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Abstract

In this paper, we study the long time behaviour of the Fokker-Planck and the kinetic Fokker-Planck
equations with many body interaction, more precisely with interaction defined by U-statistics, whose
macroscopic limits are often called McKean-Vlasov and Vlasov-Fokker-Planck equations respectively.
In the continuity of the recent papers [65, 45, 44] and [46, 76, 77], we establish nonlinear functional
inequalities for the limiting McKean-Vlasov SDEs related to our particle systems. In the first order
case, our results rely on large deviations for U-statistics and a uniform logarithmic Sobolev inequality
in the number of particles for the invariant measure of the particle system. In the kinetic case, we first
prove a uniform (in the number of particles) exponential convergence to equilibrium for the solutions
in the weighted Sobolev space H! (i) with a rate of convergence which is explicitly computable and
independent of the number of particles. In a second time, we quantitatively establish an exponential re-
turn to equilibrium in Wasserstein’s #%-metric for the Vlasov-Fokker-Planck equation. Some concrete
examples are also provided.

Keywords. U-statistics; propagation of chaos; polynomial interaction; (kinetic) Fokker-Planck equa-
tion; McKean-Viasov equation; functional inequalities; convergence to equilibrium; (hypo)coercivity.
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On the long-time behavior of the McKean-Vlasov PDE 1 INTRODUCTION

1 Introduction

In the continuity of the recent papers [45] and [44], we establish exponential convergence towards equilibrium for a class
of McKean-Vlasov and Vlasov-Fokker-Planck with polynomial interaction (macroscopic interaction associated with U-
statistics and defined in Eq. (1.17) and Eq. (1.18)). Before going further into the details, we recall the general setting
related to our problem.

General homogeneous McKean-Vlasov diffusion. The processes studied in this paper belong to the following class of
stochastic differential equations:
dXt: b(Xt,PX[)dt'FU(Xt,PXI)dBt, (11)

with respectively b: RP x 22(RP) — RP the drift coefficient, o : RP x 22(RP) — .4, ,(R) the diffusion coefficient and
(By) =0 a standard p—dimensional Brownian motion. More precisely, we are interested in the study of exponential ergod-

icity of the process defined by
2

dX; = —(DmFPx,, Xo) + %VV(Xt))dt+ odB,, (1.2)

where F: Z(RP) — R, 9,,,F is the intrinsic derivative (L—derivation or derivation in the sense of Fréchet of F on the
probability measure space, see Eq. (1.26) for precise definition) which is none other than the gradient of a flat deriva-
tive (see Eq. (1.26)) of F: 2,,F(m,:) := Vg’—i(m, -) (for example, if F(m) = fcpdm, we have g—i(m,x) = @(x) then,
PmF(m, x) = V(x)), V is a confinement potential and o > 0 (in this paper, without loss of generality and for the sake of
standardization, we take o = v/2). Equation (1.2) also writes

8H
dX;=-V—Px, X,dt+0dB, (1.3)
om

with the functional H given by
o2

With these notations, considering polynomial interactions means that F is a polynomial on the probability space of degree
at least two (see Eq. (1.17) for details). The second term being a polynomial of degree 1, the function H is also a polyno-
mial on the probability space (without constant term).

The related mean-field particle system. The n—particle associated with (1.2) is given by the following system of SDEs:
Vie{l,...,n}, dX;"=bX;" uxdt+oX;", uxs)dB}, (1.5)

where B!,...,B" are n independent Brownian motions and Hx» denotes the empirical measure defined by
1 Z D
Mai=— Y By x=(x1,...,%0) € RD)".
k=1

Under standard assumptions, (X*"") i, is aMarkov process with infinitesimal generator defined on an appropriate subspace
of €,((R®)™) by,

n
Lap(x):= ) Ly Mip(x) (1.6)
i=1

where for a given pe 2([RP),
1
L= b6, V4 S Tr(@0" (,WV?),  peP®R") (1.7)

and the notation ZM; ¢ denotes the action of an operator £ defined on (a subset of) €}, (RP) against the i-th variable of a
function ¢ € ‘gh(([RED)"); in other words, ZM; is defined as the function:

x € RP) v LIy — @(X1,..., Xi—1, Y, Xis1,-- o, Xn)] (X7) ER.

In the family of equations of type (1.5), kinetic particle systems correspond to the case where Zl;" = (Xi'",Vi’" ) € R4 x R4
is a particle defined by two arguments, its position X’[" and its velocity Vﬁ‘" defined as the time derivative of the position.
The evolution of a system of kinetic particles is usually governed by Newton’s laws of motion. In a random setting, the
typical system of SDEs is thus the following:

dxi" =viidr

. dr o ‘ 1.8
dv;" =B V" px)d o+ o X"V, ) dB, -

Viefl,...,n}, {
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where F: R x R x Z(R?) — R and 0 : R x R x 2(R%) — ., (R). Note that it is often assumed that the force field
induced by the interactions between the particles depends only on their positions. Note that in the system Eq. (1.5) there
are actually nD independent one-dimensional Brownian motions. In particular, for kinetic particles defined by their posi-
tions and velocities, the noise is often added on the velocity variable only (this case is nevertheless covered by Eq. (1.5)
with a block-diagonal matrix o with a vanishing block on the position variable). This special case of the McKean-Vlasov
diffusion in RP = R x R? is also often called a second order system by opposition to the first order systems when RP = R?.
In this paper, we will establish some uniform exponential convergence of the particle systems Eq. (3.5) and Eq. (3.16)
(defined below) which in turn will allow us to derive the same properties for their mean-field limiting dynamics.

McKean-Vlasov PDE. It is classically assumed that the domain of the generator £, does not depend on p. This domain
will be denoted by F < %, (RP). In that case, it is easy to guess the form of the associated nonlinear system obtained
when n — +oo. Taking a test function of the form @(xy,...,x,) := W(x;), where ¢ € &, one obtains the one-particle
Kolmogorov equation:

d n
Py = f( o Lus 0P () = ELL ) (19)

Note that the right-hand side depends on the n—particle distribution. If the limiting system exists (propagation of chaos)
then, its law i, at time ¢ = 0 is typically obtained as the limit of the empirical measure process:

n—+oo

Hxn  — My (1.10)

This also implies Py 1, nZEe H:. Reporting formally in the previous equation, it follows that p; should satisfy
t

d . ..
(cheg, E(m,tp):(pt,ffuz(p))@atptzzﬂtpt, where .,%Jt is the weak adjoint of %, . (1.11)

This is the weak form of the so-called the (nonlinear) evolution equation induced by (1.1). The evolution equation
Eq. (1.11) can be written in a strong form (at least formally) and reads:

1 D
0rhe(0) = =V (bLr HOM) + 5 3 0,0 (0071 (o o)) (1.12)
ij=1

This is a nonlinear Fokker-Planck equation which is used in many important modelling problems. This equation was
obtained (formally) previously using only the generators when n — +oco. Here, there is an alternative way to derive the
limiting system: looking at the SDE system Eq. (1.5), the empirical measure can be formally replaced by its expected
limit p;. Since all the particles are exchangeable, this can be done in any of the n equations. The result is a process
(X ;) t>0 which solves the SDE: (McKean-Vlasov process)

dX; = bX;, u)dt+0oX;, 1) dBy, (1.13)

where (B;) ;>0 is a Brownian motion and Xy ~ po. Moreover, since for all 7, X’t" has law Py1,» and since it is expected that
t

nzEe M:, the process (X =0 and the distributions (L) r=0 should be linked by the relation: for all ¢ =0, X, ~ Me.

P 1,n
e
The dependency of the solution of a SDE on its law is a special case of what is called a nonlinear process in the sense
of McKean (Eq. (1.1) is equivalent to Eq. (1.11) via mean-field system given by Eq. (1.6). Under appropriate conditions,
the process Eq. (1.13) is well defined or (equivalently) the PDE Eq. (1.12) is well-posed (see [29, Proposition.1] or

Theorem A .4 for details).

Remark 1.1. Note that when o = 0, the limit equation Eq. (1.12) is the renowned Viasov equation which is historically
one of the first and most important models in plasma physics and celestial mechanics.

Equivalently, our main objective is the study of the long-time behavior of the solution flow of the nonlinear (2,,F must at
least depend on the measure otherwise we find the standard Fokker-Planck PDE) Fokker-Planck equation:

2 2
6tm:V-((@mF(m,-)+%VV)m+ %Vm). (1.14)

From two-body to many-body interactions. Depending on the form of the drift and diffusion coefficients, the McKean-
Vlasov diffusion can be used in a wide range of modelling problems. The first case is obtained when b and o depend
linearly on the measure argument. Namely, for n, m € N, let us consider two functions Kj : R x R — R, K5 : R% x R —
R™, and let us take b(x, ) :l_o(x,Kl * (X)), o(x, W) =0 (x, Ky * u(x)), where D:RYxR" — R4, G:RY x R™ — M3 (R) and
K; * p(x) := [K;(x, y)u(dy). When Ky, K; and b, are Lipschitz and bounded, the propagation of chaos result is the given
by McKean’s theorem.

In many applications, o is a constant diffusion matrix, K; (x, ) = K(y — x) for a (usually symmetric) radial kernel K : R —
R? and b(x, ) = K* u(x). Note that the case where K has a singularity is much more delicate but contains many important
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cases (such as the Biot-Savart kernel or the 2D-incompressible Navier-Stokes model in fluid dynamics).
The case of gradient systems is an important sub-case when o (x, 1) = old for a constant o > 0 and

b(x, ) =-VV(x) —fRd VW (x - p)u(dy) (1.15)

where V,W are two potentials on RY respectively called the confinement potential and the interaction potential. The limit

Fokker-Planck equation
2

o
at”t:?A”t"'v'(Utv(V"'W*”t))» (1.16)

is called the granular-media equation. The above models are two-body interactions. This is characterized by the fact
that K; or K, depend on only two variables or equivalently by the fact the functional F: p— [Kj(x, y)p(dx)pu(dy) is a
polynomial of degree two. Nevertheless, in some other models, one may find some interactions which involve more than
two particles. This is for instance the case of the Skyrme model (see [87]). This is why in this paper, we choose to consider
a polynomial dependence in the measure p induced by order statistics (many-body interaction) in order to generalize the
results obtained in the case of a linear interaction in the measure p defined by the convolution via a potential two-body
interaction ( [44], [45]). More exactly, under adequate assumptions (see HMV3.3, VFP3.7), we are interested in the
exponential return to equilibrium of the solution of Eq. (1.14) in the case

N
F=Y fw“%zﬁ’ﬁ (1.17)
k=2

where Vk € {2,...,N}, W® is a symmetric interaction potential between k particles and N represents the number of such
potentials. The intrinsic derivative 2,,F (v, y) associated with this functional is given by

61:; N k _
V%(v,y) =) ijW(k)(xl,...,xj,l,y,xjﬂ,...,xk)v@k l(dxl,...,dxj,l,dxjﬂ,...,dxk) (1.18)
k=2j=1

The associated microscopic (particle-level) interaction is given by (U—statistic of order k and kernel ® = W®))

kl(n—k)!

' Y owlin  Xeny where X = XM, X" € (RP)". (1.19)
n:

1<ij<..<ig<n

U,W®):=

UX"™) := Uy, (®) is called U—statistic of order k and kernel @ associated with the sample X”. This statistic corresponds
to the arithmetic mean of the kernel ® over all the parts at k elements of the set of sample values. We will often write
Un(W("))(X”) :=: U(X"). We generalize this definition to the space of probabilities by the functional

ne2RP) Mf odpu®*, (1.20)
RKD
called monome of degree k and coefficient ® on the probability space 22(RP). The link between these two microscopic

and macroscopic interactions is given by

N
Y U, W®) = Fuxn). (1.21)
k=2

Remark 1.2. Note that the granular-media equation (1.16) is a particular case of (1.14) with
1 2
F(w = f WO Pudaudy) W) = sWx-3) Vi = SV, (1.22)

Indeed, in this case, we have
oF 2 2
5 (p,x):fW (x,y)p(dy)+fw (y,x)p(dy):fW(x—y)p(dy) =Wk pu(x), (1.23)

50 that 2, F(, x) = VEE (1, %) = VW * p(x).

Energy and Large Deviations. Consider G: Mlp (RP) — R (which can be nonlinear) and the probability (Gibbs) measure
arelated to V, i.e. a(dx) = Zy'e Y Wdx with Zy = [ eV Wdx (where Zy is assumed to finite). For any o > 0, we put

2
VoS (m) := G(m) + %H[ml(x]. (1.24)

VoS is an energy function regularised by the KL—divergence H[m|a] which is given by Eq. (2.3) in §2. It is known (see
e.g. [51, Proposition.2.5]) that V'© is minimized by a measure m®* satisfying the following fixed point problem (it is
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noteworthy that the variational form of the invariant measure of the classic Langevin equation is a particular example of

this first order condition)
1 _ 2 (%G g,
m®*(dx)=—e o (o (0

* 02
ATV g (1.25)
Zgy

where Zs is the normalising constant, and for any m € Jllp (RP) and x e RP, 8—r()i(m, x) denotes a flat derivative of G with
respect to m, in the direction of x, evaluated at m. For any 0,0, € Mlp (RP), the function g—’% :J%IP (RP) xRP — R satisfies

1 oG
G(©1)~ G(Oo) = f f O @0+ A(©1 - 00), 0)(O1 — 00) () A (dN). (1.26)
o Jrp dm

This notion of derivative appears in the literature under several different names, including the linear functional derivative
(see e.g [21, Section.5.4.1]) or the first variation [1].

Remark 1.3. It is important to note that we have uniqueness modulo the choice of a function of the measure. The
McKean-Vlasov SDE given by Eq. (1.2) (therefore the associated PDE given by Eq. (1.14) and the invariant measure
given by Eq. (1.25)) does not depend on the choice of the function of the measure in the calculation of a flat derivative: we
can therefore do the calculations with any flat derivative. By convexity of ./%1!7 R4), forall £€[0,1],0,:= (1-1)O¢+ 1O, €
[09,0;] c Mf (R%). Eq. (1.26) is equivalent to deriving the functional G along the end segment © and ©; parameterized
by the path £t €[0,1] — Oy:

d 0G
26O = [ 2(01,0001(d. (1.27)
dt rD Om
In practice, this reformulation via derivation along paths lends itself better to calculations. For example, it is easy to check
oF S ") sk-1
V—w, =) k| VuyW"(y,2)v""" " (d2); (1.28)
dm wrt
D H ol (v, y) = V1o (@)( ) (1.29)
m y)=Viog o )WY .

Large Deviation Principles imply propagation of chaos, but they do not always give a way to quantify it since the related
results are often purely asymptotic (for instance, Sanov theorem is non-quantitative). Nevertheless, the results of large
deviations turn out to be very useful for the technical passages in the macroscopic limits: when one makes tend the num-
ber of particles to infinity. In the seminal article [10], the authors improve results from [61] and [16] on Large Deviation
Principles (LDP) for Gibbs measures and obtain as a byproduct a pathwise propagation of chaos result for the McKean-
Vlasov diffusion. Firstly, [10, Theorem.A] (or Theorem A.5) states a large deviation principle for Gibbs measures with a
polynomial potential. [10, Theorem.B] quantifies the fluctuations of pxn in the non-degenerate case. Analogous results
for the degenerate case are given in [10, Theorem.C]. For more details, see also [29, Theorem.4.7, Corollary.3]. We use
the large deviations results obtained on the order statistics in [65]: In addition to the fact that the mean-field entropy
functional (Eq. (A.62) or VV2F defined by Eq. (1.24)) is a rate function (Theorem A.5) for the random empirical measure
uxr, the authors show that it is a good rate function that has good tensorization properties.

Long time behavior. In the present paper, we are concerned by the long-time convergence towards the solution to an
optimization problem on the subspace ﬂf (RP) of probability measures .#; (RP): we consider a function E: Mlp RP) - R
and we want to find a minimizing measure m* := arginf ﬂf(RD)E such that for a gradient flow (see e.g. [1] and [80])

(my) =0 associated with E, we have an exponential estimate of the deviation E(m;) — E(m*) of the form (with C = 1 and
p>0)

E(m;) —E(m*) < C(E(mo) —E(m*))e™*". (1.30)
Eq. (1.30)-type Inequalities are called hypocoercive inequalities. We call E—E(m*) the entropy functional ([55],[51,[34])
of the system and —%(E(m,) —E(m™)) the production of entropy (usually called energy in mathematical literature).
Clausius invents the concept of entropy, Boltzmann proposes to derive entropy along the flow. Generally speaking, an
entropy is a Lyapunov functional of a specific form. It is however hard (and even somewhat artificial) to give a formal
narrow definition of entropies that distinguishes them from, say, energies. An entropy is a quantity calculated from a
solution, which decreases over time when the solution obeys an evolution equation, and which is stationary only for the
stationary solutions of the equation. In conclusion, the concept of entropy is a tool that adapts to what we want to study.
The notion of hypocoercivity was proposed by T. Gallay. The objective is typically to control the entropy at time ¢ by
the initial entropy multiplied by a constant C (always greater than 1) and a exponential decay factor, with exponential
decay rate as good as possible in big time. This theory is inspired by the hypoelliptic theory of L. Hormander, and the
terminology hypocoercivity accounts for the relationship between entropy and its derivative with respect to ¢. There would
be coercivity if C =1, which is clearly not possible in most cases considered in kinetic theory. It is well known that, for
the standard Langevin equation of Hamiltonian V (given by Eq. (1.2) in the case F = 0), for p > 0, the following assertions
are equivalent:

Voe€XRY), pEnty[¢?] szfllwpllzda. (1.31)
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pH[-|a] < 2I[-|a]. (1.32)
V=0, Hulal <Hlpglale ™. (1.33)

These three equivalent assertions imply the T2—Talagrand inequality
75’ (-, @) < 2H[ad, (1.34)

inequality which, in turn, implies an exponential contraction in wasserstein metric %5, i.e. the exponential convergence of
the flow (p‘t/) =0 (solution of the Fokker-Planck equation associated with the standard Langevin process of Hamiltonian
V) to the maxwellian (invariant measure of the Langevin process that can also be seen from equivalently as the unique
argming, payH[-|a]) o of the Fokker-Planck PDE given by Eq. (1.14) in the case F=0:

2
VE=0, WP, < =Hlpylale P’ (1.35)
P

Eq. (1.31) and Eq. (1.32) respectively define the logarithmic Sobolev inequality ([5]) and its dual version. According to
the dimension curvature criterion of Bakry-Emery, we have

(ap >0V (x,h) eRY xR, (V2V(x)h, h) = p||h||§) — Egq. (1.31). (1.36)

Note that in the case of the symmetric Langevin-Kolmogorov process, we have

mi=ny, m*=a E=H[la, E(m,)-E(m*)=H[u|a, (1.37)

_i _ * __i A\ _ Vv
dt(E(mI) E(m™)) = dtH[utla]—I[utlal. (1.38)

The objective of this work is to identify a flow of measures (m(t”F)IBO (flow solution of Eq. (1.14)) such that

t—+oo
VO‘,F (mg,F) _ VU,F (mcr,*)

0, (1.39)
as well as conditions (HMV3.3, VFP3.7) that ensure that this convergence is exponential. To this end, we equip the space
Jﬂf (RP) with a suitable distance function d : ./%f (RP) x Mf (RP) — R, and consider a corresponding gradient flow, where
the form of the flow is dictated by the choice of d. Such a problem has been dealt with in the case of the Fisher-Rao metric
(see [64]): the authors established from a Polyak-Lojasiewicz inequality the exponential convergence of the gradient
flow (m?‘G) r>0 described by the birth-death equation along V=G towards V¢ (m®*). In our case, Eq. (1.30) implies the
exponential decay in d-metric (transport distance):

d(m", m”*) < y(VOF (mg") =V m”*)e P, (1.40)

Eq. (1.40) is a consequence of transport inequalities (see [94]). Moreover, given a measure m®* satisfying the first order
condition Eq. (1.25), it is formally a stationary solution to Eq. (1.14) called the Maxwellian of the McKean-Vlasov PDE.
Therefore, formally, we have already obtained the correspondence between the minimiser of the free energy function
and the invariant measure of Eq. (1.2). In this paper, the connection is rigorously proved mainly with a probabilistic
argument. The study of stationary solutions to nonlocal, diffusive Eq. (1.14) is classical topic with it roots in statistical
physics literature and with strong links to Kac’s program in Kinetic theory [75]. We also refer reader to the excellent
monographs [1] and [4]. An important issue is the long-time behaviour of gradient systems which is often studied under
convexity assumptions on the potentials. In particular, variational approach has been developed in [24] and [80] where
authors studied dissipation of entropy for granular media equations Eq. (1.16) with the symmetric interaction potential of
convolution type (interaction potential corresponds to term 2, F in Eq. (1.14)). Following on from the work done in [80]
and [24] (among others) on the long-time behavior of Eq. (1.16), in [45], the authors proved via a uniform logarithmic
Sobolev inequality in the number of particles that

2
V>0, Hwlv]<Hwlvole ™52 and #2(Vi,Voo) < — Hy[vole P57, (1.41)
PLs

Eq. (1.41) translates the exponential decrease of the mean field entropy Hy (given by Eq. (1.30) with E = VOF) and the
contraction in Wasserstein metric (d = #>) of the solution flow of Eq. (1.14) in the case

1
0=V2 and F(u = zfW(x,y)p(alx)p(dy). (1.42)

The study of the long-time behaviour for the VFP equation is often more difficult than that of the McKean-Vlasov equation
because of two reasons:

(i) itis a degenerate diffusion process where the Laplacian acts only on the volocity variable and;
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On the long-time behavior of the McKean-Vlasov PDE 2 NOTATIONS AND DEFINITIONS

(ii) itis not a gradient flows but simultaneously presents both Hamiltonian and gradient flows effects.

In [46], combining the results of [45] and [76], the trend to equilibrium in large time is studied for a large particle system
(given by Eq. (3.16) in case of a two-body interaction) associated to a Vlasov-Fokker-Planck equation by the authors:
they showed that under some conditions (that allow non-convex confining potentials), the convergence rate is proven to be
independent from the number of particles. From this are derived uniform in time propagation of chaos estimates and an
exponentially fast convergence for the nonlinear equation itself.

Contributions. In this paper, we are going to prove

(i) propagation of chaos in Wasserstein’s #5-metric for our particle systems given by Eq. (3.5) and Eq. (3.16).

(ii) entropic convergence to equilibrium for the nonlinear McKean-Vlasov SDE (mean field limit of the first order
system given by Eq. (3.5)) generalizing results (given in Eq. (1.41) of [45]).

(iii) by Villani’s hypocoercivity theorem (see e.g. [44, Theorem.3] or [93, Theorem.35]) the H! —convergence for the
kinetic Fokker-Planck equation with mean field interaction given by Eq. (3.16).

(iv) exponential convergence towards equilibrium in metric #>—Wasserstein for the flow solution of the Vlasov-Fokker-
Planck equation: mean field limit of the second order system given by Eq. (3.16).

In the literature, such results on long-time behavior are obtained by purely analytical tools such as, among others, the
gradient flow structure. In this paper, we give rigorously probabilistic proofs (see §5, Fig. 1 and §6) based mostly on the
propagation of chaos (see Theorem 5.3), the large deviations principle (see Proposition 5.15 and Proposition 5.16) and
the uniform log-Sobolev inequality (see Theorem 5.19) in the case of first order systems. In the kinetic case, we need
additional results such as Villani’s hypocoercivity ([44, Theorem.3] or [93, Theorem.18 and Theorem.35]) theorem (see
Proposition 5.22) and Hormander’s form (see e.g. respectively Theorem.7 and Theorem.10 in [76, [77]]). The fact that
the interaction is polynomial is important in calculations, among other things, for passing to the limit in the number of
particles: technical passage to the limit given by LDP.

Plan of the paper. Let us finish this introduction by the plan of the paper. In the next three sections, we will present
our mean field systems (Eq. (3.5),Eq. (3.16)), our set of assumptions (HMV3.3,VF[P3.7), the main results (and examples)
(in §4) of the paper concerning logarithmic Sobolev inequality of mean field particles systems as well as exponential
convergences to equilibrium for McKean-Vlasov (Theorem 4.1,Theorem 4.2), kinetic Fokker-Planck (Theorem 4.3) and
Vlasov-Fokker-Planck (Theorem 4.5) SDEs. In §5, we sketch a proof of our results and we introduce the pre-proof tools.
In §6, we prove our main results. And we end the paper with the appendix, the acknowledgments and the bibliographical
references.

2 Notations and Definitions

We try to keep coherent definitions and notations throughout the article, but as the various objects and what they represent
may become confusing, we list them here for reference :

Notations. For all (u,v) € R4 x Rd, we note u® v:= uv® = (u; Vii<i j<d the tensor product matrix of two vectors and
u-v:= u'v the standard Euclidean scalar product of two vectors. We note || - |lop the matrix subordinate norm to the
Euclidean norm which we will note indifferently || ||, or |-|. (,-) represents indifferently the scalar product and the
duality bracket. We note ||| - ||l the operator norm associated with the weighted Sobolev Hl(p;) space induced by
the invariant measure p; of our second-order system given by Eq. (3.16). We have

= foet?wh, Voe e ) ol =gl + [ (Nl +ivplE)du. @1

.....

n=1, 6, is the n-th symmetric group. For all p € [1 + c0), the Wasserstein p-distance between two probability measures
u and v on RP with finite p-moments is given by

1
— . _ p 14
Wp(u,v): (Ye}r(liv)fu@xu@ |x—yl y(dxdy)) , (2.2)

I'(y,v):= {YE,@(RDXRD), my=p and T[zYZV}.

We note ./%lp (RP) the space of probability measures with finite p—moments.
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On the long-time behavior of the McKean-Vlasov PDE 3 MEAN-FIELD SYSTEMS AND ASSUMPTIONS

Definitions.
Relative entropy: Let p€ P(RP). We define H[-| pl : P(RP) — [0, +o0] such that

1 = Enty (%] if ,
H[V|H]={ [og ] ntp[dp] fv<p (2.3)

+00 otherwise.

And we recall that in the first case of absolute Contlnulty, Y is the Radon-Nikodym density of v with respect to p.
Relative Fisher information: We also define the Fisher- Donsker—Varadhan information of v with respect to y by:

T L e e e e R

if v< p and d" € H1 and I[v|pu] = +oo otherwise. Hh is the domain of the Dirichlet form

suig— [ 1981 du 2.5)

UPIL We say that p(dx) := ze ™@dx (Gibbs probability measure of hamiltonian H : R"® — R) satisfies a uniform
Poincaré inequality if
>0 V=2 YeeEPR™), AVulpl <EllIVell]. (2.6)

And we call Poincaré constant the best constant A; (1) for which we have such an inequality.
ULSI. We say that p satisfies a uniform logarithmic Sobolev inequality if
>0 Vn=2 VYeeE R™), pEnt,[¢°] <Eu[lIVell]. (2.7)

And the best constant prg(p) for which such an inequality holds is called the logarithmic Sobolev constant.

Remark 2.1. We recall that
ULSI. — UPI. (2.8)

The Poincaré and log-Sobolev inequalities for p are equivalent to exponential decreases of the semigroup (P;) ;»¢ respec-
tively in variance and in entropy, i.e.

> Poincaré
Vofel’ w120, 1P f = Plizgy <e MWUF = Pl (2.9)
> Log-Sobolev
vV fel'(wlogl'(w) ¢=0, Enty[P,f]<e PSWEnt,(f]. (2.10)
Here, the notation L' () logL! () denotes the entropy definition domain under .
We say that i satisfies a T, —transport (Talagrand) inequality if there exists a > 0 such that #}, (-, u) < y/aH[-[p].

Remark 2.2. Moreover, as with the Poincaré and log-Sobolev inequalities, T»-inequality implies the T1-inequality : by
definition and Cauchy-Schwarz inequality, we have

Miwv)=_ 1nf JEIX =Y < 1nf , VEIIX- Y2 = #2(p, V). (2.11)

The class of probabilities verifying T;-inequality is identical to that having an exponential moment of finite order 2. The
T»-inequality is significantly more structured than the T;-inequality since it involves a spectral gap inequality.

3 Mean-Field Systems and Assumptions

Throughout the paper, we consider a confinement potential of a particle V: R — R € 6¢%(R%) and N interaction potentials
such that

Vkef2,..., N}, WH:RH* — ReG>(RHY). (3.1)
We recall that Vo € & and Vx = (xy,..., Xi),
1
WP 0 =WP (), adx):= c _V(x)dx U,w®y. = 7 Y WP, xy), (3.2)
nl (... ip)elk

where Ik ={(i1,...,0x) € Nk lip #1q, 1<ip < n}is the set of possible arrangements of k integers of the set of 7 first

nonzero integers, which gives IIkI = Ak (HL',C), We define W&~ := max(-W® 0) and W&+ := max(W®,0) the

negative and positive parts of wk, Vu such that wk— el (p® ky,

WO ] = E e (WO = E o (WO - E e WO L. (3.3)

Univ Angers, CNRS, LAREMA, SFR MATHSTIC, 8 Mohamed Alfaki AG ABOUBACRINE ASSADECK
F-49000 Angers, France


http://www.univ-angers.fr/
https://www.cnrs.fr/fr
http://recherche.math.univ-angers.fr/
https://sfrmathstic.univ-angers.fr/fr/index.html
https://www.angers.fr/
https://mon-portfolio-de-chercheur.webnode.fr/
https://orcid.org/0000-0002-3281-1954

On the long-time behavior of the McKean-Vlasov PDE 3 MEAN-FIELD SYSTEMS AND ASSUMPTIONS

3.1 Our Systems
First order case. We consider the microscopic mean-field many-body interaction energy given by
n N K
H, (x1,...,x,) := ZV(xj)+nZUn(W( )). (3.4
j=1 k=2

The (non-kinetic) McKean-Vlasov process is defined as the mean field limit (under adequate assumptions given below)
of the sequence (X"),>N of Langevin-Kolmogorov process of Hamiltonian Hy, i.e.: (N fixed)

Vn=N, dX!=v2dB,-VH,XP)dt. (3.5)

Let
£, =AN-VH,-V (3.6)

be the infinitesimal generator and (P});>¢ the associated semigroup of unique invariant measure (under HMV3.3 below),
the Gibbs measure

1
Hn(dx) = Z—e‘H”“‘)dx with Zn:=f(Rd)ne‘H"(X)dx< +00 (3.7)

n

is the normalization constant (called partition function). Note that

Cn
W (dx) = Z—e*”Z¥=2Ur1<WK")>a®"(dx). (3.8)

n

Without interaction (i.e. Vk, W =0 or constant), Mp = a®7 (i.e. the particles are independent). We denote
1 n
Ly(x;):=— Z Sxi(') (3.9
niz

the empirical measurement application. We know that under general conditions, by propagation of chaos ([91]), L,,(X";)
converges weakly towards the solution of the nonlinear partial differential equation of McKean-Vlasov associated with
the system of particles. We define

Z
Wy (dx) := e Tk UnW) o ®n g3y = C—Z W (dx). (3.10)

The macroscopic mean-field energy is given by

Hiplo] + XN, wk if H +oo and WK~ e LI (u®k),
Ew[p]:z{ [ule + 23, WOlWl - if Hiplod < +oo an e L (u®k) G.1D
+ otherwise.
Let
dom(HW):z{p, Hlplo] < +o0 and VK, W(k%*eLl(p@")}. (3.12)

Remark 3.1. Hy := Ew —infEyy is called the mean field entropy. We can prove that Hy is inf-compact (Theorem 5.11)
and that there is at least one minimizer usually called equilibrium point. From the point of view of statistical physics, Hy
is an entropy or free energy associated to the nonlinear McKean-Viasov equation given by Eq. (3.5). The uniqueness of
the minimizer means that there is no phase transition for the mean-field. Concerning the work on uniqueness in the case
of peer interaction, we can cite among others: [45], [68] and [24]. These authors ([68],[24]) showed that Hyy is strictly
displacement convex (i.e. along the #>-geodesic) under various sufficient conditions on the convexity of the confinement
potential V and the pair interaction potential W?)_ In case of a many-body interaction, under assumptions in HMV3.3, we
prove in Proposition 5.14 the uniqueness: then we denote o, this minimizer.

Analogously, we define the mean-field Fisher information by:
1 SEw 2
twiuli= [ [[75 2 00| wean. (3.13)

Remark 3.2. Without interaction (Vk, wh = wy), we find the Lyapunov functionals associated with the standard sym-
metric Langevin-Kolmogorov process whose Hamiltonian is given by the confinement potential V. More precisely, in this
case:

N
EW:H[-I(x]+Zwk, Hw =H[-|la] and Iy =I[-|a]. (3.14)
k=2
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On the long-time behavior of the McKean-Vlasov PDE 3 MEAN-FIELD SYSTEMS AND ASSUMPTIONS

Kinetic case. Set

12 N
2:= (X1yeeey Xy U1, -nny Up) €RZM, HE(2) = 5 2 v +2Vip+n ) U, (W®) (3.15)

j=1 k=2

and Z":=x™mL . xmen oyl vty e (R x RY)™ such that

(3.16)

dX"' =v, HA(Z"dt
v} = -(V HEZD + Y, HE (2Dt + V2dB,.

We are going to study the long-time behavior of the mean-field limit of the Langevin process (Z!);o of Hamiltonian
H%(x, v) :=S1,,(x) +S2,,(v) with Sy ; is none other than the Hamiltonian H,, of the McKean-Vlasov case and Sy, the
velocity part (S, := HS — Sy ,,). Invariant measure of the Langevin process is given by

1 1 1
uy (dxdv) = —e M@ gyxdy = — e S gy~ p=S2nW) gy, - W1, ® Uo,n(dxdv). (3.17)
C 1,n Cz,n
And the parabolic PDE in the sense of the distributions associated with this Kolmogorov-Fokker-Planck SDE is:

O =Ayu+VSy ;- Vyu—=VS1 - Vyu+VSy - Vxu=Appu+v-Vyu=VSy - Vypu+v-Vip = *fg,n“ (3.18)
with

L7n=0Ny—v-Vy,+VSy - Vy—v-Vy 3.19)

the generator of the strongly continuous semigroup (P%‘(")),BO (if the hessian VZSL,, is bounded, it is a Markovian semi-

group defined by the Kolmogorov-Fokker-Planck SDE) and we note $ZT ,, adjoint in the sense of distributions. In other

words, for any test function ¢ € €5° (R4 x RH)™), the function (¢,z) — P%’(")(p(z) is the unique solution of the Cauchy
problem:

dh _ OMr _ cptf
or =ZLznhy _J5E =Ly b (3.20)
h(o,')Z(p. |J.0=6z.
Vlasov Fokker Planck free energy and associated mean field entropy are given by
&yl :=Hlp|dxdv] + lf [V u(dxdv) + i W(k)dp®k+fV(x)p(dxdv) (3.21)
2 Jpd xpd =2 J R xRk
N
=Hlpla® A (0,1d,)] + f w® gk
o d kgz S 1
and
F =& -Inf& =& - &[uZ). (3.22)

They are Lyapunov functionals for the Viasov-Fokker-Planck partial differential equation whose solutions are obtained
as mean-field limits of our kinetic Fokker-Planck particle system given by Eq. (3.16). Mean Field Fisher Information for

Vlasov-Fokker-Planck is given by (A = (Igd) € .ﬂzd,d(R))

5 2
\Y% s » Ay . 2
Sm x,uaméo(}.l x v)||AA*p(dxdv) (3.23)

5 5
J[p]:=f<vx’y—é"(p,x, D), AN V== (%, u)>p(dxdu)=ﬂ

The functional obtained by replacing A by Z := (zligd) € M>q,4[R), we will talk about auxiliary Fisher information. We
21dg
have
d d
W = s = -y <0, (3.24)

3.2 Our Assumptions

Assumption 3.3 (HMV). We put the following hypotheses on the potentials which will ensure properties of existence,
uniqueness and contraction:

> (H1)(Hessian) The hessian of the confinement potential V is bounded from below and the hessians of the interaction
potentials W(k), k=2,...,N, are bounded.

Univ Angers, CNRS, LAREMA, SFR MATHSTIC, 10 Mohamed Alfaki AG ABOUBACRINE ASSADECK
F-49000 Angers, France


http://www.univ-angers.fr/
https://www.cnrs.fr/fr
http://recherche.math.univ-angers.fr/
https://sfrmathstic.univ-angers.fr/fr/index.html
https://www.angers.fr/
https://mon-portfolio-de-chercheur.webnode.fr/
https://orcid.org/0000-0002-3281-1954

On the long-time behavior of the McKean-Vlasov PDE 3 MEAN-FIELD SYSTEMS AND ASSUMPTIONS

> (H2)(Lyapunov) There are two positive constants ¢; and ¢, such that
Vx(—:[Rd, x-VV(x) = Cl|x|2—62. (3.25)

This hypothesis is a Lyapunov condition.

Remark 3.4. Since the Hessian V2V of V is bounded from below and V satisfies a Lyapunov condition (H2), a o e~
satisfies a logarithmic Sobolev inequality (see e.g. [27, 28]).
> (H3) Forall ke {2,...,N},
0, ()—yk ‘
YA >0, f MOV gy ¢ 0o (3.26)

Remark 3.5. This assumption is trivially satisfied if the W% are bounded from below. If (H2) holds, it is also always
true if W~ (x,..., xp) = o(Zj?zl 1) as [x1[%+...+|x|* — +oo (since (H2) involves that iminf|y— o0 V() /|x]* >
0).

> (H4)(Logsob) The invariant measure |, of the system satisfies a logarithmic Sobolev inequality such that

limsupprs(py,) > 0. (3.27)

n—+oo

> (H5)(Contraction) There exists a distance dr;, on a subset Z of 22 (RY) such that (22, (RY), #5) continuously injects
into (Z,dy;p) and ®:p e Z — @(W)(dx) := i(%(”'”*vmdx € Z satisfies

3ke©1 VuveZ, dup@,dMV) < kdiip(, V). (3.28)

In others terms, @ is k-Lipschitz (contraction) for di;p.

Remark 3.6. The two above assumptions are not easy to check in practice. In §4.3, we thus provide several many-
body interaction examples where these conditions apply. Nevertheless, let us give some first comments below

> About (H4): (H4) can be certainly satisfies under Bakry-Emery criterion (see Proposition 4.6). There also
exist some specific conditions called Zegarlinski conditions (see [45],[98],[99]): we recall Zegarlinski conditions
refer to specific conditions on the Hessian of the interaction potential, which are then used (together with other
conditions) to prove a uniform logarithmic Sobolev inequality. Finally, let us note that as p, is a Gibbs measure
with respect to «®” and its Hamiltonian is Hy,, := nZIIjZZUn(W(k)), if this Hamiltonian has bounded oscillations
(osc(Hg, ) := supHg,; —infHg , < +00) uniformly in 7, then we can show that by property of tensorization and
stability by bounded perturbation, we have (H4) seen that according to Royer’s book [85, Proposition 3.1.18],
o1s (1n) = prs () e®tHan) - In Proposition 4.6, our examples will be yet built with the help of the simpler Bakry-
Emery condition. In Proposition 4.9, we provide another class of examples which do not require Bakry-Emery
condition.

> About (H5): As concerns (H5), we also give some explicit conditions in Proposition 4.6 and Proposition 4.9
with Z = 2,(R%) and dy; p = #1. (H5) ensures uniqueness of the fixed point (invariant measure of the McKean-
Vlasov process): in statistical physics, we say that we have no phase transition. This is the crucial point for the
proof: Hy = H[-|®(-)] (which justifies the name mean field entropy). The contractivity assumptions in Eq. (3.28) can
follow from Eberle conditions (lipschitzian spectral gap condition for one particle): see [45]. To obtain uniqueness,
some authors also require displacement-convexity (see e.g. [80],[24]): assuming that the functional G in VoG : p —
UTZH[MIO(] +G(p) is displacement-convex. And as the relative entropy is strictly displacement-convex, Vo0 is also
strictly displacement-convex, which implies the existence of an entropy minimizer ensuring its uniqueness.

Assumption 3.7 (VFP). In this case, all the conditions stated in HMV3.3 are assumed, together with the two following
additional ones
> VFPI1. Lipschitz interactions:
Vke{2,3,...,N} FK>0, [[vwP| <K (3.29)
> VFP2. Lyapunov condition on confinement:

IV3Vllop < K1|VV]+Ko. (3.30)

Remark 3.8. Either of these conditions ensures that the kinetic Fokker-Planck semigroup converges exponentially
(as a family of operators of 7 (u7) indexed by time ) towards p/ and uniformly in the number of particles (see
[44] or [93]).
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4 Main Theorems

4.1 First-order case

Under HMV3.3, we establish (see §6 for the proof) the following two main results (thus generalizing those of [45]). Let
(Kp) r=0 (given by the arrow (1) in Fig. 1) be the flow of solution distributions of the McKean-Vlasov equation associated
with the particle system defined by the U—statistic and the confinement potential. Then for any initial condition admitting
a moment of order 2, the mean field entropy Hy decreases exponentially along the flow, i.e.:

Theorem 4.1 (Exponential decreasing of mean-field entropy). Assume HMV3.3 and let py € Mlz (R%) be an initial condi-
tion. Then ,
Vt=0, Hwlp,] <Hwlpgle P52, (4.1

From the exponential decrease of the mean field entropy along the flow, we deduce the following exponential convergence
in Wassertein metric:

Theorem 4.2 (Exponential convergence in Wasserstein metric from flow to equilibrium). Assume HMV3.3 give us an
initial condition pg € Mlz (RY). Then

2
VE20, #5(Me Hoo) < —~Hy[pole P52, 4.2)
PLs

4.2 Kinetic case

For kinetic type models, the extension of the above results relies on applications of hypocoercivity arguments (see e.g.
[44] or [93] for background). In this setting, we first obtain an exponential decrease in ||| - ||| .1 norm (defined in §2).

Theorem 4.3 (Uniform exponential convergence to equilibrium in the weighted Sobolev space). Assume VFP3.7 and give
us an initial condition L € Jllz (R? x RY). Then

<ae P (4.3)

Z,(n)
>0 IP>0 vnz2, ||[PF" - -

Remark 4.4. We still have Theorem 4.3 if we replace the uniform logarithmic Sobolev inequality given in HMV3.3 by a
uniform Poincaré inequality. We keep the logarithmic Sobolev inequality to have the following Theorem 4.5. Note that
the constants o > 0 and > 0 can be made explicit uniform. The originality of the proof relies on functional inequalities
and hypocoercivity with Lyapunov type conditions, usually not suitable to provide adimensional results.

Theorem 4.5 (Exponential decay in Wasserstein metric). Under VFP3.7, there are constants C> 0, > 0 and x > 0 such
that Ve 2R xRY), Yn=2and Vt >0,

H[p2 (0|21 < CH[pS (0)|pgle ™™, 4.4)
w2 (WP W) < kCH e, 4.5)

where L is the initial condition and & (defined in Eq. (3.22)) is the mean-field entropy associated with our second order
system given by Eq. (3.16).

4.3 Examples

Let us begin with a result which provides some explicit conditions on V and the W under which our results apply. We
only focus on HMV3.3 but the extension to VFP3.7 only requires to add the constraints on VW® and V2V introduced in
VFP1 and VFP2. We will use the notation A for the lowest eigenvalue of a symmetric matrix.

Proposition 4.6. Assume that (H1) holds, that W® ™ (xy,..., x;) = o(Z§:1V(xj)) as |x11% +... +|xx|?> = +oo and that the
following assumption is fulfilled:

N
A> Y k= DIVEL,W gp00 (4.6)
k=2

where V2, W® lop oo = SUP ey V2, WW® |l op and
N
A= xigqet;i AVZV(X) ’ ye(niqalr},)fkfl kg'z kAv%lw(k) C20
Then, HMV 3.3 is true.
Proof. The proof of this result is achieved in §6. O

Below, we apply the above proposition to a nuclear physical model: the Skyrme model.
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(x) Regularized Skyrme model

One of the main areas of research in nuclear physics is the study of nuclei under extreme conditions in spin and isospin.
Microscopic methods of mean field type, including the Hartree-Fock method based on the independent particle approxi-
mation, are one of the most efficient tools for theoretical predictions in this field. Representing the interactions between
nucleons in the nucleus, the effective forces nucleon-nucleon are the main ingredient of these self-consistent microscopic
theories. The Skyrme interaction is a zero-range force allowing to construct the mean field in a relatively simple manner:
effective phenomenological interaction of zero range which allows the interactions between nucleons in the nucleus to be
modeled in a simple manner. Proposed by Skyrme ([87]), this force is limited to the sum of interactions between two and
three nucleons. The interaction potential is given by

—

F = (Z)UH(W(Z))+ (Z)Un(WB)) 4.7)

with W® a potential causing two particles to interact and W a potential causing three particles to interact. In this

model, the potentials are functions of Dirac distributions: therefore singular. We will regularize the problem by replacing
L2

the Dirac distributions with a smooth approximation: setting G, := —L— e 207, ¢ > 0, we consider the particle system
(2no?)2
dx® = v2aB\” - vHY x{™)d1 (4.8)
where

6

— B (1. .
(n-1)mn-2) l<i Z w (Xz,x],xk), (4.9)

<j<ksn

n
2
HEP(x)::ZV(xj)Jr—l Y W@(x,x)) +
j=1

j ~ Ll<i<js<n

with W@ (x, ) = Gy (x — y) and WP (x, , 2) = G (x = 1) Gg (X — 2)Go (y — 2).

d

. ) ) . o Coing . _d
Proposition 4.7. Assume that V is a €>-function. Then, if inf  ga Ayoyiy > €10 2=d 4 0,723 with ¢y =4 x (2n1)" 2 and

e =12(1+4e 1) x (211)’%, the regularized Skyrme model satisfies HMV 3.3. If furthermore, VFP2 holds true for V, then,
VFP3.7 is also satisfied.

Remark 4.8. As expected, these conditions become more and more stringent when o goes to 0. Thus, considering the
long-time behavior of such models with singular kernels would probably require to develop specific techniques.

Proof. Since W® and W® are bounded, it is enough to check Assumption (4.6) of Proposition 4.6. First, VG (x) =
—072Gg(x)x and V?Gy(x) = 072 (07 2x ® x — 14) G (X). Using that for all x, x ® x is a nonnegative symmetric matrix with
x® x < |x|?l,, it follows that

1 1 1
i<~ Gl < V2Gy (x) < FG(,(x)(|x|2 - oz)ud. (4.10)
2n)z20
We deduce that )
Avz wo x,y) = Avegy -y =~ d

11 2 o (2m) 2 O—2+d
and that

1V, W@ (x, 1) lop,co < ————-

12 o0 (ZT[)%O'Z"'d

Using that

V2 (Go(x = 1)Go (x = 2) = V2Gg (x = 1) G (x = 2) + VEGo (X = 2)Gg (X = J) + Uy 2 ® Uy, y + U,y ® U 2,
with uy,y = VGg (x — y), one also deduces that

2(1+2e7 1

3d ’
@n)z2 0-2+3d

2/1Go 5,

———2--20"Y|GglloolX = yI.1x = 2IGg (x — y)Go (x — 2) = —
(27[)70-2+d

>
Av%lw(S) x,3,2) =

where we used that sup,,cpa %Go(u) < V2e7!Gg |l co- Finally, one similarly obtains that

2 r(3) -2 -1 3 1+6e”!
||V12W (x;yyz)”op,ooso- (1+6e )IIGolloo= T ed . .-
@2n) 2 O—2+3d
Plugging these estimates into Assumption (4.6) yields the result. O
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On the long-time behavior of the McKean-Vlasov PDE 4 MAIN THEOREMS

(*xx) Elementary Symmetric Polynomial Interaction Model (ESPIM): p € 2g(R%) — P((u,G))
with P € R[X]

Let us finish this section with a class of examples with polynomial interaction inspired by elementary symmetric poly-
nomials (ESP). Note that this class will not require Bakry-Emery criterion. The polynomial interaction is built though
the €¢2-potential G:R? — R: for N>2, k€ {2,3,...,N} and j € {1,..., k}, let GV : (R?)*¥ — R be the following symmetric
function

GV, = Y ]G0 with @(j)i={lc(l,..., k), card®=j} (4.11)
I (j) iel

and assume that W0 € Vectr{GW, .. .,G(k)}, 1.€.

(k) — ) () (k) (k) k
w j;ﬁ GV with  (B}"”,...,B,") € R". (4.12)
Note that ‘
GV (x1,..., 1) =P (G(x1), ..., G(xp)) (4.13)

where P; denotes the j" ESP defined by

Pi(y1,...,yx) = Z Hy,-. 4.14)

IcP.(j) i€l

The homogeneous polynomial H : 22(R%) — R associated with the McKean-Vlasov equation is defined by
N
H(p) =dep.+ Y [ wPapek, (4.15)
k=2

By symmetry and the Fubini-Tonelli-Lebesgue Theorem,

k . k
fw(k)dp@ak _ Z ﬁ;k)fG(])dHoak _ Z ﬁg_k) Z [1GG) [Tutdx) = 5(1@( ) dep , (4.16)
j=1 j=1 e (j)Y iel iel

and hence,

H(uw) :dep+ y Zﬁ(")( .)([de)j =dep+Q(dep) @.17)

k=2j=1

with Q:= Z Zﬁ“‘) X/ € Ry [X].
J

k=2j=1

Since H: p— [Vdu+QoT(p) with T: p— [ Gdp, we have

8—H(p,x):V(x)+Q’(/de)G(x) with Q' := szs(k) X971 e Ry_1 [X; (4.18)
om k=2 j=1
v, :VV+Q’(dep)VG:>V26—(p B :V2V+Q'(dep)V2G (4.19)
dm™"’ dm "’ ' ’
Furthermore, we have
sup Q’(dep)( ZZ]I&““)I IGIES " =:vi; (4.20)
HEZG(RY) k=2 j=1
sup "(dep)| ZZ](J 1)|E>”“)I G2 =t Y. 421
HEPG[RY) k=2j=1

Proposition 4.9. Assume that G, VG and V2G are bounded. As ||Gllo < +00, we have foralli=1,2, y; < +oo and
P RY c ZoRY) = {ue PRY), Gell'(w}=22RY.

Let us further assume that

> the confinement potential V satisfies (H1) and (H2);
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On the long-time behavior of the McKean-Vlasov PDE 5 SKETCH OF PROOFS AND PRELIMINARIES

* . s Y2 2
\* o= inf (Avevin + Yohvege) >0 and FIVGIE, <1,

with Y3 :=inf e g, ga) Q'(/ GAW  (lysl<y1).
Then, ESPIM satisfies HMV3.3. If furthermore, VEP2 holds true for V, then, VFP3.7 is also satisfied.

Proof. The proof of this result is achieved in §6. O

Remark 4.10. If V? g—g (4,) = pId with p > 0, by the Bakry-Emery curvature criterion, ®(u)(dx) = Z—Le_g%(“’X) dx satisfies
a uniform logarithmic Sobolev inequality in the measure, which implies a uniform logarithmic Sobolev inequality in the
number of particles for the invariant measurement of our mean field system.

5 Sketch of proofs and preliminaries

5.1 Sketch of proofs

Ergodicity
Functional inequality
n—o0, [—o00
(4)
e, O
in d-metric
exponentially
Propagation of chaos Sanov’s Theorem and
n—oa, ffixed & 3) uniqueness of O,
I —o0, H—o00
@nplin)y(i) (), (1)
['.l HI)lr J i pm
in d-metric

exponentially
G:HPIHJ P[m
I o0
2)

u

Ergodicity
Functional inequality
nfixed, r—o0

Figure 1: Diagram of convergences

First order case. The diagram given in Fig. 1 summarizes the strategy of proof: we show (4) from (1) , (2) and (3). And
in this diagram, the quantities involved are:

> p.®”P§”) = 1, (1) the law at time ¢ of the particle system induced by the confinement potential and the U—statistics;

> p(,f)(t) the i—th marginal of u,(#);
> pé.’f) = U, the invariant measure of the particle system;
> pg) the i—th marginal of y,;
> O; =, the law at time ¢ of the McKean-Vlasov process obtained by propagation of chaos;
> Ou = oo the invariant measure of the McKean-Vlasov process;
> d="%5.
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On the long-time behavior of the McKean-Vlasov PDE 5 SKETCH OF PROOFS AND PRELIMINARIES

Arrow (1). The McKean-Vlasov process classically appears as the mean-field limit of a particle system. This property is
recalled and studied, among others, in [29]. In our case, see Theorem 5.3.

Arrow (2). The process X" is a homogeneous diffusion process of the Langevin-Kolmogorov type which is a class of
Markov processes. In the literature, the long-time behavior for this class is classically studied (see e.g. [5, [4]]). In order
to ensure this property (see §5.2.Theorem 5.19), exponentially in time and uniformly in number of particle n, we rely on
(H4) in HMV3.3 and the equivalence between Sobolev’s inequality, exponential decay of entropy and Talagrand’s second
inequality for Gibbs measures.

Arrow (3). This arrow is ensured by (H1), (H2) and (H3) in HMV3.3 which allow us to obtain large deviations principle
and Sanov-type theorem (see §5.2.Theorem 5.11.Proposition 5.13).

Arrow (4). To establish this last arrow, we will use the fact that the nonlinear Sobolev inequality (pLsHw < 2Iw) given
in §5.2.Theorem 5.19 is also equivalent to the exponential decrease of the mean field entropy Hyw along the flow (17) >0
of the McKean-Vlasov distributions and to the second nonlinear Talagrand inequality (prs 71/22(-, Hoo) < 2Hyw). Note that
Talagrand inequalities allow to recover usual Wasserstein convergence (and then convergence in law) from entropic con-
vergence. Note that concentration inequalities could also stem from Talagrand inequalities, although the stronger Loga-
rithmic Sobolev inequality is more often used in this context.

Remark 5.1. The exponential convergence in entropy (given in Theorem 4.1) should be equivalent to the mean field
log-Sobolev inequality prsHw < 2Ly (in Theorem 5.19), basing on (gradient flow and Gronwall lemma)

d d 1 ot
~ - Hyld = Iwl] = — Hy () < ~SprsHwli] = Hylu < Hy [pole P52 (5.1)

noted by Carrillo-McCann-Villani in their convex framework. The proof of —%Hw[p 1] =Iwlus] demands the regularity
of t— p; (Fig. 1) which requires the PDE theory of the McKean-Vlasov equation. That is why we prefer to give
a rigorously probabilistic proof based directly on the log-Sobolev inequality of W, (Fig. 1) in HMV3.3.(H4). As for
Theorem 4.2 on exponential decay in Wasserstein metric, it follows from the previous one (Theorem 4.1) via Talagrand’s
T2-inequality.

Second order case. The proof in this case, can also be described by the diagram given in Fig. 1 but with the following
notations:

> p.®”P;”) = p(2) the law at time ¢ of the kinetic particle system induced by the confinement potential and the
U —statistics;
enp(n)y (i) —. (1) : . N
> (UE7PY)Y =, (1) the i—th marginal of py (2);
> pé’,f) =y the invariant measure of the particle system;

> pg‘m the i—th marginal of pJ;

> O = pyFP the law at time ¢ of the Vlasov-Fokker-Planck process obtained by propagation of chaos;
> O = pZ, the invariant measure of the Vlasov-Fokker-Planck process;

> d=|ll-—lllg g ord="%s.

Arrow (1). We first recall the generator £y, ,, defined (in Hormander form) by Eq. (5.88) is a non-symmetric hypoelliptic
operator (see Remark 5.20). The related n-particle system given by Eq. (3.16) converges to the Vlasov-Fokker-Planck
equation (mean-field limit of Eq. (3.16)) when n — +oo (see Theorem 5.3).

Arrow (2). The process Z is a homogeneous diffusion process of the Langevin type usually called kinetic Fokker-Planck
process. The study of the long-time behavior of the particle system requires the help of hypocoercivity tools (see e.g. [44]
and [93]). We recall that

N
VxeR™, Sy ,0:=Y V) +n) U,wWr) (5.2)
k=2

In particular, 3.7 ensures the following Poincaré and log-Sobolev inequalities

> UPIL We say that y; , satisfies a uniform Poincaré inequality if
IS0 Vn=2 YeeEPRM), AV, el <Ey, (IVe@l?]. (5.3)
> ULSI. We say that y,,, satisfies a uniform logarithmic Sobolev inequality if

>0 Vn=2 VYeeEPR™), pEnty,,[¢°] <Ey, V.ol (5.4)
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On the long-time behavior of the McKean-Vlasov PDE 5 SKETCH OF PROOFS AND PRELIMINARIES

Under (UPI), we are able to obtain as an application of Villani’s theorem the following exponential rate to equilibrium

< (Xe_ﬁ[ (55)

7 _ n
vazz [[leE -l

with constants a > 0 and > 0 make explicit uniform. The idea in Villani’s proof of [44, Theorem.3] is as follows: if
one could find a Hilbert space such that the operator £, is coercive with respect to its norm, then one has exponential
convergence for the semigroup (P%'(”)) =0 under such a norm. If, in addition, this norm is equivalent to some usual norm
(such as Jé’l(pg)—norm), then one obtains exponential convergence under the usual norm as well. In his statement of
[93, Theorem.35], the boundedness condition is verified by IIVZSL,,IIOp < C(1 +1IVSy,nl]) with a constant M depending
unfortunately on the dimension. The L? and H! norms are not suitable to obtain a result on the non-linear system (such
as Eq. (4.4) and Eq. (4.5)). On the other hand, thanks to (ULSI) playing a fundamental role in the exponential return in
Wasserstein metric (see e.g. [76, Theorem.7] or [77, Theorem.10]), we are able to prove Eq. (4.4) which in turn will allow
us to deduce Eq. (4.5).

Arrow (3). The results of large deviations on the U—statistics in the non-kinetic case in §5.2 and the fact that pj =
H1,n @ Ha,, allow to deduce that the random empire measurements of the kinetic particle system satisfy the principle of
large deviations under py; of good rate function defined by

V(i 1) € 2 (RY) x P, (RY), Ty, W) := Hw (o] + Hipy A (0,1d)]. (5.6)

Thus there exists by inf-compactness a Maxwellian to the nonlinear Vlasov-Fokker-Planck equation and this equilib-
rium (invariant measure of the nonlinear Vlasov-Fokker-Planck process) is unique. See §5.2.Theorem 5.11.Proposi-
tion 5.13.Proposition 5.14.Appendix A.4.

Arrow (4). This part is obtained by the first-order case by exploiting the uniform logarithmic Sobolev inequality and the

Hormander form given by Eq. (5.88) (see §5.2).

Remark 5.2. By applying hypocoercivity tools to the system with n particles given by Eq. (3.16), we obtain a (uniform in
n) convergence rate to equilibrium which in turn extends to the limiting non linear system.

5.2 Preliminaries

Propagation of chaos for polynomial interacting particle systems. Below, we recall or extend some conditions on the
interaction potentials which guarantee the propagation of chaos for some particle systems with polynomial interaction.
Even if our proof only requires such properties in finite horizon, we also provide some properties which lead to propaga-
tion of chaos uniform in time.

To this end, we use the classical (synchrounous) coupling strategy: let (X("""))Z=1 denote the particle system and (X(”))Z=1
denote n copies of the limiting Mc-Kean-Vlasov process built with the same Brownian motions than in the particle system.
Assume that all the paths have the same initial condition Xy ~ po. Then, the following proposition holds:

Theorem 5.3 (Chaos propagation in Wasserstein #5 metric). Assume that V and the WX are 6% and that I € R Vk €
2,...,N} 3L eR V(x,y) e R? x R?

(VW (x) - VV (1), x—y) = —Bllx—yl% (5.7)
(Ve WO, ) =V WO (3,), x = ) = —Billx -yl (5.8)
Then, for every T > 0, a constant Kt exists such that for every |y € P, ([Rd),
m1_ 2 _ Kr
sup EIX;"" -X;’|°<s —. 5.9)
0<t<T n
Furthermore, if v :=0+ Zl}j:z kBx <0, the upper bound is uniform in time, i.e.,
m1_ w2 _ Keo
supE[X;""" —X,"|* < —,K < +oo0. (5.10)
=0 n
The constants are specified in the proof.

Proof. See Appendix A.1 O

Remark 5.4. 1> For the sake of simplicity, we only provided the result for the classical McKean-Vlasov process. The
extension of the result in finite horizon easily extends to the kinetic setting as soon as (H1).
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On the long-time behavior of the McKean-Vlasov PDE 5 SKETCH OF PROOFS AND PRELIMINARIES

> As mentioned before, the statement also leads to uniform in time propagation of chaos but it certainly requires that the
function V plays a confinement role which is characterized by the fact that w is assumed to be negative.

> If for all k€ {2,...,N}, vle“C’ is just uniformly bounded and uniformly Lipschitzian in the first coordinate, then it
does not necessarily satisfy the conditions of the Theorem 5.3 but if the confinement potentiel V satisfies them, we still
have the conclusions at least in a short time: for all (x, y) € RY x R? and p € Z2[R%),

x-VV(x) = (=B = [VV(0) ) |x[* = [VV(0)|; (5.11)

(Ve W, ) =V W (3,1, x = 1) < IV WP (,) =V, WO (3, - 1x = (5.12)
< [ = Vi W (g, )T = y1%

x'VS—E(p,x) =x-VV(x)+ Iikx-vxlw(k) * n® 1 (x) (5.13)

N
= (=B = [VVODIxI? = [VV©O)| - x| Y klx; — WP (x1,]
k=2

N
> (=B 19VO) - [9VO)I - Y. klxy —W® (xr, )l P

k=2
N
— WO - Y klx —W® ).
k=2

And this last inequality comes from a disjunction of cases depending on whether the vector is on the unit ball or not.

Back to U-statistics. The results on the U—statistics (5.5,5.6,5.7,5.8) and the inf-compactness of the entropy functional
Hw (5.9,5.11,5.13) are inspired by [65] in the case S = R%. We recall that the expectation of W® under p®k exists if and
only if

E, o W®* < 400 or E, o W®=] < +oo. (5.14)
First we present the law of large numbers of the U—statistic (see [[60], Corollary 3.1.1] or [[65], Lemma 3.1]). We recall
that U-statistics are defined in Eq. (1.19).

Proposition 5.5 (law of large numbers for U—statistics). Let (X;)ns>1 be a sequence of independent and identically dis-
tributed random variables with values in a measurable space (E, %8(E)) equipped with its Borelian tribe and ® : E¥ — R
a symmetric measurable function such that

n—+o0o

E[l®Xy,...,Xp)ll <+oo, then Upy(®) — E[®(Xy,...,Xg)] with probability 1. (5.15)
Proof. See Appendix A.6 or [65]. O
In terms of integrals, this result means that for any function ® € #, sym (Ek ,R) with EF provided with the tensor tribe (or
product) and any measure p € 2 (E) such that ® € L' (u®*), we almost surely have

U, (@) "==7F @ (@] := fEkq>(x) n®*dx). (5.16)

This result can also be seen as a law of large numbers for U—statistics. From this result, we deduce that Vk € {2,...,N}, if
W e L1 (u®¥), then we almost surely have U, (W) tends to WX [1]. We first recall the decoupling inequality of Victor
H. De La Pena (see [[30], 1992)).

Proposition 5.6 (Decoupling and Khintchine inequalities for U—statistics). Let (X,) =1 be a sequence of random vari-
ables with values in a measurable space (E,B(E)), independent and identically distributed. We assume that

&I, XD ek (5.17)

.....

are k independent copies of (Xq,...,X,). Then for all increasing convex functions ¥ : [0,+00) — R and measurable
symmetric ®: EF — R such that E[|l®Xy,...,X)|] < 400, we have

e ¥ e, xp|)| <E[e(c] ¥ ecd,..xb|)] (5.18)
(i1,ip)elk (i1, ig)elk
with .
Cp:=8 and Vk=3, Cp:=2F]](/-D. (5.19)
j=2
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<I< <

Proposition 5.7. Let 1 < k < n, (X{ Ji<isn,1<j<k be independent random variables with values in (E,%(E)). For all

.....

1 el k n—-k+1 1 el k
log[E[eXp(@ iezllrclq)l(xil,“”xik))] < Wiezlslog[E[eXp(m@l(xil,...,xik))]. (520)
Proof. See Appendix A.6 or [65]. O

Proposition 5.8 (Decoupling corollary). For (X;);>1 a sequence of independent and identically distributed random vari-
ables according to o, we denote A, (-, W®) the log-Laplace transformation associated with the U—statistic of order k,
i.e. to within a factor, the logarithm of the moment generating function, namely

1
Vnzk=2, VA>0, A,AW®H):= ;log[E[e”)‘U”(W(k))]. (5.21)
IFW® e L1(a®F), then
1
An A, WE) < %log[E[eXp (kaMW”‘) (xl,...,xk)|]]. (5.22)
Proof. See Appendix A.6 or [65]. O

Large deviations: inf-compactness of mean-field entropy and existence of an equilibrium point. We will use a large
deviations result ensuring the infcompactness of the entropy functional to show the existence of an invariant measure for
the nonlinear process studied.

Proposition 5.9 (Lower bound of large deviations for L,, under p},). Under the integrability assumptions on the interaction
potentials (W(k))ggksN, we have the lower bound of large deviations for {l1},(L,, € )} =N, i.e.

1
VO c 4 RY) open, 1*(0):= 1ri£1+igof; log(u}, (L, €6)) (5.23)
;—inf{EW[p]) neo, vz<ks<N, wher'q®hl

In particular, we have

o1 .
1}531%{; 10g(Zn) log(C)} > —mf{Ew[p]| weh®RY), v2<k<N, wW®er! (p.®k)}. (5.24)
Proof. See Appendix A.6 or [65]. O

Proposition 5.10 (Exponential approximation of the U—statistic). Assuming that for all A >0,
ElexpA\W®|(X;,...,X0)] < +0o, (5.25)

then there exists a sequence (W ﬁ,’f))mzl of bounded continuous functions such that

1
¥6>0, lim limsup; logP(U,W*) —u, Wwk)| > §) = —cc. (5.26)

M—=+00 p— 400

Proof. See Appendix A.6 or [65]. O

Theorem 5.11 (Large deviations principle for U—statistics). Let (X;)i»1 be a sequence of independent and identically
distributed random variables with distribution a. We assume that we have exponential integrability of the interaction
potentials under the tensor products of a by itself, i.e.

Vke(2,...,N}, VA>0, ([E[e“w‘“(xl ----- Xk”] < +o0 = W] (0(®k)). (5.27)

Then
{P((Ln,Un(W(Z)),...,Un(W(N))) € )} (5.28)

nz

satisfies a large deviations principle on the product space 4, ([R%) x RN"! and good rate function given by

Hiplod, if Yk, xp=W®[y],

. (5.29)
+00 otherwise.

Iy (Y, x2,..., XN) :={

Univ Angers, CNRS, LAREMA, SFR MATHSTIC, 19 Mohamed Alfaki AG ABOUBACRINE ASSADECK
F-49000 Angers, France


http://www.univ-angers.fr/
https://www.cnrs.fr/fr
http://recherche.math.univ-angers.fr/
https://sfrmathstic.univ-angers.fr/fr/index.html
https://www.angers.fr/
https://mon-portfolio-de-chercheur.webnode.fr/
https://orcid.org/0000-0002-3281-1954

On the long-time behavior of the McKean-Vlasov PDE 5 SKETCH OF PROOFS AND PRELIMINARIES

Proof. Let (W, ,(ff))mal be the sequence of bounded continuous functions of the proof of Proposition 5.10 (see Appendix A.6)
such that for all A >0,

e\, m, k) :=log f MWW o @k M=o (5.30)
Rk
For all m =1, we set
Fr 2= (W, W), F0 = (W, W ). (5.31)
We consider the following metric on the product space
N
d((u,xz,...,xN), v, y2, ....yN)) =dip (V) + ) xk— yil = dip (0, V) + 1x =y, (5.32)
k=2
and note that N
d(fm (W, fW) =Y. (f Wk _wk)y g, ®k| (5.33)
k=2' JRHE

The sequel of the proof is divided in three steps.

Step 1: Continuity of f,,. For this step, it suffices to show that for all k€ {2,...,N}, p € .4, (RY) — WEI,? [u] is continuous

for the convergence topology weak. Let p, nZEe W in (4, (R%),dyp) . By the Skorokhod representation theorem, there
exists a sequence (Y;), of random variables with values in R? such that Y, ~ M and almost surely, Y, TRy~ M.

Let (Y, n>0,Y®);;<k be independent copies of (Y, n=>0,Y). We have for all i, almost surely, Y "==°Y®  which
n—+oo

implies that almost surely, (Y(,...,Y%) W, ...,Y®). In particular, p®* tends weakly to p®¥, which proves the

continuity of the above functional.

Step 2: Good exponential approximation of (L,,U,(W?),...,U,(W®™N)) by f,,(L,). By exponential approximation of
the U —statistic, we have for all 6 >0,

1
lim_limsup —10gP(d((Ln, Un(W®),...,UpW ™)), (L, Un(W), ..., U (W) > 8) = —00,

M=+ p—+tco N

i.e. (Ln,Un(W%), ...,Un(WS:D)) is a good exponential approximation of (L, U,( WP, .. U, WNYy)
Moreover, (L,, U,(W®),...,U,(W®™)) and f,,(L,) are exponentially equivalent because we have the following uniform
estimate

I
[SACUE —fw;?dL??k) < (1= =5 (a1 WS o) (5.34)
I -
sz(l- %)nwg’?uw gaiagi}
n

We get that when m — +o00, f;,(Lj,) is a good exponential approximation of (L, U,( WPy U, (WM,

Step 3: LDP. By Sanov theorem and the LDP approximation theorems, to get the desired LDP, it suffices to show that for
allL>o0,
sup  d(fm(), F() "0, (5.35)
W Hiplal<L
Indeed, for all A >0, L >0 and p such that H[p|a] < L, by the variational formula of Donsker-Varadhan and Fatou’s
lemma, we have for all k€ {2...,N},
1

1
f|w§j;) ~wWhgu®F < X(H[p@”‘m@k] +10gf e“Wﬁff)—W(“‘da@k) < —(kL+£()\, m, k)). (5.36)

>

This completes the proof of the theorem because A is arbitrary and for all A >0, €(A, m, k) mZER), O

We are now able to prove the inf-compactness of the mean-field entropy functional.

Proposition 5.12 (Inf-compactness of the mean-field entropy functional). The mean-field entropy functional is inf-
compact.

Proof of Proposition 5.12. We will do the proof in three steps. We recall that if we have a good rate function, then its
infimum on any closed nonempty is reached, that is to say that this infimum is a minimum.
First, Assumption (A1) of [65] is clearly satisfied: taking pu = ha with h continuous with compact support, we deduce
from the local boundedness of W that

H[ula] + [Eu®k[W(k)'+] < +00.
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On the long-time behavior of the McKean-Vlasov PDE 5 SKETCH OF PROOFS AND PRELIMINARIES

Second under (H2), we necessarily have that lim|y|— 400 | |2 > 0. Actually, by (H2) there exists a positive M such that for
every x with |x| >M, x.VV(x) = a le2 Then, for any x with |x| =M, set p = =-. We have

l1-p

1 1
V(x)-Vpx)=>1- p)f VV((1+ul-p))x).xdu= f VW(A+uld-p)x).(1+udl—-p)xx —————du
0 1+ul-p)

cllxl2 1-palx? _ clxl?
>

4

f I+ul-p)-pdu=
as soon as |x| = 2M (since in this case, p = % < %). We deduce that for any p € [1,2) and any A >0,

f M a(dx) < +oo
R4
which corresponds to the second assumption of [65]...

Finally, by (H1) the Hessians of W are bounded so that [W®|(x1,..., x;) < C(Z L 1xi®)+1). This in turns trivially
implies that

®),- () 5k .
feAW @ Z]‘=1V(x])d.7(f< +00.

Step 1: W) bounded from above. In this case, we have for all A >0,
EfeMW?1%0-X0] < oo, (5.37)

In principle, large deviations for the U—statistic, under [P := a®N, (L,, U,(WP), ... U, (WN)Y) satisfies a large deviations
principle on . (R%) x RN~1 of good rate function Iy. As

N
Y U, W®) s continuous in (L, Up(W?),..., U, (W), (5.38)
k=2

Vp>1, limsup— log[E —np X, Un (W)

n—+oo

< +00,

by what precedes and the theorem of R.Ellis, we deduce that pn((Ln,Un(W(z)),...,Un(W(N))) € ) satisfies a large devia-
tions principle with rate function defined by

N N
I(W, x2,..., xN) =Ty (W, x2,..., xNn) + Zxk— inf {IU(p,xz,...,xN)+ Zxk}. (5.39)
k=2 Ho%25eess XN k=2
So
- E —inf, E if H <+oo, VK, =WWR ],
T, %2, XN) = { wlnl =ity Ewnl - if - Hiula] < +oo e [ (5.40)
+00 otherwise.

We conclude by the principle of contraction that pu, (L, € -) satisfies a PGD of rate function Hy . Note in this case that Ey
is inf-compact, so Hy too.

Step 2: General case. In this case, for all L> 0, we set Wﬁk) :=min(W® 1). So

Hiplod + XY, WHE W if Hiplal < +oo,

E = 5.41
wi (] { +00 otherwise. (541)

is inf-compact on .4, (R?%) by step 1. This proves that Hy is also inf -compact by passing to the monotonous limit. For
all closed & < (R%) and L > 0, we have

N
W (L, € F) :fI]LnEgexp( n Z U (W(k)))d(x®" fﬂLnEgexp( ny U,,(W{k’))da@’" (5.42)
k=2
< exp ( - nl}g;EwL (Wl + o(n))

and this last inequality is given by the LDP for the U—statistic and the Varadhan-Laplace lemma. It follows

limsup — logun(Ln eEF)<s — 1nf EWL [u] = limsup —log ppLpeF) < — 1nf Ew[p] (5.43)
n—+oo n—+oo
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On the long-time behavior of the McKean-Vlasov PDE 5 SKETCH OF PROOFS AND PRELIMINARIES

by monotone limit and inf-compactness. In particular, for & = ./ (R%), we deduce that

llmsup{—loan —logC} <- inf Ewl[pl. (5.44)
n—+00 pey (RA)

By the lower bound of the large deviations for L,, under p;, obtained, this upper bound and given that Ew[pu] = +oo if for
ake{2,... N, Wk ¢ Ll(p®k), we derive that

1
li —logZ,-logC{=—- inf E 5.45
rl—l»r-ll:loo{ n Og n Og } HEJIMI}(Rd) W[p] ( )

which is a finite quantity by assumptions and inf-compactness. With this equality, we thus obtain upper and lower bounds
of large deviations for {{, (L, € )}n=N.
O

Proposition 5.13 (Sanov’s theorem for the Wasserstein metric by Wang et.al). Let (X,,) =1 be a sequence of independent
random variables, identically distributed, with values in R% endowed with one of its norms that we will denote || - || and
law o. We have equivalence between the following two assertions

(i) (P(Ly, € ))ns1 satisfies a principle of large deviations on the Wasserstein space (./ﬂlp (Rd),Wp) with speed n and
good rate function H[-|«] .

(ii)
YA>0 xpeRY, f ) MPE=2l” 3 (dx) < +o0. (5.46)
R

Proof. Since we have established a LDP for the random empirical measure L,, under ,, on .4, (R?) equipped with the
topology of weak convergence, it suffices to prove the exponential tension of (i, (L, € )) ;=N On (Mlp R4 ) Wp).

LetKc Mf (R%) be compact and (a, b) € [1,+00]? a pair of conjugate exponents ([—11 + % =1). By Holder’s inequality, we
have

n

C N
ULy ¢ K) = I, ¢k exp( ny U,,(w(k)))da@’" (5.47)
Zy k=2

< ;—n((x@”(Ln ¢ K));(fexp(— nbliUn(W(k)))d(x@")}”.

n

It is deduced that

Zn
limsup — log Mn(L, € K) < — llmsup - log(x®"(Ln ¢ K) —limsup ; log— (5.48)

n—+oo n—+oo n—+oo

1 1
+2limsup— [ exp(-n Z U, W ®))da®".
k=2

n—+oo N

Now the right-hand side of this inequality is upper bounded by

1
—hmsup —loga®”(Ln ¢K)+ inf Ew[pl—— inf Epwlpl, (5.49)
a n—+oo pett R4 b et (RY)

and from the above, infkl€ RY) Ew/[p] and

N
inf  Epwlpl:= inf {H[pla] + Z be(k)dp‘X’k}, are finite quantities. (5.50)
pett; (RY) pe (RY) k=2

Under (H1), (H2) and (H3) in HMV3.3, the LDP holds for L,, under a®” on the Wasserstein space. So, for all L > 0, there
is a compact Ky, c Mlp (Rd) such that

limsup —log(x®"(L ¢ Kp) < —a inf Ew[pul+ a inf  Epwl[pl. (5.51)
n—+00 peth (RY) peth (RY)
It follows that
limsup — log mnLy € Kp) < L. (5.52)
n—+oo
O]
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On the long-time behavior of the McKean-Vlasov PDE 5 SKETCH OF PROOFS AND PRELIMINARIES

Uniqueness of invariant measure. The assumptions on the interaction potentials and the confinement potential ensure
the existence (via the inf-compactness of the entropy functional proven in §5.2 and [65]) of an invariant measure (global
minimum point for the entropy functional) for the McKean-Vlasov process obtained by propagation of chaos. It remains
to prove the uniqueness.

Proposition 5.14 (Fixed point uniqueness). Under (H1), (H2) and (H3) in HMV3.3, there exists o a minimizer of Hy.
We have equivalently

> Critical points of energy: Heo € {V, ?—nvl"(v, ) =0} #@.

> Fixed points: fe €1{v, @(V)=V}+#@.

> Maxwellians: o is also an invariant probability of the McKean-Viasov process: [oo£y,, = 0 or equivalently

Joo = d;—f (existence of density) satisfies
] oH
div{ fooV 5 (oo, )+ V foo) = 0.

The contraction assumption (H5) in HMIV3.3 ensures the uniqueness of poo-
Proof. To do this, we will use the characterization of the local extrema of a differentiable functional in the sense of Fréchet
(flat derivation) on an open set. Let
0= {p. e?RY), Hlplal <+oo, Vk, fw(k)"dp@”‘ < +oo} (5.53)
=H[-|a] ™" (1 - 00, +00D) (¥~ (] — 00, +oo[" ),

with
g — (fw@)v*dp@,...,fwﬂ“v*dp@N). (5.54)

We know that Eyw = +oco over G€. By Fréchet differentiability of the relative entropy H[-|a] and of ¥ on .4, (R%) endowed
with its structure of differential Fréchet manifold, @ is open as an intersection of open sets. We deduce that the local
extrema (here minimum) of Ey are critical points on O, i.e. 1 € @ such that

Zy:= f e~ B OV gy ¢ 4oo, ?—W(p, ) =0 <= u(dx) = Zie_%(“'”_v(")dx. (5.55)
m u

According to the hypothesis (H5) of HMV3.3, we have
dpip(@(W), @(V)) < kdrip(, V), (5.56)

and since there is a fixed point, suppose by absurd that there is more than one, i.e. there is y, iz € @ such that p; # o
and for all i, ®(y;) = y;. It follows that k = 1 which is absurd because k < 1. O

Cesaro tensorial: About entropies and Fisher Informations. We will establish convergences in entropy and Fisher
information which are useful for the proof of the exponential decrease of the mean field entropy and the establishment of
the nonlinear Talagrand inequality.

Proposition 5.15 (H-Tensorization). For any probability measure v on R such that H[v|a] < +oo, we have:

n—+oo

1
;H[v@’”lpn] — Hwl[v], where u, isdefinedin Eg. (3.8). (5.57)

Proof. For y such that p < o and for all k € {2,...,N}, WK~ e L1 (u®%), we have

du®n

1 1 N Z
— n I et (k) Zn
nH[p (W] n[E“®n[d(x®” +nk§ U, W*) +log Cn (5.58)

=2

N
1
=Hlplo]+ )_ fW(k)dp®” + —logZ, -logC.
k=2 n

We recall that a(dx) := £ Zm dx. Under the assumption (H2) in HMV3.3, we know that 3 Ay > 0 such that:

fR ) M o (dx) < +oo. (5.59)
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On the long-time behavior of the McKean-Vlasov PDE 5 SKETCH OF PROOFS AND PRELIMINARIES

By asking:
Toni= f( i e T UnW O gen g dxy), (5.60)
we get: (by Fubini-Tonelli) on ) .
Hp(dx) = Z—ne-"zkzz UnWE) @7 (g x). (5.61)
Letve ./ (R%) be such that H[v|a] < +oo. Since
H[v®¥|a®*] = kH[v]ad, (5.62)
x— eMolx? g1 (o) and
vkel2,..,N} vxeRF wh)<pa+ i l1x;11%) (5.63)
j=1

by boundedness of its hessian VAW ® (hypothesis (H1) in HMV3.3), according to Donsker-Varadhan variational formula
of entropy, we have W® e L1 (v®¥). We have successively: (by a direct calculation and application of the Fubini-Tonelli

theorem)
1 dve" 1 dave®"
H[v®"|u,] = —Ent —:—f 1 av®" 5.64
vl o “”[ duy ®Y" Og( dpy ) Y 669
We deduce that:
1 -
—H[v®"|pn = fZlog (x,) dave" + ZfUn(W(k)dv®”+ﬁlog(Zn) (5.65)
nlililoo%log(zn) = inf Ew[n] (see Theorem 5.11),
ne.t, R%)
1 & dv on _
- f i;log(%(xi))dv =H[v|a] (5.66)
and finally, we also have: (see Proposition 5.5)
Z U, W®)aven = Z wW® (v (dx). (5.67)
k=2
Thereby:
1
;H[Vm’lpn] T Hlv|a] + Z fW(k)(x)v®k(dx) inf Ew[nl = Hy[V]. (5.68)
A (RY)
What needed to be proven. O
Proposition 5.16 (I-Tensorization). If I[v|a] < +oo, we have:
1
TV ] "= T [V, (5.69)

Proof. For any probability measure v on R? such that I[v|a] < +oo, by the Lyapunov condition (H2) in HMV3.3 on the
potential V, we have:

c f |x2dv < ¢ +1[v|a] < +oo. (5.70)

As the second order derivatives of W) are bounded by the condition (H1) in HMV3.3 on its Hessian, V jW(k) has a linear

increase. So V ij(k) € L2(v®F). By the law of large numbers for independent and identically distributed sequences, we
have successively:

- Uiy ®”lunl— ) on (5.71)
_ ave" NI
—nf;) inlog(da®n)+zvinn(W || av
fHVlog 1) + valU (W(k))H dve"
—+400 1 k 2
e fHVlog )(y)+z Z W(k)(xl,...,xj,l,y,xjﬂ,...,xk)v®k_1( I1 dxi)H v(dy)
k=2j=1 i=1,i#]
=TIwlv].
]
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On the long-time behavior of the McKean-Vlasov PDE 5 SKETCH OF PROOFS AND PRELIMINARIES

We recall the tensorisation property of relative entropy: The Proposition 5.17 on entropy and tensor product allows us,
in what follows, to show the exponential decreasing of mean-field entropy along the flow of solution distributions of the
McKean-Vlasov equation associated with the particle system.

Proposition 5.17 (Relative entropy and tensor product). Let Hli\I:l o; and Q respectively be a product probability measure
and a probability measure defined on E; x --- x EN a product of Polish spaces. Denoting Q; the marginal distribution of
x; under Q, we have:

N N
H(QI [T ay] = ) HIQiloy]. (5.72)

i=1 i=1
Proof. See Appendix A.6 or [45]. [

Proposition 5.18 (Relative entropy and Boltzmann measure). Let u be a probability measure on a Polish space E and
U :E — (—o0, +00] be a measurable potential such that:

f e PYdu < +oo (5.73)

S e -U .
for some p > 1. Considering the Boltzmann probability measure py := 4 d\, if for some measure v, H[v|py] < +oo, we
have successively:

(i) H[v|u] < +oo and U € L}(v).
(ii)
H[v|pyl =H[v|p] +fUdv+logf e Vdp. (5.74)
Proof. See Appendix A.6 or [45]. O

Functional and transportation inequalities. Functional inequalities are powerful tools to quantify the trend to equilib-
rium of Markov semigroups and have a wide range of important applications to the concentration of measure phenomenon
and hypercontractivity. ¥n, we recall that p, () :=Po (X!)~! and B, := prs (Hn)-

Theorem 5.19 (Transportation inequalities). Under the assumptions in HMIV3.3, we have

(i)
Hij, (0] < Hipn O)lpnle P2 = Hpn® ", le P2 (5.75)
prs () HE kgl < 210 pyl; (5.76)
PLS ()57 () < 2H[ ). (5.77)

(ii) 3! poo € ./MIZ(I:Rd) such that: (§5.2.Proposition 5.14)

Hoo = argmin{HW[v],v €M (Rd)}, (5.78)
with Hy the mean field entropy.
(iii) prs :=limsup prs(u,) >0 checks:
n—+oo
vves2RY), prsHwlVl<2Iw[vl and prs#42(V, Hoo) < 2Hw(V]. (5.79)

We say that we have a nonlinear log-Sobolev inequality for the first inequality and a Talagrand transport inequality
for the second.

Proof of Theorem 5.19. The logarithmic Sobolev inequality of constant f3,, := prs(it,) for p, given by (H4) in HMV3.3,
the large deviations principle ( Sanov’s theorem) in §5.2 and the uniqueness of the minimum argument (o) in Proposi-
tion 5.14 of the mean field entropy ensure that we have successively:

> Vu such as H[p|a] < 400, (§5.2.Proposition 5.15.Proposition 5.16)

n—+oo n—+oo

1 1
;H[u®”|un1 > °Hylu] and ;I[u@’"mn] 2 hwlul. (5.80)

> Equivalence between Sobolev’s inequality, exponential decay of entropy and Talagrand’s second inequality for
Gibbs measures (Otto-Villani,[81],[94])

BnHlpn) <2I0p,]  and  Bu#2 (¢, 1p) < 2H[ |yl (5.81)
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On the long-time behavior of the McKean-Vlasov PDE 5 SKETCH OF PROOFS AND PRELIMINARIES

> Chaos propagation. (Theorem 5.3) Denoting (l;);>0 the flow of solution distributions of the McKean-Vlasov
equation associated with the particle system defined by the U— statistic and the confinement potential, if g €
Jllz (R%), then for any non-empty set I N* of finite cardinality, Pxn(iy); converges in metric L% —Wasserstein to

u®Cr 0 arrow (1) in Fig. 1).
> Denoting p(ni) the i-th marginal distribution of p,, we have by uniqueness and LDP (arrow (3) in Fig. 1)

W Z (5.82)

> By symmetry of p,, all its marginal distributions are identical and as

n .
W2 ) = Y W w0 = WP, (5.83)
i=1

we deduce:
nPa (Y, 1) < 2H[P® ") (5.84)

By equivalence of the logarithmic Sobolev inequality to the exponential decrease of entropy along the semigroup, we have
(arrow (2) in Fig. 1)

Hlp, (0)unl < H[pn(O)Iun]e‘ﬁ"% = H[p?”lpn]e‘ﬁ"é, Wn(D):=Po XML, (5.85)

And by lower semi-continuity of the Wasserstein metric, we deduce the nonlinear To—Talagrand inequality given by
(arrow (4) in Fig. 1)

PLS T3 (M, Moo) < prs minf#7” (u, ;) < 2Hwlpl,  prs = limsuppy, > 0. (5.86)
T n—+oo
We also have the nonlinear logarithmic Sobolev inequality given by (arrow (4) in Fig. 1)

pLsHw ] < 2Iw[-]. (5.87)

In Kinetic case. We consider /7, := Ax —V Sy, -V = £, the elliptical generator associated with py,, = Wy,
Remark 5.20. £z, admits the following Hormander form

n d 0
xz,n=x0+Y+ZZx§J., Xjj=5.— Xo=-v-V, Y=VS1,-Vy—v-Vy (5.88)
i=1j=1 vi,j
The family
{Xl,l,...,X,-,J-, v Xi g X N X1 X [Y,Xn'd]} (5.89)

form a basis of R>"? at any point. Which implies by Hormander’s theorem that %, ,, is hypoelliptic. Moreover, %7, is
non-symmetric, i.e. in L?(p%), we have :
Ly =Lrn—2Y = (22*‘,1,9(;22*’”)) is not a closed extension of  (£z,,, 2(L7,n))- (5.90)

The following known lemma is a key to the Lyapunov type conditions. We include its simple proof for completeness.

Proposition 5.21 (Lemma.8 in [44]). For any function ¢ € €*(R"%) strictly positive (¢ > 0), we have

JE
vy e A (W,0), f—T?’(pulzdm,nst\ulzdpl_n. (5.91)
Proof of Proposition 5.21. Indeed, by integrating by parts, we successively obtain
P v
| Ty < | (0.5 )y (5.92)
2yVy  yPVe
< [ (Vo ——- dp,
f ( @ @? > "

s[IVWIzdul,n.

And this last inequality follows from the inequality

Vo _ WiVl
<2qu;, —> < ——+|Vyl*. (5.93)
¢ ¢
[
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On the long-time behavior of the McKean-Vlasov PDE 5 SKETCH OF PROOFS AND PRELIMINARIES

This second Proposition 5.22 is the heart of the proof of Theorem 4.3: this proposition is inspired by [44, Lemma.10] for
the two-body interaction. It uses Lyapunov conditions, yet well know for being highly dimensional, but at the marginal
level, thus providing results independent of the number of particles.

Proposition 5.22. Under the conditions in VFP3.7 giving UPL, there are two constants Cy and Cy depending on N,K,K1,K;
and d (dimension of R?) and such that

Yy € A (11 0), f V2V ()l 2w diy,n < Cy f IV pld, +Co f wdyy . (5.94)

Proof of Proposition 5.22. This lemma follows from the Lyapunov property, from the particular form of the invariant
measure generator! 1 ,, and from the previous Proposition 5.21. Indeed, we have:

)
V2V <M (1= IIVVIE - AV) +np, (5.95)
25K d? 1
n:= SK% n2:=4K§+ 41 Y= 3 (5.96)
(ii) Since the interactions are Lipschitz, we know that Vk € {2,.. ., N13K® gsuch that ||[VW® || < K®,
Let K:= max{K®, k=2,... N It follows that
N KZ Y
-n Y Vy,U,(WR). vV (x;) < N - DKIVV|(x;) < (N - 1)(2— + 5|V\/|2(x,‘)). (5.97)
k=2 Y
But for ¢p(x) := e?VE) e have
S, i N
n® _ Ji® _ X(Avm) + A DIWRE) - Y. Vi Unw®) VV(x))). (5.98)
¢ ¢ 2 2 k=2
Thereby
T, N N - 1)K?
2709 Ay + Y v + SEDE (5.99)
YO 2 2y
Moreover, we have
T, N - 1)K?
(- PIVVIE ) - AV < -2 200 S0 (5.100)
Therefore, by the inequality obtained in (i),
Jop  (N-1K?
2 2 n
v V(x,-)||0psm(—2—+T)+n2 (5.101)
Integrating with respect to y?d; ,,, we obtain
2 T, (N-DK?
fllVZV(xi)llﬁp‘UdeLn < ﬂf ——n(p‘l/zdlll,n + (112 + —Tll)f\llzdlll,n- (5.102)
Y ¢ 2y
And we conclude by the previous Proposition 5.21 that
f V2V () By wPdits < Co f VwPdp . +Co f w2dy (5.103)
where C; = 2% and Co =12 + %m.
O
1 We have
n N
Hon=Y. Tiy Tii= g, =VV0) Vg =1 Y Vg UpWH). v,
i=1 k=2
Univ Angers, CNRS, LAREMA, SFR MATHSTIC, 27 Mohamed Alfaki AG ABOUBACRINE ASSADECK

F-49000 Angers, France


http://www.univ-angers.fr/
https://www.cnrs.fr/fr
http://recherche.math.univ-angers.fr/
https://sfrmathstic.univ-angers.fr/fr/index.html
https://www.angers.fr/
https://mon-portfolio-de-chercheur.webnode.fr/
https://orcid.org/0000-0002-3281-1954

On the long-time behavior of the McKean-Vlasov PDE 6 PROOFS OF MAIN THEOREMS

6 Proofs of Main Theorems

Proof of Theorem 4.1. Indeed, we have the inequality (Proposition 5.17)
—H[pn(m«x@"] >H[pP (9o (6.1)

and by lower semi-continuity of relative entropy and propagation of chaos,

hmlnf Hp”)(t)l(x]>H[pt|0( . (6.2)

n— -+

On the other hand, we have (Theorem 5.11.Theorem 5.19.Eq. (5.58))

1
—Hlpn(Dlpal < Hm0 "luale Pz and hmmf HIpg " ale” B2 = Hy[ole P2, (6.3)
Also, as ;
C
n(d) = 7 " H= e @), (6.4)
n
we also have
Hipn (Dl ] = - Hlp (010" + > (v, W)y 1) + (- log(Zy) - 0g(C), (6.5)
k=2

and (§5.2.Eq. (5.58))

N
Y f U, W®)dp, (1) ”1‘”2 f wh g &k - ZW(k)[p[] —log(Zn)—log(C) "ZE°_ inf Bwlul.  (6.6)
= k=2 k=2 et RY)

It is deduced that

V>0, Hylpole P52 >11m1nf —HIp (D]l > Hlplod + ZW(k)[pt] inf Ew[ul =Hwlu].  (6.7)
k=2 et RY)
This completes the proof of the exponential decrease of entropy along the flow. O

Proof of Theorem 4.2. Just use the nonlinear To—Talagrand inequality, i.e.: (Theorem 5.19)
VE=0, prs#y (e Hoo) < 2Hw . (6.8)
This completes the proof of the desired inequality: We conclude with the Theorem 4.1. O

Proof of Theorem 4.3. By the Lyapunov condition in the assumptions 3.7, we can apply Proposition 5.22 and obtain that
for any y € #' (uy,5,), it holds

fllVZV(xi)llﬁpwzdm,n <C1/|Vx1V|2dll1,n+C2fW2dll1,n, (6.9)

(N— 1)K

with C; = 2% and C; =mp + N1 for instance which are independent of the number 7 of particles. It follows that
the boundedness condition in V111an1 s theorem holds. Since the uniform Sobolev inequality implies the uniform Poincaré
inequality, we can apply Villani’s hypocoercivity theorem ([44, Theorem.3] or [93, Theorem.18 and Theorem.35]), which
completes the proof. O

Proof of Theorem 4.5. Note that (7 (1)) >0 is a solution of a (large dimensional) linear Fokker-Planck equation, for which

the exponential decay of the entropy is already known under assumptions including 3.7 (see e.g. [93]). Consider the
dpz(t)

generator £z, given by Eq. (3.19). Then ¥, , the density of the law of the particle system given by Eq. (3.16)

with respect to its equilibrium distribution, solves
0:Vy=%;,¥Yn. (6.10)

This is a linear kinetic Fokker-Planck equation, for which convergence to equilibrium has been proven by many ways. All
we need to check is that the explicit estimates we obtain do not depend on 7 (see e.g. respectively Theorem.7 and Theo-
rem.10 in [76, [77]]). The key point in Eq. (4.4) is that C and ¢ do not depend on 7n: Indeed, as pg = H1,, ® Ho,, and these
measures satisfy logarithmic Sobolev inequalities of constants prs(1,,) = p and prs(Kz,,) = 1, pJ satisfies an inequality
of logarithmic Sobolev of constant prs(p7) := max(p, 1). This enables us to prove the following: (T2—inequality)

>0 VY Vi, WLEE),p) <ke YHE OS],  pi0) =p®", pe 2R xRY). (6.11)
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On the long-time behavior of the McKean-Vlasov PDE 6 PROOFS OF MAIN THEOREMS

By symmetry, propagation of chaos and Sanov’s theorem (LDP), we have respectively

n,(i) n—+oo 7

Vie{l,..,n, n#2urPm,00O) <w2wimu, prPm =Wy, O IEe Nz (6.12)

We have by lower semi-continuity

. j Y
Ve PR xR, #5 (1 ug) <liminf#5 (u, puy?) < climinf—H[pj 0] =« [y, (6.13)
1 N 1 -
;H[p®"|p£’] =Hlpla® A (0,1d)]+ Y. | U,W*)ap®" + —log(Zy) - log(C) "0 Plul =&l - ElpL]. (6.14)
k=2
According to Eq. (4.4), we have
LW <L ule . (6.15)
It follows that
w2V ) < k2 [P < kCF[ple . (6.16)
O

Proof of Proposition 4.6. First, note that (4.6) ensures that V2V > pI; with p > 0, which in turn implies (H2). For (H3),
this follows from the assumption: W(k)"(xl, cey X)) = O(Z;?:lV(xj)) as |x 2 +... + kal2 — 400.

To prove (H4), we use the classical Bakry-Emery criterion. To this end, let us denote by A;; = V? an(xl, ..., Xp) where

we abusively omit the dependence in (x1,...,X,). Note that A;; is a d x d-matrix. Using the symmetry of the wk

have

, we

-1

N

n-1

A =VVE)+Y kY (k_l) Vi WS e xiy e, X0, )
k=2 (iy,....ix_el;!

andif i # j,
N n-1)"
- 2 k
Aij=Yk Y -4(k—1) VWO (i, %, %1y X )
k=2 iy, i_p)ery

where I;i (resp. I;ij) denotes the set of increasing sequences i} < ... < ix_1 of [1,n]]\{i} (resp. i; < ... < i}—p of
[1, »l1\{i, j}). With the notations of the proposition, one easily checks one can find a small enough € and a large enough
ne such that for any A <€, n = ne and (x1,...,x,) € (R)™, we have for all i € [1, n],

N
IA; = Nlgp = A—2¢e > kZ k(= DIV, W® o +€ > ; 1Y% Aijllop-
=2 j#i

This implies that for any A € (—oo, €), the matrix V2H,,(x1, ..., Xp) — Alq is block-diagonally dominant and thus invertible.
Hence, V?H,, = €l,,; which in turn implies (H4) by the Bakry-Emery criterion.

Let us now prove that (H5) holds. Let vg,v; € 22, (R?) and set v; = (1—1)vo+ vy, £ €[0,1]. Let f: R > Rbea 1-Lipschitz
smooth function. From the very definition of ®,

@(vy), f) = ZL ) Flx)e VO -Zin kWO yv iy g (6.17)
v, JR

so that setting g;(x) = -8, (X}, k f WP (x, y)vEF~1(dy)), we get

d _ 0:Zy,
E@’(WLf) =- 7

(DY), )+ (D), f81) =(D(Vy), f8r) —({P(Vy), H{DP(Ve), 81 = COVd)(vl)(f, g1)-

Vi

For a probability y, let £, be the operator defined on %2-functions by
OF
$Mf=—vf.V(%(p,-)+V)+Af, (6.18)

with 86—51 defined by (1.18). Denoting by ¢, be the solution of the Poisson equation f —®(v;)(f) = £y, and using that
%y, is self-adjoint in L2(®(v,)), we get

Covow ) (f, 80 =<{P1, Ly, 8120, = — VO VED 120,
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On the long-time behavior of the McKean-Vlasov PDE 6 PROOFS OF MAIN THEOREMS

Note that for the second equality, we used the fact that for some ¢2-functions f and g, %\, (f.g) = f%v, g8+ 8%y, f +
2V f.Vg. With the help of Cauchy-Schwarz inequality and Lemma 6.1, this leads to

1
|C0V<1>(vt)(f, g:)l < ||V(Pt||L2(q>(vl)) ||vgt||L2(q>(vt)) < X"vgt”LZ(q)(V,))- (6.19)

Let us finally focus on Vg;. First, one checks that
k-1
ath(k) x, YVEL(dy) =fW(k) x,) Y (vi=vo)dyj) [ veldy) (6.20)
j=1 i#]

=(k-1) f f W (x, 33, y) (V1 = Vo) (dx) vEF 2 (d ).
Note that we used the symmetry of W and the fact that [W®| is subquadratic (due to (H1)), which ensures sufficient

integrability properties for the above equalities. Now, denoting by (Xy,,Xy,) an optimal coupling of vy and v; for the
1-Wasserstein distance, one obtains

IV ( f W®E (x, x5, ) (v1 - Vo)(dxz)) | <IEIViWP (x, Xy, 1) = ViWE (2, X, )11 (6.21)
< IV W lop 0o 4 (Vo, V1).

Hence,

N
IVEiliz@e,y) < 1V8tlloo < (Z k(k=DIVZW® llop o | #1 (vo, V1),
k=2

and by (6.19), we get for any smooth 1-Lipschitz function

Y, k(k=1IVE WP gp o
A

1 d
|<<1>(V1),f>—(q>(vo),f>|<f0 Ia@(vt),f)ldts W1 (vo, V1).

By (4.6), a density argument and the Kantorovitch-Rubinstein duality relation, it follows that @ is a contraction on
(PR, W1). O

Lemma 6.1. Let ue€ P[RY). Let f:RY — be a €' function with bounded derivative. Let @ be a unique solution the
Poisson equation f—(® (W), f) = Ly where £, is defined by (6.18). Then,

IV@lloo < [FHA™
where [f1y denotes the Lipschitz constant of f and \™! is defined by (4.6).

Proof. Tt is well-known that ¢(x) = 0+°°P;l [fx) = (D), frdt where (P;l) t=0 denotes the semi-group associated with £,
so that under adequate derivation conditions (which will be satisfied in our setting),

+00
Vo(x) =f VPl f(x)dt.
0

Now,
VP f(x) = E[V (X} )0:X] ]

where (Xt"x) denotes the solution starting from x of the SDE associated with £, and (axxt‘) its first variation process
solution to

SF
dy, =-V? (%(p,xg"’c) +VXE | Yt
with Yo = 1. Under the assumption (4.6), one easily deduces from a Gronwall argument that for any z € R?,

IY,zI? < e 22|22

which implies that
IVPY £(0)] < [F1110:X5  llop < [fl1e72

The result follows. O

Remark 6.2. In the proof of the Lemma 6.1, we can replace A by

inf (Agayo+ Inf Aps ) G, (6.22)
xerd "V VD empma) TV o (W) -
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On the long-time behavior of the McKean-Vlasov PDE 6 PROOFS OF MAIN THEOREMS

Proof of Proposition 4.9. As G, VG and V2G are bounded, given that the interaction potentials are combinations of tensor
products of G, it is easy to check (H1), (H3), VFP1, for all i = 1,2, y; < +oo and &%, (IRd) c @G(Rd) = Q”([Rd). As for (H4)
and (H5), they are significantly more difficult to establish. Let’s go prove them.

For any p € 2(R%), consider the standard Langevin process (X”)[>(] of Hamiltonian &Ijl (W) =V+Q'(fGAWG, i.e.
ax" =v2ds" -v (p xtdt. (6.23)

This Langevin process admits for invariant probability the measure @ (u)(dx) = —pe 1 g x. We recall that H, the
Hamiltonian of our system of particles is related to the macroscopic Hamiltonian H by the identity

n
lHn(x) = H(l Y by)= Z V(xp) + Z U,(W®), (6.24)
n n 5o np =

Since the Hessian V2V of V is bounded from below, and V satisfies a Lyapunov condition (H2), a(dx) := %e‘V(x)dx
satisfies a logarithmic Sobolev inequality (see [27, 28]). As y1 < +oo (lysl < Y1), forall pe &, (R?) and x € R, we have

8H
VZ—(W,") = V2V +y3V2G 6.25
6m(}l ) Y3 (6.25)
> V2V -y, V2G;
SH )
X Ve (W x) 2 61 lx]” - 6+ y3x- VG(x) (6.26)

2
= c1]x|” = c2 = Y11IVGllool x].

As |x| < €] x|? + C¢ for any € > 0, there are two positive constants cf and c;‘ such that
d d oH o2
Y (x, ) € R x 2 (R?), x-VS—(p,x) =crl|xl”—c5. (6.27)
m
It follows that (p, -) satisfies a uniform logarithmic Sobolev inequality: which proves (H4).

For (H5), we follow the same strategy as in the proof of Proposition 4.6 (see (6.17)): for vg, v € P, (R%) and a 1-Lipschitz
function f:R% — R, we write v; = (1 — )V + tv;. First,

(@), f>—Zi F(x)e”VO-QUGWVEAMGE gy and —<q>(vt) ) =Covaw,) (f, 8 (6.28)
with
g:(x) = -0:(Q'( f G)vi(dy)Gx) = -G(x)Q" ( f G(y)vt(dy)) f G()(v1 —vo)(dy).

Following carefully the proof of Proposition 4.6, we get

1
|Cova,) (f, gl < ||V(Pt||L2(q>(vt)) ||Vgt||L2(<IJ(vt)) s )\_*”Vgt”]}(q)(vt)) (6.29)
with A* =inf  gpa ()\VZV(x) + Y3AV2G(x)) > 0 under the assumptions of Proposition 4.9. Now, since

Vgt = —Q”(fG(y)Vt(dy))fG(y)(\’l _VO)(dy)VG’

since Y2 < +oo and VG is bounded, by the Kantorovitch-Rubinstein duality relation, we have

IVEellizowy S I1VEtlloo =

Q'( [ Guvitan)|-| [ 6w v @n|IivGile < volIVGIEH (vo,v1)

and by (6.29), we get for any smooth 1-Lipschitz function

W1 (Vo, V1)

1 d G
|<(D(V1)yf>_<(D(V0),f>|<f |_<‘D(Vt),f)|dt< Y2|| ||
o dt A

As Y2 IIVGII2 < 1, by a density argument and the Kantorovitch-Rubinstein duality relation, it follows that @ is a contrac-

tion on (2, (RY), 7).
O
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On the long-time behavior of the McKean-Vlasov PDE A APPENDIX AND ADDITIONAL PROOFS

A Appendix and additional proofs

A.1 Propagation of chaos

Theorem A.1 (Moment control). Let m € Rxy, ||+ 1|2 be the standard Euclidean norm on R? and the continuous function
0;: R—[0,+00[ (A1)
—20 .
0 1_862[ if 0#£0;
2t if 6=0.
Suppose that there exist pairs of constants (0,9), (02,92),,..., On, On) such that for all (u, x) € Z[R?%) x RY,
x-VV(x) = 0||x]|*> +9; (A.2)
Vkei2,...,N}, x-VyWE s 0n® 1 (x) > 0] |x1? + 9. (A.3)
Let@:=0+X}_, kO and 9:=9+X}_, k9. We have
oz 2m+d-2-9+12m+d-2-9)|
Vo€ P ®) vezo, |[I1B| <[], e 0.@). (Ad)
L™ (1) L™ (po) 2
In particular, if W >00orw=0and 2m+d -2 -9<0, we have uniformity in time:
2m+d—2-9+2m+d—2-9) e —
1< if ©>0;
supl[I1-18|| <[]+ % Lo _ (AS)
=0 L™ (W) L") |0 if =0 and 2m+d-2-9<0.
Proof of Theorem A.1. By the transfer formula, for any function y € L (1) or of constant sign, we have
Elw(Xe)] :/[Rd Y (x) e (dx). (A.6)
For all m = 1, by It&’s formula, we have
d 2m 2m
a[E[”Xt” 1 =E[ZL - 1157 X)) (A7)
On the other hand, we have
VI 115" (x) = 2ml x|V (A.8)
All-15™(x) = V- V|- |5™ (x) (A.9)
d
=2m . ay(IxIP™ D x;)
j=1
‘ 2(m-1) 2(m-2)) .2
_ m— _ m—
—2m];(||x|| +2(m =Dl )
=2md||x|P"" Y + am(m - D1l P2 1)1
=2m@m+d-2)||x|[*™V.
We deduce that
OF
Lull 15" ) = 2m@m -+ d = 2)11d P = 2milad P (Ve (00 + YY) (A.10)
m
N
=2mlldl ™D (2m+ d -2 2TV - Y k- Vi WE xp®E1 ().
k=2
By setting S, (1) := E[||X,|[>™], we have
N N
s (1)< 2m(2m+d—2—a— Y kf)k)sm_l(t) —zm(e+ Y kek)smm. (A.11)
k=2 k=2
As for a finite measure |, we have
1 1_1
Vp<q VFelIG, Iylivg = (f [wiPdy)” < (f 1dp)” " iyllago, (A.12)
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we have o
Sm-1(8) <S;u (1) m . (A.13)

Case 1: Using L injection. If 2m+d-2-9-YN , k9 >0, we have

N ~ N
s (1) sZm(2m+d—2—\°)— y kf)k)sm(t)mTl —2m(6+ Y kek)Sm(t). (A.14)
k=2 k=2
We deduce that
1Y/ N N 1
m(Sm(t)Wl) < 2m(2m+d—2—8— Y kf)k) —2m(9+ Y ka)Sm(t)W. (A.15)
k=2 k=2

By setting z,, (1) := Sm(t)%, we have

N N
z (1) <2(2m+d—2—\‘)— Y ksk) —2(e+ Y kek)zm(t). (A.16)
k=2 k=2

And by Gronwall’s lemma, if 0 + ZE:Z kO # 0, we have

2m+d—-2-9-YN k9 2m+d-2-9-YN k9 -2r[0+xN_ ko
Zm (D) — R (zm(O) - k=2 )e ( k=2 ’“) (A.17)
0+ ,_, kOk 0+X,_, kO
Ifo+ ZE:Z kO = 0, by integration, we deduce that
N
zm(t)szm(0)+2(2m+d—2—a—zkak)t (A.18)
k=2
In conclusion of this disjunction of cases, whether 0 + ZE:z kO = 0 is zero or not, we have
—2t[0+xN k0 N N
Zm(t) < zpm(0)e ( ke k) + (2m +d-2-9-Y k{)k)G)t(e +y kek); (A.19)
k=2 k=2
®;: R—[0,+00[
o |5 i 870
2t if 6=0.
Case 2: Direct increase. If 2m+d-2-9 — ZE:Z k9 <0, we have
N
S (1) < —2m(0+ Y. KOk)Sm(0). (A.20)
k=2
And by Gronwall’s lemma, we have
72zm(e+zl,j=2 kek)
Sm(H) <Sm(0)e ) (A.21)
In conclusion, in all these cases, if yg € Q?’gm(le), we have
VT =0, sup E[[X/][*™] <M(m,uo,T). (A.22)
0<t<T
As for uniformity in time, it is ensured if one of the following conditions is verified
> 0+X, kB >0;
> 0+XN kB =0and2m+d—-2-9-Y}_, k9 <0.
O

Remark A.2. Suppose that there exist pairs of constants (0,9), (02,9,),,...,(On,In) such that for all (i, x) € PRY) x R4,

x-VV(x) = 0||x]|*> +9; (A.23)
Vke2,...,N}, x-VyWE s 0n®1(x) > 0 1x1? + 95 (A.24)
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On the long-time behavior of the McKean-Vlasov PDE A APPENDIX AND ADDITIONAL PROOFS

If we add VV(0) =0 and Vxlw(k) (0,-) = 0 to the reduced Hessian conditions, we obtain the following hypotheses above.
Indeed, if there exists € R such that V2V = —Plg and for all k € {2,...,N}, there exists By € R such that vilw(k) = —PBlyg,
we have in particular

(V) - V), x—y) = —Bllx—ylI% (A.25)
(Ve WO, ) =V, W (3,1, x - ) = —Brellx - I (A.26)
In this case, 6 = —p, 9 =0, for all ke {2,...,N}, 8 = —Pr and Yy =0.

Proof of Theorem 5.3. To show the result and for greater clarity of proof, we proceed in five steps described below.

Step 1: Itd’s formula and drift division. By setting G = m we have
N k . .
dx"P = \2aB\"P — Z — Y (VG(X([”"”) +V,, WR P ,X(t”)‘”,...,X(t”)’”“’l))dt (A.27)
=2 (k—l) 1<ij<iz<.. <lk 1sn
vi, o ij#p
N k . .
=v2dB/""P -y Y f (VG(x(t’”””) +V,, WP (X(t")'p,X(t")’”,...,X(t”)"k"))dpmk_l)dt.
k=2 (k—l) 1<ij<iz<.. <l;C 1sSn
vi, ij#p
) Wy ) 5 e (D) k-1
X = V2aB™P - 3 k f( . (VGXP) + v WH P, ) )pe D ayd (A.28)
k=2
wp - k ) 1) (P k-1
=Vv2dB,"" -y — Y f . I(VG(ti )+ Vy WO X ,y))lPit( Ddydt.
k=2 (k )l<zl<zz< <z;C 1<n’RY)
Vi, ij#p

So

(n), (2] (n), (p) (2] (n),
XUP_x P = _xP) f( . 1(VG(XS")—VG(XS” Py (A.29)

T k=2 (k )1<11<12< <z;C 1<n
Vi, ij#p
+ VWO, 3 — v, wh xP xmi ,xg”)’ik*)]u}ﬁikﬂ) (dy)ds.

By It6’s formula, we have

1 n
Y IXEP -XPE = 3 X X (A30)
p=1 p=1
_ZZ Z (= 1 > f <VG(X(Sn)’p)_VG(XEP))_VxIW(k)(X[Sp),y)
p=1T fe=2 k 1) 1<i)<iz<.. <t;C 1<nd RAOE-1

vij, #;7

+ Ve WRUDP xmit  xmhikeny xmp_x(p) >P§§’C‘” (dy)ds.
: _ (), ®k=1) ._ . ek-1
By setting p; =Px, and V,, W™ % p¢ = [V WO p2el(dy), we have

n n
Y X=X = Y - X (A31)
p=1 p=1

n t
(n), (2] (n), (p)
—22 r <VV(XS" Py_wvx Py, xmp _x P >ds

) P .
_ZZ Z n 1 Z <vx1W(k)(X(Sn)'p,X§n)'l1,...,Xgn)’lk‘l)

p=14T [=2 k 1) 1<ii<ip<.. <z,C 1sn
vij, #p

— Vxlw(k) % p?(k—l) (X‘(gp)),xin)’p —Xgp)>d5.

Let
pg)lk (s):= <V wkR P x| iy — VW pf’(’“‘”(xip)),xin)‘p _Xgp)> (A.32)
=P i PG ()
p? (9= <vxlw“c) X xwi xmieny g Wl P xx ey xmp —X‘s”)>; (A.33)
o 1 = (VWO P XV, x ) - g, W e kD P (PP - x P, (A.34)
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On the long-time behavior of the McKean-Vlasov PDE A APPENDIX AND ADDITIONAL PROOFS

Step 2: Control of the confinement term. As the Hessian matrix of the confinement potential is bounded from below,
we have

n t t n
= <VV(X§”)"’) —vvP)y, x\mp —Xi”)>ds <p | Y xP_xP2as. (A.35)
p=1Jr r p=1

Step 3: Control of the interaction term in p®. As the Hessian matrices of the interaction potentials in the first coordinate
are uniformly bounded from below, we have

Vke .. N, —p? (9 <BrlX"T XTI, (A.36)

Step 4: Control of the interaction term in p©®. By Cauchy-Schwarz inequality, we have

n),
E Y e 9V i ORI X P (A37)
I<ii<ip<..<ip_j<n
Vi, ij#p
) ‘ 2
i,y (8) ::[E) Z vx1w(k)(X§p)’X‘(gll)”.'yxglk—l))_Vx1w(k)*p;@(k D(XEP))H (A.38)
1<ii<ip<..<ip_1sn
Vi, ij#p

- Y EE

L . 150yl
I<ii<iz<.<ig-1s<n
Vi, ij#p

@I+ EE (9.8 ()

11,000k Ly Jk=1

E’(P) - (s):= Vx1w(k) (Xip),X(sil), . ,Xglk—l)) _ vxlw(k) % u?(k—l) (Xgp)) (A39)

10l
As the xip ) are independent copies of X; with distribution g, we have

) ) _
EE i, (€ o (9)=0. (A.40)

Moreover, as the McKean-Vlasov flow admits bounded moments (see Theorem A.1), we have

EIEY @I <EIv, WO, x{m,  x{)) 2 (A41)
< QEIXP 1P +EIX [P + .+ EIX T 2m)
= kQENIXI1*"]
< kQMz (T). (A42)

It follows that

n-1
£ Y Y (s J ( ‘e l)kQMzm(T)\/ EIIXS™ X712, (A.43)

1<ii<ip<..<ig_1<n
i ij#p

Step 5: Gronwall’s lemma. For all g € {1,...,n}, let y,4(f) = [EIIX(t")'q —X(tq)llz. By taking the expectation in equation
A.31, by the previous controls and the exchangeability of the marginals of the particle system, we obtain

N t N k% t
nyq(f) < nyq(r)+2n(|3+ Z kﬁk)j; Yq(s)ds+2n\/QM2m(T)(kZ:2 )fr \/ Yq(8)ds. (A.44)

- [rn-1
k=2 - (Z—l)
As
n-1 kln
=—| |; A.45
mk [n e[k
(%) s(k)<e (%) ; (A.46)
we have
Noogr N i N N
Y <Y kz(_) - Y ——<WN-1) (A47)
k=2 (”*1) k=2 n k=2n'z vn
k-1
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On the long-time behavior of the McKean-Vlasov PDE A APPENDIX AND ADDITIONAL PROOFS

By setting k = (N — 1)/QMoa,, (T)NN+2, we have

N t —
) <svyqa(r)+2|1p+ k| f (s)ds+2—f (s)ds. (A.48)
Yq Yq (f’ kZ=:2 ﬁk) . Yq Jnl Yq
Or equivalently
Yq(8) —Yq(r) N [l yq(9)ds Lf,t\/yq(s)ds
— $2(6+l§2kﬁk)—t_r oy . (A.49)
And by passing to the limit, we obtain
Y, () <2(ﬁ+ Z kﬁk)qu +2 f\/qu (A.50)

If w:=p+X}, kPx =0, we have (y4(0) =0)

Sra@) =Y < A5l
(\/¥a0) = Noroh Yq(D < \/_ (A51)

By setting y4 = ,/Yq, if w # 0, we have

),=y;(t)<(ﬁ+ékﬁk)yq(r)+%=(5+§2kﬁk)(y,,(t)+ K ) (A.52)

[rator+ (B+5N_, kBi) v/

K
B+, ki)
And by Gronwall’s lemma, we deduce that (y,4(0) =0)

t[p+
(ﬁ =, kﬁk]
< ; (A.53)
i (B+xN_, kBi)v o0+ (B+Z, kBe)v )
- K r(ﬁ+zl,j:2 kﬁk) B
\/ Yq(8) < (ﬁ+21§:2 kﬁk)\/ﬁ(e l).
O

Proposition A.3 (Corollary of the theorem 5.3). The result of the theorem 5.3 ensure with explicit rates,

(nm),p

(i) the weak convergence of the law u, " of a particle towards p,: in fact, X(tn)'p has the law pgn)'p by definition and

X(tp ) has the law W; by construction, therefore forall t <T and all n=1,

M
"W ) < — (A.54)

with M not depending on the number of particles. The uniformity in time of M is verified if ® <0 in theorem 5.3;

(ii) the propagation of chaos for the particle system: q being a fixed integer- or more generally a o(n)- and for the
Wasserstein distance defined on (R%)9, for {i1, ..., iqt apart of {1,...,n}, we have
qM
n

%z(uw i n,q),pt ) (A.55)

(iii) the convergence of the empirical measurement of the particle system towards the McKean-Vlasov particle law: for
any Lipschitzian function ¢ : R — R, we have

M
BN, ) = ()P < ——22 (A.56)
Proof of Proposition A.3. By definition of the Wasserstein metric and empirical measurement, we have
e u
#" w) <EIXP - XPIP < — (A.57)
(i1)
i ; gM
W, (u:p i (Miq» H?q) < [E||(X(n) i1 ’Xin),lq) _ (X(ll),,,, (lq))H < q[E||X(n) P X(p)|| < T _Mo(); (A58)
......
(iii)
2M + M,
ENIT”, ) = (e @) < ———" (o]}, (A.59)
O
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On the long-time behavior of the McKean-Vlasov PDE A APPENDIX AND ADDITIONAL PROOFS

A.2 McKean-Vlasov theory

Theorem A.4 (Existence and uniqueness of solutions of Eq. (1.13)). Let us assume that the functions b and o are globally
Lipschitz: 3K >0 Y (x, y, 11, V) € RP x RP x 22, (RP) x 22, (RD),

1B, 1) = by, VI + 106 )~ o (g, VIl < K12 = y1+ #2 (1, v), (A.60)

where || -|| denotes a vector norm, ||| ||| is a matrix norm and W5 denotes the Wasserstein-2 distance. Assume that
Ho € P[RP). Then for any T = 0 the SDE Eq. (1.13) has a unique strong solution on [0,T] and consequently, its law is
the unique weak solution to the Fokker-Planck equation Eq. (1.12) and the unique solution to the associated nonlinear
martingale problem.

The proof of this theorem is fairly classical. This proof is based on a fixed point argument that is sketched in [29,
Proposition.1].

Theorem A.5 (Polynomial Potential). Let E be a Polish measurable space. Let a € Z2(E). Let us consider a random

vector X" in B", distributed according to the Gibbs measure:

1
W (dx) == Z—e"F(Px)a@’”(dx), (A.61)

n

where Z,, is a normalization constant and F is a polynomial function on P (E) (called the energy functional) of the form
given by Eq. (1.17). Then (for some symmetric continuous bounded functions W®) the laws of uxn satisfy a large
deviation principle in 22(2?(E)) with speed % and rate function

H— Hlpla] - F(p) —nelgng){H[nla] -Fm)}. (A.62)

A.3 Gibbs-Laplace Variational Principle

Definition A.6 (Distribution support). Let g be a probability measure on a Polish space E (or even a measure on a
topological space!). We call support of  noted supp(p) the closed set defined by

C
F= U o) . (A.63)
FcE closed, p(F)=1 OcE open, pu(0)=0

In other words, the support of a distribution is the complement of the largest open set over which it is zero: the smallest
closed set of maximum mass!

Definition A.7 (Extremum essential). Let p be a probability measure on a Polish space E and V : E — [—00, +00] mea-
surable. We call infimum p—essential of V the quantity

p—essinfV:=inflreR, p({vs<v}) >0} (A.64)

Theorem A.8 (Variational principle). For any probability measure W on a topological space Q and any measurable
function V: Q — R, we have

1
lim — logf e ™Vdu=—p—essinfV. (A.65)

n—+oo n

Moreover, if V is upper semicontinuous, then

inf V=p—essinfV. (A.66)
supp(j)

Proof Sketch: Suppose | —essinfV is finite. Check that we can assume without loss of generality that V.= 0 and p—
essinfV = 0. Then check ly<ze " < e <1 and conclude. Show that the limit is +oo with the lower bound when
p — essinfV = —oo.

Proof. > p—essinfV is finished:
1 1 ;
ZIng e ™Vdu+p—essinfv = ;log(f e_"(v_“_ess'“fv)dp). (A.67)

This implies that we can assume without loss of generality that V = 0 and p—essinfV = 0 because V—p—essinfV = 0
almost surely, its essential infimum under p is zero and the convergence that interests us is equivalent to

1 . =
;log(f e—nN—p—essme)dp) n-teo, (A.68)
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On the long-time behavior of the McKean-Vlasov PDE A APPENDIX AND ADDITIONAL PROOFS

But for all € > 0 = pu — essinfV,

1 < 1
lveee B <e Vg1l lognvs<e —£< —logf e™Vdu<o. (A.69)
n n
We deduce that by the bounding limit theorem, we have
1 1
limsup — logf e ™V dp =liminf - logf e ™Vdu=0. (A.70)
n n n n

> p—essinfV = —oo: In this case, for all v € R, we have u(V < v) >0 and

f e ™Vdp 2] e WVdpze " u(v < ). (A71)
Q {V<uv}
It is deduced that
1 1 <
VUeR, —1ogf ey s —p++8HVSD) (A72)
n Q n
.1 v _ .
:ngrlloo;logfe dpy = +oo = —p —essinfV.
O

Theorem A.9 (Gibbs measures and deviations). Let E be a Polish space, y a probability measure on E and V:E — R a
measurable function. We have:

>
inf V<p—essinfV. (A.73)
supp(p)
> If'V is upper semicontinuous, then
inf Vzpu-essinfv = inf V=p-essinfV. (A.74)
supp (W) supp (1)

In particular, if V is continuous, then the principle of large deviations holds for

W (dx) == ey (dx) (A.75)

fe‘”Vdp

with rate function IV := V+1y—inf{V + [y} with

0 ifxe ,
To(x) := { if x € supp (k) (A.76)
+oo else.
Proof sketch:
> Show that
{x, V(x) < inf v} Msupp(w) = 2. (A.77)
supp (1)
Then conclude.
> For all € > 0, show that
{x, Vx)< inf V+ 8} is an open containing a support element: (A.78)

supp(p)

their intersection is non-empty; then conclude.

A.4 Principle of contraction and tensorization

Let f: X — G be continuous between two Polish spaces and (Xy) a random variable sequence of X satisfying the principle
of large deviations of rate function I: X — [0,+o0]. Then ((f(Xn)) satisfies the principle of large deviations of rate
function J : G — [0, +oo] such that

J(g):= inf L (A.79)

fldgh

Let (Xp)n=1 and (Yy) n>1 be sequences with values respectively in E; and E,, independent (P(x,, v,) = Px, @ Py, ) and both
satisfying the principle of large deviations of the respective good rate functions I; and I». Then ((X,,Y,)) 51 satisfies the
principle of large deviations on the product space and of good rate function I defined by

I(x,y) =L (x) +L(y). (A.80)
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On the long-time behavior of the McKean-Vlasov PDE A APPENDIX AND ADDITIONAL PROOFS

A.5 Entropy and Chaos

Theorem A.10 (Characterization of relative entropy: Sanov’s theorem). Let p and v be probability measures (even finite!)
on a Polish space E and (@) jen a dense sequence of functions bounded uniformly continuous. we have

n
lim lim lim l1ogp®"({ye13"; Viell,... K, ‘f@jdv—%zwj(y,-))se}):—H[vm]. (A.81)
E i=1

k—ooe—0n—oo n

We interpret n as the number of particles; the @ j a sequence of observables whose mean value is measured; and € as the
precision of the measurements. This formula concisely summarizes the essential information contained in the Boltzmann
function H.

Theorem A.11 ((strict) convexity of relative entropy). Let g€ 22(Q). H[-|u] has values in Ry, convex, strictly convex on
{v, HI[v|ul < +oo} and is zero only in .
Theorem A.12 (Tensorization property). Let p€ 2 (Q), v e P(Q") with v; its i—th marginal. So

n

n
HvIp®" =H[VIQ) Vil + Y H[v;Iu] (A.82)
i=1

i=1
Theorem A.13 (Villani). Let (X := (Xy,...,X,) be a random variable on E" with E a Polish space, |, := Px € Z(E"),
Ox 1= %Z Ox, and p € P (E). The following assertions are equivalent:

> Ox converges in law to p:

YV € 6),(E), f(pdﬁx nioofcpdp almost surely. (A.83)
>
VoeLipy(E), lim Ey, H f @d(5x ”)H - 0. (A.84)

Without repeating the proof, we can say that this result is obtained by defining a metric on Z22(E) from a dense sequence of
Lipschitz functions and then by defining the transport distance Wasserstein’s #7 on 2(2(E)) associated with this metric.
Using this result, we can more formally prove the propagation of chaos.

Definition A.14 (U-statistics). Let E be a set, k € N* and ® : E¥ — R a symmetric function. Then the application: (n = k)

k!(n—k)!

LE€E"—UX):=
n!

> D(xiy, ..., Xi,) (A.85)

1<ij<ip<..<ig<n

X:=(xj) j=1

.....

is called U-statistic of order k and kernel ®. U(X) is called U-statistic of order k and kernel ® associated with the
sample X. This statistic corresponds to the arithmetic mean of the kernel over all the parts at k elements of the set of
sample values. we often write U, (®)(X) := U(X). If E is a measurable space, we generalize this definition to the space of
probabilities by the functional p— E@k[P].

A.6 Proofs
Proof of Proposition 5.5. Let &, be the group of permutations of {1,..., n} and B, the c—algebra defined by
B,,:= 0{B, x CylCp € BE ), B, e BEM, Vre®,, T, =l | (A.86)

This o—algebra is invariant under permutations and verifies for all n = 1,

B i1 < By (A.87)
By integrability,
V(i1,..., i) € 1%, E[®X;,, ..., Xi)IBp] = E[@X,...,X)|Bxl, (A.88)
which implies that
Up (@) =E[®(Xy, ..., X) Byl (A.89)

According to the limit theorems on martingales (closed martingale) and the law of 0 — 1 applied to the asymptotic tribe

B := N B, we deduce that we almost surely have
n=l1

n—+oo

Uy (@) — E[PXy,...,Xp) Bl = E[PXy,...,Xp)]. (A.90)
[
Univ Angers, CNRS, LAREMA, SFR MATHSTIC, 39 Mohamed Alfaki AG ABOUBACRINE ASSADECK

F-49000 Angers, France


http://www.univ-angers.fr/
https://www.cnrs.fr/fr
http://recherche.math.univ-angers.fr/
https://sfrmathstic.univ-angers.fr/fr/index.html
https://www.angers.fr/
https://mon-portfolio-de-chercheur.webnode.fr/
https://orcid.org/0000-0002-3281-1954

On the long-time behavior of the McKean-Vlasov PDE A APPENDIX AND ADDITIONAL PROOFS

Proof of Proposition 5.7. We prove this result by induction. Indeed, for k = 1 the inequality is verified since we have
equality of the two members. Suppose that for k—1 the inequality holds. Denote by B the left side of this inequality. We
have

k 1
Bk:log[EX [[E[exp( 1 mq)il ,,,,, iko(ll-l,...,Xi-ck)”Xk” (A91)
T Gy i erk i, ig1} ™
with XF:= (X¥,...,Xk). Let us set
0 - ! k A.92
D oipy = P > @iy, Koo X ). (A.92)

T €lit,eif—1}

By induction hypothesis, we deduce that

Xk n—k+2 L k
By <logE [exp(—llk_ll | Z o log[E[exp(n_ s Pt ,H) X ])] (A.93)
n (ll,...,lk_l)EIn
Since 4o )
xk n—K+ = . k
logE [exp(—uk_1| | Z o log[E[exp(—n_ k+2<b,1 ,,,,, ,H) X ])] (A.94)
n (l] ..... lk—l]eln
is upper bounded by
xk ; = . k n—k+2
logE [exp(uk_1| | Z ) log([E[exp(n_]H_ztb,1 ,,,,, lk_l))X ) )], (A.95)
n (i1 yewrig—1)€IE
by convexity of X — logE[eX] (consequence of Holder’s inequality), we have
By < Z log[EXlC [([E[exp(;éi i ) xk )n_k+2]. (A.96)
k-1 k-1 n—k+2 "okl
(i1,eeer lk—l)EIn
In this last inequality, for all (iy, ..., ix-1), the logarithmic term verifies
k 1 _ n—k+2
[EX [([E[exp(mq),l _____ ik—l) Xk ) (A97)

1
(n—-k+2)(n-k+1)

Y qai(x}l,...,ka))‘x’“])n_m],

i@ {i1,ifp—1}

-2 e

and by Holder’s inequality, we have

xk 1 - ' k n—k+2
E [([E[exp(—n_k+2(1),1 ,,,,, ) (A.98)
k 1 =
X 1 k k|)nr
<[E ) l_[ [E[exp(m(l),l ..... ik(Xil""’Xik))‘X ]) ]
ir€lin,..., Ip—1}
By Jensen’s inequality, we also have the upper bound of the right-hand side of this last inequality by
k
EX T Elexp(——a;, &, XE) ’x’“ ,
[ike{h ..... i) [ (n—k+1 L | lk) ”
and by independence, this quantity is equal to
1 k
[T Elexp(———®s,.i X}, X5)]|. (A.99)
I €li1,enir—1} [ (n_k+1 vk * )]
O
Proof of Proposition 5.8. Let ((Xj ,...,X{Z)) j=1,..k b€ independent copies of (Xy,...,X;). By the two propositions above,
setting for all i € Iﬁ, D0 = W®  we have for all A >0
by 1 An )
A W) = logIE[exp (|—k ka (Xil,...,x,-k))], (A.100)
nliely
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and it follows that

1 1
An (A, WP < ;log[E[eXp(I—kl Zk)\"cklw(k)l(x}l,---,ka))] (A.101)
ntjely
An C (k) 1 k
T I el e (w0 )
1
Gold
AnCy —k+1 AnC
|Ik v Zlog[E[eXp(—k w®ed . xE)) | =”Tlog[E[exp(%w(“uxil,...,xik))]. (A.102)

telk

It is deduced that
A W) < = log[E[exp(—n_k+1|W |(X,l,...,Xlk))] (A.103)
1
< Elog[E[exp (kaMW(k)|(X1,...,Xk))],

and this last inequality is obtained by growth on (0, +o0) of a — élog[E[e“X] and from the fact that for all n and k such
that n > k, we have - < k. O
Proof of Proposition 5.9. To do this, we will show that for any probability measure p such that H[p|a] < +o0 and for any
k, w ¢ Ll(p®k), we have [*(0) = —Ew/[p]. Let B(y,d) be the open ball with center p and of radius 6 > 0 in ., ([R{d)
endowed with the Lévy-Prokhorov metric drp such that B(p,8) c @. Let us introduce the events

>
A,,::{xe([Rd” L,,::L,,(x,-)e[ﬁa(p,a)}; (A.104)
g L d du®
1 1 n
- dyn| ap -1 ap .
Bn.—{xe(fR) ni;logda(xl)—nlog(da) (x)sH[pl(x]+€}, (A.105)
>
N
Cpi= {xe ®RY" By < 3" Wk [ +£}. (A.106)
k=2
We deduce that for all € > 0, we have
" dp®m -1 ®n -y log®(x) —nyN U,WH) @n
Hn(LnE[EB(H,@))Zf (dll* (x)) p (dx)=f e &i=1 %8 da Nt g7 ag=p U u="(dx) (A.107)
An n n

and

f X1 log gk (xi) o= n XA, Un(W®) u®(dx) = u®" (A, B, NCy)e "HIRITITY  gigh v —n(Z WH ] +€). (A.108)
An

k=2
Thereby
Wi (L, € B(W,8) = p®™(A, NB, NC,)e "Bwlk=2ne, (A.109)
We will prove that
u®"A,NB,NC, "1 (A.110)

Indeed, by the law of large numbers, we have
u®1a,) "1, p®nB,) "L (A.111)

Moreover, by the law of large numbers for U—statistics (§5.2), we also have

n®r(c,) =1 (A.112)
It is deduced that )
I*(0) =z liminf—p}, (L, € B(W, 8)) = —Ew[p] — 2¢, (A.113)
n—+oon
and we conclude by letting € tend to zero. O
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Proof of Proposition 5.10. To do this, consider the truncation function
WO = max(-L, min(W®, L)). (A.114)

We have by Lebesgue’s dominated convergence theorem

logElexp(m/W®L —w® X, ... X)) =20, (A.115)
So we can choose L = L(m) so that
1
logE[exp (m|W &M _w® ) X)) < —. (A.116)
m

For m =1 and L(m) > 0 fixed, we can find a sequence (ng)’L) ;=1 of continuous functions bounded such that

]—+o00,L!
—

WHELX, .., Xe) Wk, LX), vzl WP, Xl <L, (A.117)

otherwise, we consider the truncation max(-L, min(WEk)'L,L)). Seen that VI =1,
exp (m(IW(k) ~WHRLIK LX) + (W —wg’“)'L|(x1,...,xk))) <exp (mIW(k) ~WRLIX, LX) + 2mL), (A.118)
by dominated convergence, we have

[E[exp(m(lW(k) “WRL XL X ) + W E —ng)’Luxl,...,xk)))] ’1°°[E[exp(m|w(’<) —w(’f)'L|(X1,...,xk))].

(A.119)
For L = L(m), we can choose [ = [(m) so that
®) _ a7 (k),L ®) _ kL 2
log[E[exp(m(IW ~WELX,, LX) + W W |(X1,...,Xk)))] <. (A.120)
By setting Wﬁ,lf) = W;{%L(m) bounded continuous function, we have by triangular inequality
b _ k) 2
log[E[exp(mIW wik |(x1,...,xk))] <=, (A.121)
m
Since by Jensen’s inequality, we have for all A >0,
A
¥m=A,  logk|exp(NW® WP, Xp)| < E[E[ exp (mw® WP, Xp) |, (A.122)
we deduce that
log[E[exp ()\lw(k) —w,g?uxl,...,xk))] m=A00 g (A.123)
For all § >0 and A > 0, by the Markov-Tchebychev inequality, we have
PU, W) = U, WR)| > 8) < e ™| exp (nAU,(W® - WD) (A.124)
From the above (§5.2), we deduce that
1 1
- logP (U, W®) U, (WH)| > §) < ~A5+ Elog[E[exp (ka)\lw(k) —w,g?uxl,...,xk))]. (A.125)
We conclude that we have the expected result when m — +oo since A is arbitrary. O

Proof of Proposition 5.17. Let Qi(-lx[l,i_l]) be the conditional distribution of x; knowing x; ;—1j := (x1,--+,Xx;—1) (not
knowing if i = 1). We have:

N daqQ N Qi (dx;lxp1,i-1)) N ;
H ] =FEp|1 ——— || =E 1 — || =E H[Q!(- i i1, A.126
Q] ol Q[og(dHlN:lai)] Q[i:ZIOg( v )] Q[Z1 Q11,17 o] (A.126)
Since
EQlQ' (-lxp,i-11)] = Qi (), (A.127)

we obtain by convexity of the relative entropy (Jensen’s inequality):

Eq [HIQ' (-1xq1,i-1)le;] | = HIQ;|a;] (A.128)
Which shows that we have the result of the proposition. [
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Proof of Proposition 5.18. For f a measurable function on E, we define:
Au(f) :=log(Eule’]) = logfefdp € (~00, +00] (A.129)
the log-Laplace transformation under p which is convex in f by Holder’s inequality. We have:
Ay () = log/ el duy = Ay(f —U) - Ay (-U) < %Ap(—pU) + éAp(qf) ~Au(-U) (A.130)

by Holder’s inequality considering the conjugate exponent g := % of p. By the variational formula of Donsker-Varadhan,
we deduce that:

1 1
Hvipyl = sup {ffdv—AuU(f)} > sup {/fdv——Ap(qf)}+Au(—U)— —Au(=pU). (A.131)
fedy(E) fety(E) q p
Gold: ) ) ) .
sup {ffdv - —Ap(c/f)} + Ap(-U) = = Au(-pU) = —=H[VIu] + Ay (-U) = = Ay (—-pU). (A.132)
fetty,(E) q p q p
So if H[v|uy] < +oo, H[V|u] < +0c0 or equivalently, 108(%) e L}(v) and:
dv dv 1
log(m) = log(d—p) +U+Au (- e L w). (A.133)
This proves the proposition. O
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