y.B.

Since, for a fixed signature and up to renaming of vari-
ables, there are only finitely many qABoxes containing at
most m·2n objects, we can effectively construct the set of
optimal repairs of ∃X.A for P w.r.t. (T ,R) by enumerating
these qABoxes, then removing the ones that are not repairs,
and finally removing from the remaining set the elements
that are strictly entailed by an other element.
Theorem 12. Let ∃X.A be a qABox, (T ,R) a terminating
ELROI terminology with regular RBox whose associated
automata can effectively be computed, and P an ELROI re-
pair request. Then the set of all optimal repairs of ∃X.A for
P w.r.t. (T ,R) can, up to equivalence, effectively be com-
puted, and every repair is entailed by an optimal repair.

The following example shows that the “automata atoms”
in AtomsR(T ,P) are needed for the filtration.
Example 13. Assume that T := ∅, R := {r ◦ r ⊑ s}, A :=
{r(a, b), r(b, c), s(a, c)}, and P := {∃s.⊤(a)}. The qABox
∃{x}.{r(a, b), r(x, c)} is a (saturated) repair of ∃∅.A for P
w.r.t. (T ,R). If we used only Atoms(T ,P) = {∃s.⊤} for
the filtration, then the objects b and x would be identified
since they behave the same w.r.t. this concept in the repair.
Thus, [a]∼ would have [x]∼ = [b]∼ as r-successor in the fil-
tration, which in turn would have [c]∼ as r-successor. This
shows that the filtration would have ∃s.⊤(a) as a conse-
quence, and thus would not be a repair. The regular language
LR(s) = {rr, s} is accepted by a deterministic automaton
with three states, q0, q1, q2, where q0 is initial and q2 is fi-
nal, r-transitions from q0 to q1 and from q1 to q2, and an
s-transition from q0 to q2. Since the object x belongs to
∃q1.⊤, but b does not, they are not identified in the filtration



that takes the concepts in AtomsR(T ,P) = {∃qi.⊤ | 0 ≤
i ≤ 2} into account.

Canonical Repairs Instead of blindly searching for opti-
mal repairs among the very large set of “small” repairs, we
now show how the considerably smaller set of canonical re-
pairs, which contains all optimal repairs, can be constructed
from repair seeds. Such a repair seed is of polynomial size,
and it basically specifies which atoms in Atoms(T ,P) ∪
AtomsR(T ,P) need to be removed for each individual.

From now on, we assume that ∃Y.B is the saturation of
∃X.A w.r.t. (T ,R). Our canonical repairs will actually be
computed from ∃Y.B. As mentioned in the introduction, to
achieve optimality, it is not sufficient to remove assertions
from this qABox. We must also generate anonymous copies
of its objects. Basically, these copies are induced by pairs
(u,K) where u is an object in B and K ⊆ AtomsR(T ,P)
is a set of atoms C such that u is an instance of C in ∃Y.B.
Putting an atom into K means that the copy of u induced by
(u,K) should not be an instance of C.

Recall that Conj(C) is the set of all top-level conjuncts of
a concept description C. The set ConjR(C) is obtained from
Conj(C) by replacing each existential restriction ∃R.D ∈
Conj(C) with ∃iR.D.The sets K used to construct copies of
u must be repair types for u.
Definition 14. Let u be an object name of ∃Y.B. A repair
type for u is a set K ⊆ AtomsR(T ,P) satisfying:
(RT1) If C ∈ K, then B |= C(u).
(RT2) If D ∈ Sub(T ,P)∪AtomsR(T ,P) with B |= D(u)

and C ∈ K with D ⊑T ,R C, then ConjR(D) ∩ K ̸= ∅.
(RT3) If E ∈ Pglo and B |= E(u), then ConjR(E)∩K ≠ ∅.

The first condition says that only concept assertions that
really hold for u need to be removed. The second condition
ensures that concept assertions that are removed for u can-
not be reintroduced by the terminology. The third condition
has the effect that no copy can be an instance of a concept
description that occurs in the global request.

In the canonical repairs, one of the copies of each individ-
ual will stand for this individual, whereas the other copies
are variables. In addition, some individuals that are equal
w.r.t. ∃Y.B may no longer be equal in the repair. The repair
seed makes these decisions explicit.
Definition 15. A repair seed S consists of an equivalence
relation ≈S on Obj(∃Y.B) that is a refinement of ≈∃Y.B
(i.e., ≈S ⊆ ≈∃Y.B) and of a function that maps each equiv-
alence class [a]S of an individual a w.r.t. ≈S to a repair type
S[a]S for a, such that the following conditions are fulfilled:
(RS1) If C(a) ∈ Ploc and B |= C(a), then ConjR(C) ∩
S[a]S ̸= ∅.

(RS2) If a, b are individuals and {a} ∈ Atoms(T ,P), then
{a} ∈ S[b]S iff a ≈∃Y.B b and a ̸≈S b.
The first condition guarantees that the repair induced by

the seed satisfies the local request. The second condition en-
sures that the decision made by the seed that two individuals
should no longer be equal is respected in the repair.

In contrast to the case of EL (Baader et al. 2021), not ev-
ery repair seed induces a canonical repair. The seed must

satisfy an additional admissibility conditions. Due to space
constraints, we can neither provide the definition of admis-
sibility nor the one of canonical repairs here. They can be
found in (Baader and Kriegel 2022), as can the proof of the
next theorem.
Theorem 16. For every admissible repair seed S, the in-
duced canonical repair can effectively be computed, is sat-
urated w.r.t. (T ,R), and is a repair of ∃X.A for P w.r.t.
(T ,R). Conversely, every repair of ∃X.A for P w.r.t.
(T ,R) is entailed by such a canonical repair.

Since all admissible repair seeds can effectively be gen-
erated, Theorem 12 can also be obtained as a corollary to
this theorem. Even in the case without a terminology, not all
canonical repairs need to be optimal (Baader et al. 2020), but
we expect even the non-optimal ones to be quite good w.r.t.
preserving consequences. One advantage of canonical re-
pairs is that each one can be characterized by a polynomial-
size repair seed, which can be generated by the knowl-
edge engineers by making a polynomial number of decisions
based on their domain knowledge. Another advantage is
that the optimized approach for generating a canonical re-
pair from a repair seed introduced in (Baader et al. 2021)
for EL can be extended to ELROI. More details on these
advantages can be found in (Baader and Kriegel 2022).

4 Extensions and Applications
In this section we present several extensions to the repair
framework. Section 4.1 shows how inconsistencies can be
repaired that come into play when the bottom concept ⊥ is
added. Section 4.2 deals with repair requests formulated as
conjunctive queries. Finally, Section 4.3 briefly mentions
additional extensions that cannot be presented in detail here.

4.1 Adding the Bottom Concept and Repairing
Inconsistencies

The DL ELROI(⊥) (ELRregOI(⊥)) extends ELROI
(ELRregOI) with the bottom concept ⊥, which is always in-
terpreted as the empty set. If ⊥ is available in the TBox, then
qABoxes may become inconsistent w.r.t. terminologies. We
call the quantified ABox ∃X.A consistent w.r.t. a terminol-
ogy (T ,R) if there is a model of ∃X.A and (T ,R), and
inconsistent otherwise. For instance, the qABox {A(a)} is
inconsistent w.r.t. the TBox {A ⊑ ⊥}

Since any concept assertion (qABox) is entailed w.r.t.
(T ,R) by a qABox that is inconsistent w.r.t. (T ,R), any
non-empty repair request to an inconsistent qABox requires
us also to get rid of the inconsistency. In addition, the defi-
nition of what is a repair needs to be revised since (Rep1) is
trivially satisfied in case ∃X.A is inconsistent w.r.t. (T ,R).
Any qABox ∃Y.B satisfying (Rep2) and (Rep3) is thus a re-
pair, even if ∃Y.B is completely unrelated to ∃X.A. Hence,
there cannot be an optimal repair since we can always extend
a given repair by adding completely unrelated assertions.

Fortunately, in ELROI(⊥) we can divide the TBox into
a positive and an “unsatisfiable” part, where the unsatisfi-
able part plays a rôle when an inconsistency is derived, but
has no effect otherwise. To be more precise, consider an
ELROI(⊥) TBox T . Since each concept containing ⊥ is



equivalent to ⊥, we can assume without loss of generality
that each concept description occurring in T is either ⊥ or
does not contain ⊥ as a subconcept. After removing tauto-
logical CIs ⊥ ⊑ C, it follows that T is a disjoint union of
a TBox T+ in which ⊥ does not occur (the positive part)
and of a TBox T⊥ containing only CIs of the form C ⊑ ⊥
where C does not contain ⊥ (the unsatisfiable part). We
can characterize inconsistency by means of this partitioning
of T , and show that T⊥ is only relevant for causing an in-
consistency.
Proposition 17. The following holds for every ELROI(⊥)
terminology (T ,R):

1. The quantified ABox ∃X.A is inconsistent w.r.t. (T ,R)
iff there is a CI C ⊑ ⊥ in T⊥ such that ∃X.A |=T+,R

∃{x}.{C(x)}.
2. If ∃X.A is consistent w.r.t. (T ,R), then ∃X.A |=T ,R

∃Y.B iff ∃X.A |=T+,R ∃Y.B.

Motivated by the second statement of this proposition, we
now use T+ rather than T in (Rep1), and of course addition-
ally require the repair to be consistent. Also note that it does
not make sense to use ⊥ in the repair request.
Definition 18. Consider a qABox ∃X.A, an ELROI repair
request P , and an ELROI(⊥) terminology (T ,R). An in-
consistency repair of ∃X.A for P w.r.t. (T ,R) is a qABox
∃Y.B such that
(IRep1) ∃X.A |=T+,R ∃Y.B
(IRep2) ∃Y.B is consistent w.r.t. (T ,R),
(IRep3) ∃Y.B ̸|=T ,R C(a) for each C(a) ∈ Ploc, and
(IRep4) ∃Y.B ̸|=T ,R ∃{x}.{D(x)} for each D ∈ Pglo.
This inconsistency repair is optimal if it is not strictly en-
tailed by another inconsistency repair w.r.t. (T ,R).

Due to the second statement in Proposition 17, the no-
tion of an inconsistency repair coincides with that of a re-
pair as introduced in Definition 8 if ∃X.A is consistent w.r.t.
(T ,R). If ∃X.A is inconsistent w.r.t. (T ,R), then the first
statement in Proposition 17 shows that (IRep2) can be en-
forced by extending the global request with the concepts C
for which C ⊑ ⊥ ∈ T⊥. Given a repair request P , we
denote the extended request obtained this way as PT⊥ .
Theorem 19. Consider a qABox ∃X.A, an ELROI re-
pair request P , and an ELROI(⊥) terminology (T ,R). If
(T ,R) is inconsistent, then there are no inconsistency re-
pairs of ∃X.A w.r.t. (T ,R). Otherwise, the (optimal) in-
consistency repairs of ∃X.A for P w.r.t. (T ,R) coincide
with the (optimal) repairs of ∃X.A for PT⊥ w.r.t. (T+,R).

If R is regular and (T+,R) is terminating, then we can
apply the approach described in the previous section to com-
pute all optimal inconsistency repairs.

4.2 Repairs for Conjunctive Queries
Until now, we have only allowed the use of ELROI concept
queries in the repair request. We now extend this to con-
junctive queries (CQs). More precisely, we employ Boolean
conjunctive queries (BCQs), i.e., CQs without answer vari-
ables. This is in line with the fact that we only considered

concept queries where the answer variable was either instan-
tiated with an individual or existentially quantified. In (Grau
and Kostylev 2019), CQs with answer variables are em-
ployed in the policy (which corresponds to our repair re-
quest), with the meaning that such a CQ should not have
any answer tuple in the repair. This can clearly be expressed
using the finitely many BCQs obtained by instantiating the
answer variables with all answer tuples. As already men-
tioned above, BCQs and qABoxes are merely syntactic vari-
ants of each other (Baader et al. 2020). For this reason, we
avoid introducing BCQs formally and use qABoxes instead.
Definition 20. A qABox repair request P is a finite set of
qABoxes. Given a qABox ∃X.A, a terminology (T ,R),
and a qABox repair request P , a repair of ∃X.A for P w.r.t.
(T ,R) is a qABox ∃Y.B that satisfies
(CQRep1) ∃X.A |=T ,R ∃Y.B, and
(CQRep2) ∃Y.B ̸|=T ,R ∃Z.C for each ∃Z.C ∈ P .
It is optimal if it is not strictly entailed by another repair.

Since both concept assertions C(a) and global repair re-
quests ∃{x}.{C(x)} for ELROI concept descriptions C
can be rewritten into equivalent qABoxes, using the first
three rules in Figure 1, the repair requests and repairs in-
troduced in Definition 8 are a special case of the qABox
repair requests and repairs introduced here. We will now
investigated under what conditions a rewriting in the other
direction is possible.
Definition 21. An ELROI rewriting of the qABox ∃Z.C
is an ELROI concept description C such that ∃Z.C and
∃{x}.{C(x)} are equivalent.

By adapting the notion of c-acyclicity introduced
in (Alexe et al. 2011), we can give (effectively checkable)
conditions characterizing the existence of such a rewriting.
Basically, the qABox is translated into an appropriate undi-
rected graph, and the condition for c-acyclicity says that
every cycle must contain an individual (see (Baader and
Kriegel 2022) and (Alexe et al. 2011) for more details). Fur-
thermore, we need the notion of a core, which is a qABox
such that each endomorphism on it is bijective. Each qABox
∃X.A has a computable and (up to renaming) unique core
to which it is equivalent (Hell and Nešetřil 1992). It will be
denoted in the following as core(∃X.A).
Proposition 22. A qABox has an ELROI rewriting iff its
core is connected and c-acyclic.

A detailed proof of this proposition can be found
in (Baader and Kriegel 2022). The proof of the if-direction
is constructive in the sense that it shows how the rewriting
can be computed. Thus, if all qABoxes in a given qABox
repair request are ELROI rewritable, then we can reduce
qABox repair to ELROI repair.
Example 23. As an example of a qABox that is not
c-acyclic we consider ∃{x, y}.{r(a, x), s(x, y), s(y, x)}. It
has a cycle from x to y and then back that does not in-
volve an individual. It is not ELROI rewritable since
an ELROI concept could only enforce going back from
y to the predecessor x if one of them were an individual
whose name can be used in the concept. In contrast, the



qABox ∃{y}.{s(a, y), s(y, a)}, which is c-acyclic, has the
ELROI rewriting {a} ⊓ ∃s.∃s.{a}. Note that the qABox
∃{x, y}.{s(x, y), r(x, y)} is also not c-acyclic. Again, an
ELROI concept cannot enforce that there is a joint s- and
r-successor of x. The qABox ∃{y}.{s(a, y), r(a, y)} has
the ELROI rewriting ∃r−.{a} ⊓ ∃s−.{a}.

Considering Proposition 22, one might think that non-
connectedness of core(∃Z.C) for ∃Z.C ∈ P could be an
impediment to reducing qABox repair to ELROI repair.
However, this is not the case: it is sufficient that all con-
nected components of core(∃Z.C) are ELROI rewritable.
To be more precise, let H(P) be the set of all hitting sets of
{CoCo(core(∃Z.C)) | ∃Z.C ∈ P and∃X.A |=T ,R ∃Z.C },
where the operator CoCo yields the set of connected compo-
nents of an input qABox.
Lemma 24. ∃Y.B is a repair of ∃X.A for P w.r.t. (T ,R)
iff there is a hitting set H in H(P) such that ∃Y.B is a repair
of ∃X.A for H w.r.t. (T ,R).

According to our previous considerations, we can com-
pute the optimal repairs for such a hitting set H if each com-
ponent in H has an ELROI rewriting. The elements of H
are connected components of the cores of the elements of
P . Since such a core is c-acyclic iff all its connected com-
ponents are so, it is thus sufficient to require that the cores
of the elements of P are c-acyclic. Under this assumption,
the set of all optimal repairs of ∃X.A for P w.r.t. (T ,R)
is then obtained by collecting the optimal repairs of ∃X.A
for H w.r.t. (T ,R) for all hitting set H in H(P), and then
removing elements from this set that are strictly entailed by
other elements.
Theorem 25. Let ∃X.A be a qABox, (T ,R) a terminat-
ing terminology with a regular RBox whose associated au-
tomata can effectively be computed, and P be a qABox re-
pair request. Then the set of all optimal repairs of ∃X.A for
P w.r.t. (T ,R) can be effectively computed if core(∃Z.C) is
c-acyclic for all qABoxes ∃Z.C in P . In addition, each re-
pair is then entailed by an optimal repair.

Without restrictions on the qABoxes in the repair request,
the set of optimal repairs need not cover all repairs in the
sense stated in the theorem, even if the qABox to be repaired
is an ABox and the terminology is empty. In fact, it follows
from (Nešetřil and Tardif 2000, Corollary 3.5) that the ABox
{r(a, a)} has no optimal repair for the repair request consist-
ing of the qABox ∃{x}.{r(x, x)}. But the empty ABox is a
repair, which is thus not entailed by an optimal one.

4.3 Further Extensions
The repair framework developed in this paper can also be
used to deal with regular path expressions in the repair
request, Horn-ALCOI TBoxes, and qABoxes that have a
static part that must not be changed. The basic idea is to
create an ELROI terminology over an extended signature
that is a conservative extension of the input terminology, and
in which such extensions can be expressed. Our repair ap-
proach is then applied w.r.t. this terminology. However, the
repairs obtained this way may still contain names not occur-
ring in the original signature, and thus these additional sym-
bols need to be removed from these repairs appropriately.

We illustrate this for the case of regular path expres-
sions, which are regular expressions over the alphabet of
all roles. In repair requests, the concepts may now con-
tain such expressions in place of roles. The semantics is
defined by interpreting union, concatenation, and Kleene-
star in the regular expressions as union, composition, and
reflexive-transitive closure of binary relations, and the empty
word as the identity relation. For example, the concept as-
sertion (∃r∗.{b})(a) ∈ P then says that, in the repair, there
should not be an (empty or non-empty) r-path from a to b.
To express the regular expression r∗, we introduce a new
role name ⌈r∗⌉ and extend the RBox with the RIs ε ⊑ ⌈r∗⌉,
r ⊑ ⌈r∗⌉, and ⌈r∗⌉ ◦ ⌈r∗⌉ ⊑ ⌈r∗⌉. In the repair request,
we now use ⌈r∗⌉ in place of r∗. A repair computed for this
modified request may still contain the new name ⌈r∗⌉, but
we can simply remove all assertions containing it to obtain
a repair in the original signature.

If a part of the given qABox is known to be correct, one
may want to keep this part static when repairing (i.e., the
repair should still imply this static part). Since our TBoxes
are static and concept and role assertions can be expressed
using nominals, the idea is now to move the static part of the
qABox to the TBox. However, to express assertions involv-
ing variables, the signature needs to be extended by adding
these variables as individual names.

More details on how to deal with these two extensions
and on how Horn-ALCOI TBoxes can be expressed can be
found in (Baader and Kriegel 2022).

5 Conclusion

We have shown that the approaches for computing optimal
repairs developed in our previous work can be extended to a
considerably more expressive DL, which covers most of the
DL EL++ underlying the OWL 2 EL profile, but also has
inverse roles. Our main result is that, in this setting, optimal
repairs can effectively be computed and cover all repairs in
the sense that every repair is entailed by an optimal one. In
addition, we have demonstrated that this repair approach can
deal with several other interesting repair problems.

The paper actually provides two proofs of the main result,
one based on showing a small repair property by filtration,
and another one based on the construction of canonical re-
pairs. We believe the second approach to be more useful
in practice. In fact, when repairing a given quantified ABox
w.r.t. an ELROI terminology, first computing all optimal re-
pairs and then expecting the knowledge engineer to choose
an appropriate one among (potentially) exponentially many
exponentially large optimal repairs does not appear to be
a practically viable repair approach. Since our canonical
repairs are determined by polynomially large repair seeds,
such a repair can be chosen by making polynomially many
decisions regarding certain instance relationships. Once a
repair seed is chosen, the induced canonical repair is always
exponentially large. However, by adapting the optimized re-
pair approach of (Baader et al. 2021) to our more expressive
language, we can obtain considerably smaller optimized re-
pairs.
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