ﬁ EasyChair Preprint

Ne 6605

Improving Test Case Selection by Handling Class
and Attribute Noise

Khaled Al-Sabbagh, Miroslaw Staron and Regina Hebig

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

September 13, 2021

Improving Test Case Selection By Handling Class and
Attribute Noise

Khaled Walid Al-Sabbagh*, Miroslaw Staron, Regina Hebig
Chalmers | University of Gothenburg Gothenburg, Sweden

Abstract

Big data and machine learning models have been increasingly used to support
software engineering practices. One example is the use of machine learning
models to improve test case selection in continuous integration. However,
one of the challenges in building such models is the large volume of noise
that comes in data, which impedes their predictive performances. In this
paper, we address this issue by studying the effect of two types of noise (class
and attribute) on the predictive performance of a test selection model. For
this purpose, we analyze the effect of class noise by using an approach that
relies on domain knowledge for relabeling contradictory entries and removing
duplicate ones. Thereafter, an existing approach from the literature is used
to experimentally study the effect of attribute noise removal on learning. The
analysis results show that the best learning is achieved when training a model
on class-noise cleaned data only — irrespective of attribute noise. Specifically,
the learning performance of the model reported 81% precision, 87% recall,
and 84% f-score compared with 44% precision, 17% recall, and 25% f-score for
a model built on uncleaned data. Finally, no causality relationship between
attribute noise removal and the learning of a model for test case selection
could be drawn.

Keywords:
Class Noise, Attribute Noise, Test Case Selection
2020 MSC: 68N30

*Corresponding author
Email addresses: khaled.al-sabbagh@gu.se (Khaled Walid Al-Sabbagh),
miroslaw.staron@gu.se (Miroslaw Staron), regina.hebig@gu.se (Regina Hebig)

Preprint submitted to Journal Name September 13, 2021

1. Introduction

Machine Learning (ML) models have been increasingly used for automat-
ing software engineering activities [1, 2, 3, 4]. One example for the use of ML
models is optimizing software regression testing in continuous integration
(CI), where ML is used to recommend which test cases should be included
in test suites. Since regression testing is performed frequently (after every
commit), they often result in large quantities of data that include test execu-
tion results. This poses an opportunity to utilize ML when such large data
is available for analyses.

Figure 1 illustrates a CI pipeline that includes a number of accrued test
suites of varying sizes. These suites are organized to regressively verify that
no new faults in the system arise as a consequence of new code check-ins,
with the goal of reducing the cost of regression testing. The CI system seeks
to identify and select a subset of test cases from the pool of available tests
to perform regression testing. These test cases are then added to the every-
build suite and get executed as soon as new code check-ins are built. Failure
to detect faults in this early phase of testing will prolong faults’ discovery
until larger suites (the daily or weekend suites) are executed.

This way of orchestrating test cases increases the development speed and
reduces the cost of regression testing as faults are continuously discovered
and fed-back to developers in a quick manner. Figure 1 exemplifies a sce-
nario where the CI system misses including test case 2 (7Tc2) in the every-
build suite for execution. Failure to include (7c2) in the every-build suite
is penalized by a prolonged time and cost of testing. Therefore, finding an
effective approach for test case selection (TCS) is important to maximize the
probability of detecting faults as soon as new code check-ins are made.

Several approaches in the literature sought to address the problem of
defects prediction and test case selection in CI. Examples include static code
analysis [5] [6], static code metrics [7][8], natural language processing (NLP)
[9][10]. These approaches use data-sets with historical defects for training
machine learning (ML) models to classify code as either non-defective or
defective (i.e. in need for testing) or to predict whether test cases will fail. In
our previous work [9], we studied an industrial case of the use of ML classifiers
and textual analysis to predict test case execution results. The method was
evaluated on a data-set whose size was 1.4m lines of code (LOC).

However, one of the challenges in building a learner for predicting test
case execution results lies in the amount of noise that comes in the data. This

Builds
o,

— OO0 OO Main branch

. ” Tel:
Pass “gail” “Pass”
" ” Te3:
Pass’ “Eail” “Pass”
“pass” Te2: — “agail”
Limited FY"' Errore
“Pass” test scope (every build) Undetected test .~ ¥ EMTOS e “Eail

in the every-build Limited
suite test scope (daily)

Full Full
test scope (weekend) test scope (weekend)

Figure 1: CI Pipeline with Test Case Selection.

challenge is particularly important in the domain of testing, since frequent
automated executions of test cases can introduce noise in an uncontrolled
way. A complete taxonomy of noise types is still an open research issue[11].
However, two categories of noise types are most commonly addressed in the
literature - class and attribute noise [12, 13, 14, 15]. Class noise (also known
as label or annotation noise) occurs as a result of either contradictory entries
or mislabeling training entries [15], whereas attribute noise occurs due to
either selecting attributes that are irrelevant for characterizing the training
instances and their relationship with the target class, or using redundant or
empty attribute values [15][16].

In the domain of TCS, class noise can be observed when, for example,
a code line in the data appears more than once with different class labels
(test outcomes) for the same test. These duplicate appearances for the same
line become class noise for predictors and would consequently hamper their
classification accuracy. Similarly, one example of attribute noise in the do-
main of TCS can occur when similar lines in the code are written using two
or more coding styles. Written code lines in the less frequently used style
will be characterized by attributes whose frequency deviates from similar
code lines written in the more recurring style(s). These deviations in the
frequency of attributes between similar code lines can negatively affect the
learning performance.

A number of research studies proposed several techniques for handling
class and attribute noise [12][17][18][19]. Those can be classified into three

broad categories: tolerance, elimination/filtering, and correction/polishing.
In the tolerance category, imperfections in the data are dealt with by leaving
the noise in place and designing ML algorithms that can tolerate a certain
amount of noise. Approaches in the elimination category seek to identify noisy
entries and remove them from the data set. Entries that are suspected to be
spurious (e.g., mislabelled or redundant) are discarded and removed from the
training data. In the last category, instead of removing the corrupted entries,
those entries get repaired by replacing their values with more appropriate
ones. There are a number of advantages and disadvantages associated with
each one of these approaches. In the tolerance category, no time needs to be
invested on cleaning the data, but a learner built from uncleaned data might
be less effective. By filtering noisy instances, we compromise information
loss in the interest of retaining cleaner instances of the data. By carrying out
correction of noisy instances, we introduce risks of presenting undesirable
attributes but preserve maximal information in the data.

In a previous work[10], we introduced an approach for addressing the
problem of annotation noise by relabeling contradictory entries and removing
duplicate entries that belong to one of the binary classes. The empirical
evaluation of applying the technique was measured with respect to precision,
recall, and f-score using an industrial data. In this study, we extend that work
by examining the effect of applying an attribute noise elimination approach,
called Pairwise Attribute Noise Detection Algorithm (PANDA) [20], on the
performance of a TCS learner using the class-noise cleaned data reported in
[10]. The purpose is to provide testers with insights into choosing the right
noise handling strategies, and consequently achieve more effective TCS. For
this purpose, we design and implement a controlled experiment on the same
industrial data-set used in our previous study [10] and examine the effect
of removing training observations that come with high attribute noise on
learning. Specifically, we address the following research question:

RQ: How can we improve the predictive performance of a learner
for test selection by handling class and attribute noise?

In this study, we focus on examining the effect of handling both class and
attribute noise on the performance of an ML classifier for selecting regression
tests on both functional and integration testing levels. The sample data-
set used belongs to a large telecommunication program written in the C
language and consists of 82 test execution results for twelve test cases. We
validate the findings by comparing the performance results of three learners

4

with respect to precision, recall, and f-score. These learners are trained on:
original (uncleaned data), class-noise cleaned data, and class and attribute
noise cleaned data.

Hereafter, Section 2 will correspond to the related work highlighting stud-
ies made on class and attribute noise handling. Then, Section 3 presents back-
ground information, providing core concept, a description of the TCS method
used in the paper, and examples and definitions on class and attribute noise
in code changes data. Section 4 describes the two approaches used in this
study for handling class and attribute noise. Section 5 describes the research
methodology. Then, Section 6 presents the evaluation results of the effect of
class and attribute noise. Thereafter, Section 7 answers the research question
and presents recommendations to testers. Section 8 addresses the threats to
validity of this study. Finally, Section 9 concludes the findings and highlights
future work.

2. Related Work

Many research efforts have been made to handle class and attribute noise
for improving the predictive quality of learners. However, studies that in-
vestigate the impact of class and attribute noise handling in the domain of
software engineering is lacking [21]. In this section, we begin by highlighting
work that leverage the use of ML models for early prediction of defects and
test case verdicts for test selection. Thereafter, we highlight related work that
examine the effect of class and attribute noise on learning performances.

2.1. Text Mining For Defect Prediction and Test Case Selection

A multitude of early approaches have used text mining techniques for
leveraging early prediction of defects and test case verdicts using various
learning algorithms and statistical approaches. However, these studies omit
to discuss the effect of class noise on the quality of the learning predictors.
As a result, in this paper, we mention some of these previous work, as sum-
marized in Table 1

A previous work on test case selection [9] utilized text mining from source
code changes for training various learning classifiers on predicting test case
verdicts. The method uses test execution results for labelling code lines in
the relevant tested commits. The maximum precision and recall achieved
was 73 and 48 percent using a tree-based ensemble. Hata et al. [22] used
text mining and spam filtering algorithms to classify software modules into

Study | Type Systems Predictors Results
BIRT, ECLP, .
22] gfefﬁ;on MODE, TPTP, Spam Filter Eﬁ?ﬁl‘;g 40,
and WTP
Precision 72,
23] Defects ArgoUML Spam Filter Recall 70
Prediction | and BIRT ..
Precision75,
Recall 72
K-NN:
Regression, Precision 59,
24] Defects JHotDraw ADABoosting, | Recall 69
Prediction | and DNS C4.5, SVM,
K-NN Precision 59,
Recall 23
Apache 1.3,
Bugzilla,
Columba,
Gaim, GForge,
R v
Eclipse JDT, Plone,
PostgreSQL,
Scarab,
and Subversion
9] TCS Industrial Software | RF Precision 73,
Recall 48

Table 1: Results Summary For Defects Prediction and Test case Selection Research

either fault-prone or non-fault-prone. To identify faulty modules, the authors
used bug reports in bug tracking systems. Using the ’id’ of each bug in a
given report, the authors tracked files that were reported as defective, and
consequently performed a ‘diff’ command on the same files between a fixed
revision and a preceding revision. The evaluation of the model on a set of
five open source projects reported a maximum precision and recall values of
40 and 80 percent respectively.

Similarly, in an earlier work, Mizuno el al.[23] mined text from the Ar-
goUML and Eclipse BIRT open source systems, and trained spam filtering

6

algorithms for fault-prone detection using an open source spam filtering soft-
ware. The results reported a precision of 72-75 percent and a recall of 70-72.

Aversano et al. [24] extracted a sequence of source code snapshots from
two version control systems and trained five learning algorithm to predict
whether new code changes are defective or not. The K-Nearest Neighbor
predictor performed better than the other algorithms with a good trade-off
between precision and recall, yielding precision and recall values of 59-69
percent and 59-23 percent respectively.

Kim et al. [2] collected source code changes, change metadata, complex-
ity metrics, and log metrics to train an SVM model on predicting defects
on file-level software changes. The identification of buggy commits was per-
formed by mining specific keywords such as ‘Fixed’ or ‘Bug’ in change log
messages. Once a keyword is found, the assumption that changes in the asso-
ciated commit comprise a bug fix is made, and hence used for labelling code
instances in the relevant commit. The predictor’s quality on 12 open source
projects reported an average accuracy of 78 and 60 percents respectively.

2.2. Class Noise Handling Research

Brodley et al.[17] uses an ensemble of classifiers, named Consensus Filter
(CF), to identify and remove mislabeled instances. Using a majority voting
mechanism with the support of several supervised learning algorithms, noisy
instances are identified and removed from the training set. If the majority of
the learning algorithms fail to correctly classify an instance, a tag is given to
label the misclassified instance as noisy and later tossed out from analysis.
The evaluation results show that when the class noise level is below 40%,
filtering results in better predictive accuracy than not filtering. On the basis
of their experiments, the authors suggest that using any types of filtering
strategies would improve the classification accuracy more than not filtering.

Al-Sabbagh et al.[25] conducted a controlled experiment to examine the
effect of class noise at six levels on the learning performance for a test se-
lection model. The analysis was done on an industrial data for a software
program written in the C++ language. The results revealed a statistically
significant relationship between class noise and the precision, f-score, and
Mathew Correlation Coefficient under all the six noise levels. Conversely, no
similar relationship was found between recall and class noise under 30% noise
level. The conclusion drawn suggested that higher class noise ratio leads to
missing out more tests in the predicted subset of test suite. Moreover, it
increases the rate of false alarms when the class noise ratio exceeds 30%.

Guan et al.[12] introduced CFAUD, a variant of the approach proposed by
Brodley et al.[17], which involves a semi-supervised classification step in the
original approach to predict unlabeled instances. The approach was tested
for an effect on learning for three ML algorithms (1-NN, Naive Bayes, and
Decision Tree) using benchmark data-sets. The empirical results indicate that
both majority voting and CFAUD have a positive effect on the learning of
the three ML algorithms under four noise levels (10%, 20%, 30%, and 40%).
However, averaged on the four noise levels, the improvement that CFAUD
provides over CF is around 12% for each of the three classifiers.

Muhlenbach et al.[13] introduced an outlier detection approach that uses
neighbourhood graphs and cut edge weight algorithms to identify mislabeled
entries. Instances identified as noisy are either removed or relabeled to the
correct class value. Relabeling is done for instances whom neighbours are
correctly labeled, whereas entries whom neighbouring classes are heteroge-
neously distributed get eliminated. Evaluated on ten domains from a machine
learning repository, three 1-NN models were built using the following train-
ing Trials: 1) without filtering, 2) by eliminating suspicious instances, 3) by
relabeling or else eliminating suspicious instances. The general observation
drawn from the analysis showed that starting from 4% noise removal level
and onward, using the filtering approach yielded better performance in 9 out
of 10 of the domains data-sets.

2.3. Attribute Noise Handling Research

Khoshgoftaar et al.[11] presented a rule-based approach that detects noisy
observations using Boolean rules. Observations that are detected as noisy
are removed from the data before training. The approach was compared
for efficiency and effectiveness against the C4.5 consensus filter algorithm
presented in [17]. The results drawn from the case study suggests that when
seeding noise in 1 to 11 attributes at two noise levels, the consensus filter
outperforms the rule-based approach. Conversely, the rule-based approach
outperforms the other approach with respect to efficiency.

Khoshgoftaar et al. [18] proposed an approach that computes noise ranks
of observations relative to a user defined attribute of interest. A case study
for evaluating the approach was conducted on data derived from a software
project written in C and consists of 10,883 modules. In their study, the at-
tribute of interest was chosen to be the class attribute. A comparison between
the efficiency and effectiveness of the method in detecting noise and a popu-
lar classification filter algorithm [17] was made. The results reported different

8

effectiveness scores ranging from 24% to 100% effectiveness.

Khoshgoftaar et al.[26] extended their work in [20] and proposed an ap-
proach that identifies noisy attributes in the data. Upon identifying attributes
that are least correlated with the target class, those attributes get eliminated
from the analysis. The approach is based on the Kendall’s Tau rank corre-
lation to identify weakly correlated attributes with the target attribute. In
terms of evaluation, the effectiveness of the technique was studied using two
data-sets belonging to assurance software projects, where an inspection of a
software engineering expert was done to judge the performance of the ap-
proach. The overall results suggest a strong match between the output of the
approach and the observations drawn from an expert in the field.

Teng[27] studied the effectiveness of three noise handling approaches,
namely robustness, filtering, and correction using decision trees built by C4.5.
Twelve machine learning data sets were used for the evaluation. The classi-
fication accuracy of the learners suggest that elimination and correction are
viable mechanisms for minimizing the negative impact of noise. In partic-
ular; using an elimination approach before building a classifier reported an
accuracy score that ranged from 77% to 100%.

Quinlan[28] demonstrated that as the noise level in the data increases,
removing attribute noise information from the data decreases the predictive
performance of inductive learners if the same attribute noise is present in
other attributes in the data to be classified. Similarly, Zhu and Wu concluded,
following a number of experiments, that attribute noise is not as harmful as
class noise on the predictive performance of ML models[15].

While the majority of these work emphasize on the importance of han-
dling both class and attribute noise in data for improving the predictive
performance, the results from our study provide counter-evidence that op-
poses these findings when it comes to attribute noise. More precisely, the
analysis results demonstrate that removing training observations that come
with high attribute noise has no effect on the predictive performance of an
ML classifier. These results are in line with the findings drawn by Quinlan,
Brodley and Friedl, and Zhu and Wu [28] [29][15].

3. Background, Definitions, and Examples

This section presents the core concepts needed to facilitate the reading of
the paper. It also describes the TCS method used for the evaluation of the

study, and provides definitions and examples on class and attribute noise in
code churns data.

3.1. Core Concepts

In our approach, we use the definition of a software program P to be a
collection of functions F <F;, ..., F, >. Each function in P consists of
a sequence of statements S <S;,...,5,>. P’ denotes a modified reversion
of P, and includes one or more combinations of added, removed, modified
statements distant from P. In the work here, we use the term ‘old revision’
to refer to P and ‘new revision’ to refer to P’. The amount of code changes
between P and P’ is denoted as code churn and consists of a one or more
statements S <S;,...,5,>. A test case, denoted by fc, is a specification of
the inputs and expected results that defines a single test to verify that P’
complies with a specific requirement. The result of executing a single test
case tc is referred to as ‘test case verdict’ (passed or failed) and is denoted
with tcv. The value of tcv changes depending on the code against which tc
was executed. The execution of tc is denoted with tce.

In this study, we use the tcv value of one tce to label each S, in the
analyzed code churn. A set of test cases T = <tc;, tce, ...> is the test
suite for testing P’. Regression test selection refers to the strategy of testing
P’ using a subset of available tc in 7. A duplicate entry, denoted as de, is
the appearance of two or more combinations of syntactically identical S in
one or more code churns. A set of de has contradictory entry if one or more
combinations of de in the set are labeled with different test verdicts. Pairs
of contradictory entries are treated as class noise.

3.2. Method Using Bag of Words For Test Case Selection (MeBoTS)

MeBoTS is a machine learning based method that functions as a predictor
of test case verdicts [9]. The method employs a predictive model that learns
from historical code churns and their relevant test case verdicts for predicting
lines that would trigger test case failures. The method is described in 3 steps.

Code Changes Extractor (Step 1). The first step involves collecting code
churns from designated source code repositories. To automate the collec-
tion process, we implemented a program that takes a time ordered list of
historical test case execution results queried from a database. Each element
in the list represents a metadata state of a previously executed test case,
containing a hash reference that points at a specific location in Git’s history.

10

The program then performs a file comparison utility (diff) between pairs
of consecutive hash references to extract a corpora of code churns between
different revisions. All empty lines that exist in the extracted code churns
are filtered out from the data before being passed to the second step of the
processing pipeline in MeBoTs.

Teztual Analysis and Features Extraction (Step 2). The second step in the
method involves transforming the collected code changes into feature vectors.
For this purpose we used an open source tool [30] that utilizes the Bag of
Words (BoW) approach for modelling textual input. The tool uses each line
from the extracted code churns in step 1 and:

e creates a vocabulary for all LOC (using the bag of words technique,
with a cut-off parameter of how many words should be included")

creates a token for words that fall outside of the frequency defined by
the cut-off parameter of the bag of words

finds a set of predefined keywords in each line

checks each word in the line to decide if it should be tokenized or if it
is a predefined feature

Therefore, MeBoTs treats code tokens as features and represents a code line
with respect to its tokens’ frequencies. To our knowledge, this way of extract-
ing feature vectors from the source code is new in our approach, compared
with other popular approaches for defects and test prediction. In particular,
MeBoTS can directly recognize what is written in the code without the need
to compile the code and access its abstract syntax tree for generating feature
vectors. Table 3.2 lists and describes some of the most popular approaches
for defects and test prediction using source code analysis. The Table also in-
cludes a list of some of the advantages and disadvantages of each approach,
and a brief comparison between these approaches and MeBoTs.

'BoW is essentially a sequence of words/tokens, which are descendingly ordered ac-
cording to frequency. This cut-off parameters controls how many of the most frequently
used words are included as features — e.g. 10 means that the 10 most frequently used
words become features and the rest are ignored.

11

Method

Description

Pros and Cons

MeBoTs

Uses code static
metrics, such as code
complexity, size, churn
metrics to train

Pros:

- Strong empirical
evidence that supports
the use of some code
metrics for defects
prediction for Java

- language
agnostic and can
be applied on
any program-
ming language.

Code machine learnin rograms - The features
metrics & Prog ' from MeBoTS
models on classifying .

: are not decided
defective code. Cons: o prior. and
Examples: [31], - Static metrics need PHOT

. . .| are not
[32] to be decided a priori,
dependent on
and they depend on .
. size.
the size.
Pros:
- Characterize defects | | Generates
using abstract syntax feature vectors
Uses machine learning g . Y from the actual
tree information from .
models to learn the code program using
Static | semantic features) textual analysis
Code | derived from abstract -Does not
Analysis | syntax trees Cons: require the code
i - Code needs to be .
Examples: [5], [6],) to be compiled.
compiled. .
33] - Uses statistics
- Does not scale well .
to generate 1ts
when the number of
. feature vectors.
tree nodes increases.
Pros:
-Allows for analysis
This category relies on| of the program
executing the program| without having access | - Analyzes the
Dynamic| and comparing its to the code. code before
Analysis | actual with expected compiling the
behavior. Cons: program.

Examples: [34], [35]

- If the code does
not run, no analysis

is done

Table 2: Comparing Popular Defect and Test Prediction Approaches with MeBoTs.

12

Training and Applying the Classifier Algorithm (Step 3). We exploit the set
of extracted features provided by the textual analyzer in step 2 and the
verdict of the executed test cases for training a predictive model on classifying
LOC into either triggering to test case failure or not.

3.3. Noise Definitions and Examples

Noisy observations are commonly determined by two factors: 1) the cor-
rectness of the class values, and 2) by how well the selected attributes describe
learning instances in the training data. This section provides a definition and
an example for each type of noise (class and attribute) found when analyzing
input data that corresponds to code churns (attributes) and tcv (class).

3.3.1. Example of the dependency between code churns and test case verdict

In this subsection, we present an example that illustrates the dependency
between code churns and test case verdicts. The example shows how a unit
test case will react to a code change in P’ of P. Figure 2 shows two revisions of
an example program P written in the C++ language. The modified revision
P’ in the Figure includes the same code fragments in P except for the two
framed statements S1 and S2. SI is a declaration of an array of type int*,
whereas 52 is an assignment of value 0 to the array element pointers[2] in
Fl:getpointersArray. In the C++ language, pointers that are assigned the
value of 0 are called null pointers because a memory location of address 0 does
not exist and therefore a run-time exception will be thrown when executing
the program. To avoid such assignments in the code base, a unit test case
tcl:testTaskArrayDeclarations is created to assert that all elements in
the pointers’ array are not set to null (assigned 0), as shown in Figure 2. By
executing tcl against P’, we observe from the that the code churn S7 and S§2
triggered the tcv of tc1 to change from a Pass to a Failing state. The reaction
of tcl to the churned P showcases the dependency between code churns and
test case verdict. Therefore, the underlying theory that test cases would
react to code churns is worth exploring for predicting test case verdicts for
test case selection.

3.3.2. Definition and Fxample of Class Noise in Code Churns Data

In this study, class noise is defined as the ratio of contradictory entries de
to the overall number of entries in the analyzed data. Since a contradictory
entry can only occur among two (or more) de, the number of all duplicate
entries for which an entry is assigned a different class label is identified as

13

Original Revision Modified Revision CPPUnit Test

Code Changes
using namespace std; ‘ using namespace std;
Hclass (BasicProgram Hclass (BasicProgram ‘
{ { public:

public:
int nums[2];
(BasicProgram() : nums{ 12, 12 } {}

public:
int nums[2];

int const size = 2

(BasicProgram() & nums{ 12, 12 } {} void setlp)
: : {
e . t = new (BasicProgran();
int *pointers[2]; t-ogetpointershrray();
- int *getpointersArray() }
- int *getpointersArray() { S void testTaskirrayDeclarations()
{ pointers[@] = &nums[@]; {
pointers([e] = Snuns[e]; po%nters[l] = &nums[1]; B for (int 1= 0; 1 < size; i#t)
wold i {
pointers[1] = &nums[1]; ¥ CPPUNTT_ASSERT (t-spointers[i] != nullptr);
* 3 .
return *pointers; } e pmnters' } }
} } }

Figure 2: Example On the Relationship Between Code Churns and Test Case Verdicts
a contradictory entry. More formally, the formula for calculating this noise
ratio can be expressed as follow:

Number of Contradictory Entries
Total Number of Entries

Class Noise ratio =

For example, a data-set containing six de with five de labeled as true and
one labeled as false has six contradictory entries. Finding a rule to identify
which class should be used to correct a mislabelled entry is not trivial, since
we do not know the context in which these entries occurred nor the sources
of noise that triggered the differential class labels.

As an illustration of the class noise problem in a data-set consisting of
code churns, Figure 3 shows a sample C++ program transformed into feature
vectors using the BoW approach. Each line of code in the sample program
is transformed into a line vector which gets assigned a class value based on a
tce result for the committed code. These transformed lines and their relevant

14

tce get fed as input into an ML model for training. The model is used to
predict which lines in the program will trigger a test case failure or success.

Class, result of

test executions
over time
Feature vector, result of Bow
|

Line | literal int main include char bracket quote cin class

1 #include <iostream> 0 0 0 1 0 0 0 0 pass
2 0 0 0 0 0 0 0 0 pass
3 Aint main() 0 1 1 0 0 2 0 0 pass
4 { 0 0 o0 0 0 1 0 0 pass
5 char strInput[20]; 1 0 0 0 1 2 0 0 pass
6 0 0 0 0 0 0 0 0 pass
7 // Lines 8-10 are added in the first commit 2 0 0 0 0 0 0 0 pass
8 std::cout << "Please enter a string: "; 1 0 0 0 0 0 2 0 pass
std::cin >> strInput; 0 0 0 0 0 0 0 1 pass
10 std::cout << "You entered: " << strInput << std 0 0 0 0 0 0 2 0 pass
11 0 0 0 0 0 0 0 0 fail
12 // Lines 13-15 are added in the second commit 0 0 0 0 0 0 0 0 fail
13 std::cout << "Please enter another string: "; 0 0 o0 0 0 0 2 0 fail
14 std::cin >> strInput;‘ 0 00 0 0 0 0 1 fafl
15 std::cout << "You entered: " << strInput << std:: v v U v v v 2 v (£
16 } 0 0 0 0 0 1 0 0 pass

|
I Two identical code fragments were introduced in two different
commits.

In the first commit, the test case passed - class is set to "pass” for
lines 1-10, and 16.

n the second commit, the test case failed = class is set to "fail” for
ines 11-15.

Figure 3: Class Noise Example in Code Base.

The feature vectors in Figure 3 characterize code lines in the sample
program. All shaded lines in the sparse matrix (lines 8, 9, 10, 13, 14, and 15)
are contradictory entries since each of the pairs (8 and 13), (9 and 14), and
(10 and 15) have the same vectors but different class values (pass and fail).
The formula for calculating the class noise ratio in this example is:

Class Noise ratio = 1% = 0.375

3.4. Definition and Example of Attribute Noise in Code Churns Data

The definition of attribute noise in this paper follows the one proposed by
Van Hulse et al. [20], which suggests that a noisy observation appears when
one or more of its attributes deviates from the general distribution of other

15

attributes. The larger the deviation is for one or more observations, the more
evidence there is that they are noisy. In the context of the given problem (i.e.,
TCS), a deviation between attributes can occur when the general distribution
of S follows a standard coding style, whereas a smaller fraction of S deviates
from the standard.

As an illustration of those deviations in code churns, Figure 4 exemplifies
two coding styles used for expressing ‘case’ blocks in a C++ program. By
examining the ‘case’ blocks in the ‘run_checkl’, ‘run_check2’, and ‘run_check3’
functions, we notice that the first and most reoccurring style uses a line space
to separate statements in a ‘case’ block, as shown in the ‘run_checkl’ and
‘run_check3’ methods. Conversely, the other coding style used in ‘run_check?2’
aligns all set of S in a case block on one line. The attributes in this example
are feature vectors that correspond to tokens in the code fragment. Note how
S21 and S§22 are characterized by additional attribute that deviate from the
majority of attributes in the remaining ‘case’ blocks at 59, S12, S28, and
S30. Those deviations in S21 and S22 from the rest ‘case’ statements are
considered suspicious and therefore irrelevant.

4. Noise Handling and Removal Approaches

The problem of achieving a good learning performance in the presence of
noisy environments has been widely highlighted in the ML literature. Sev-
eral approaches have been built to enhance the learning performance of ML
classifiers [36][15][13]. Nevertheless, the presence of class and attribute noise
have been reported to still have a negative influence on the learning, and thus
needs to be handled before training. In this section, we describe an approach
that we introduced in the baseline study [10] to handle the problem of class
noise. Thereafter, an existing elimination based approach from the literature
for handling attribute noise is described.

4.1. Class Noise Approach

Our approach for handling annotation noise relies on relabeling repeated
code lines that come with different class values. These repeated lines can
potentially occur in code churns due to several scenarios, such as 1) copying
of code [37], and 2) merge transactions [14]. The first scenario manifests itself
in the event of copy-paste’ reuse of code check-ins that had previously passed
the testing and integration phases. In such scenario, the developers explicitly
duplicate source code fragments to adapt the duplicates for a new purpose

16

5 -lbool run_check1(int value)

{

bool correct;

8 |2 switch (value) { Converted
Input
10 correct = true;

11 break;

13 correct = false;

14 break;

15 }

16 return correct;

17 }

18 -lvoid run_check2(bool correct)

19 {

20 S switch (correct) {

21 case 1:std::cout << "correct’\n";break;

22 case @:std::cout << "incorrect!\n";break;

23 }

2 } , Irrelevant attributes with
25 -lvoid run_check3(bool found) -
% || respect to the general

27 |2 switch (found) { distribution

29 std::cout << "found again\n"; break;

s

31 std::cout << "not found!\n"; break;
2 }

33 }

34 =int main()

{

int int_value = 1;

run_check2(true);
run_check3(found);

© ® e n

»
>
—

Figure 4: Attribute Noise Example in Code Base.

bool found = run_check1(int_value);

Feature Vectors, reults of Bow

Line case literal

9

12

21

22

30

std

cout << break

1

1

0 0 0
0 0 0
1 1 1
1 1 1
0 0 0
0 0 0

in a quick fashion [37]. The second scenario appears when developers in one
or more teams work on dedicated branches for features development and
use similar code phrases as to those committed and merged from different
branches [14] e.g., 'x = x + 1;". When extracting such code check-ins with
duplicate code phrases for TCS, inconsistent observations with different class
values might occur.

To address the problem of contradictory code lines in code churns data, we
present an approach that relies on domain knowledge for identifying instances
(code lines) that require relabeling. We use the phrase class-noise cleaned to
refer to a data-set on which the class noise handling approach was applied.
A step-by-step description of the approach is as follow:

e sequentially assign a unique 8-digit hash value for each line of code in
the original data set

e create an empty dictionary for storing unfiltered lines of code.

17

e iterate through the set of hashed lines in the original data set and save
non-repeated (syntactically unique) lines of code in the dictionary.

e compare the annotation values of each pair of duplicate lines in the
original and dictionary sets. If the class value of the repeated instance
in the original set is annotated with 1 (passed) and the class value of
the same instance in the dictionary is annotated with 0 (failed), then
relabel the class value for the instance in the dictionary from 0 to 1. If
the class values of both duplicate lines are annotated with 1’ then
skip adding the entry from the original set into the dictionary.

This way of handling annotation noise can be seen as both corrective
and eliminating, since it 1) corrects the label of duplicate entries that first
appears as failing and then pass the test execution, and 2) removes duplicate
lines that are labeled as passing.

Defective lines often occupy a small proportion of the overall fragment of
code changes. Thus, a random line from a fragment, which was overall labeled
as failing is more likely not to be the cause of the failure. Therefore, our design
decision is to relabel lines as 'passed’, if they have already been seen as part of
non-failing fragments before. Thus, we select a more conservative approach
when it comes to labeling lines as failing, in order to minimize the likelihood

of mislabeling training entries?.

4.2. Selected Attribute Noise Handling Approach

As mentioned earlier, attribute noise can occur due to selecting attributes
that are irrelevant for characterizing the training instances. In the domain of
TCS, those attributes can materialize when, for example, the analyzed code
consists of fragments that are written using different coding styles or when a
small number of statements/conditions/function declarations etc deviate in
syntax from the majority of similar lines in the code.

To address the problem of attribute noise in training data, we decided to
use an existing elimination based approach called PANDA [20] that identifies
training instances with large deviations from normal. The PANDA algorithm
identifies such instances by comparing pairs of attributes in the space of
feature vectors. The output is an ordered list of noise scores for each code
line - the higher the noise score for a code line, the higher it deviates from

Zhttps://github.com /khaledwalidsabbagh /Annotation_Noise

18

normal. Upon ranking noisy instances, the generated list can be used to toss
out instances (code lines) that come with the highest rank with respect to
attribute noise.

The algorithm starts by iterating through all attributes in the input fea-
ture vectors. In each iteration, a single attribute x; gets partitioned into a
number of bins, based on a predefined bin value that is set by the user. Each
bin will have the same amount of instances, given that the number of input
observations is divisible by the number of partitions. In the absence of tied
values, the algorithm includes all boundary instances that fall outside the
range of the bin size in the last bin. After the partitioning is complete, the
mean and standard deviation for instances in each bin are calculated and
used to derive a standardized value for each instance in attribute x,. The
standardized value is then calculated by subtracting the ratio of mean to
standard deviation in the bin relative to z; from each instance value in .
This approach is repeated for all attributes in the input space of vectors.
Finally the MAX or the SUM value of each observation is calculated. Large
sum or max values indicate an observation that has a high attribute noise
value.

Figure 5 exemplifies the output produced by the PANDA algorithm when
applied on the code fragment presented in Section 3.4. Note that in this
example, only lines that start with the keyword ’case’ were input to the
algorithm, whereas in our experiment, all code lines in the sample data-set
were input. The bins’ size in the example program was set to 1 and the output
produced is a list of observations ordered from the most to the least noisy
using the MAX function. Note that the highest noise scores in the sample
data were identified for lines 21 and 22 as their attribute values deviate from
the remaining majority of the 'case’ statements in lines 9, 12, 28, and 30.

5. Research Methodology

The goal of this paper is to examine the effect of handling class and
attribute noise in code change data-sets for improving test case selection.
This section describes the design and operations carried out for analyzing the
impact of class and attribute noise handling on the predictive performance
of a learner for test selection.

19

=bool run_check1(int value)

° { line case literal : std cout << break
7 bool correct; Converted
8 = switch (value) { 9 1 1 1 0 0 0 0
l; -_case 1: - Input
correct = true; 12
" break; ‘ 1 11 0 0 0 0
13 correct = false; 4 1 23 1 1 1 1
4 break;
. , e 2 1 23 1 1 1 1
16 return correct;
7|y 2 1 11 0 0 0 0
f\ —\(/oid run_check2(bool correct) 30 1 11 0 0 0 0
20 B switch (correct) { Feature Vectors
21 case 1:std::cout << "correctT\n";break;
22 case @:std::cout << "incorrect!\n";break;
23 } Output
24 }
25 =lvoid run_check3(bool found) . .
2% { Line Noise Score
27 = switch (found) {
28 21 23111123101 071 071 071 028 029 029 071 071 071 3@
29 std::cout << "found again\n"; break;
30 22 2311112311, 0707071 029 029 029 071 071 071 300
31 std::cout << "not found!\n"; break;
2 } 28 1100001100 . 071071071 029 029 029 071 071 011 28
33 }
34 |=int main() 30 1100001100 . 071071071 029 029 029 071 071 011 28
35 {
36 int int_value = 1; 9 1100001100 . 0290202029 129 229 029 029 029 229
7 bool found = run_checkl(int_value);
38 run_check2(true); 1210100001100 . 029 029 029 029 129 229 029 029 029 229
39 run_check3(found);
s ||} Ordered List of Noisy Observations

Figure 5: An Excerpt of PANDA’s Output

5.1. Original Data Set

In the baseline paper [10], we worked with a data set of code churns
that belong to a legacy system written in the C language. A total of 82 test
case execution results (35 passed tests and 47 failed tests) for 12 test cases
and their relevant set of code changes (1.4 million LOC) were collected. The
system from which the sample data was extracted belongs to a large Swedish
telecommunication company and has the size of several million lines of code.
The feature vectors generated from the data-set presented in [10] comprised
a total of 2251 features/attributes. The distribution of the binary classes in
the collected data was fairly balanced, with 44% of the code lines belonging
to the 'passed’ class and 56% to the ’failed’ class 3.

3Due to non-disclosure agreements with our industrial partner, our data-set can not be
made public for replication.

20

5.2. Random Forest For Evaluation

In this study, the MeBoTS method described in Section 3 was used as an
example of a TCS approach. The selected learning model for the evaluation
was random forest (RF'), mainly due to its low computational cost and white-
box nature compared with deep learning models. In the context of MeBoT'S,
using a white-box model, such as RF, is important since it can showcase
the feature importance charts. These charts can provide practitioners with
insights into the tokens that led to the prediction of failing test cases.

The hyper-parameters of the model were kept in their default state as
found in the scikit-learn library (version 0.20.4). The only configuration made
was in the n_estimator (the number of trees) parameter, where we changed it
from 10 to 100. We did not experimentally seek to tune the n_estimater value
in the RF model, since the goal of this study is not to optimize the predictive
performance of the model, but rather to examine the effect of attribute and
class noise on TCS. However, we experimented the use of another variation
of the n_estimater in the RF model (n_estimater=300) in order to get an
understanding of whether this would affect the model’s performance. The
performance results produced by the model using an n_estimater of 300 can
be found in Appendix A.

5.53. Class Noise

The evaluation of the presented class noise approach was done by com-
paring the learning performance of the ML model in MeBoTS under two
training trials 1) using the original (uncleaned) data, and 2) using a class-
noise cleaned data. For each training trial, we measured the performance in
terms of precision, recall, and f-score, for an ML model.

Applying the class noise handling approach (described in Section 4.1)
on the original (uncleaned) data-set resulted in a reduced set, comprising
of 140,130 LOC. We use the adjective ‘class-noise cleaned’ to refer to this
reduced set. The number of lines labelled as passing in the cleaned set were
46%, whereas the remaining 54% of the lines were labelled as failing. A
random split of the class-noise cleaned data was performed to generate s
training and testing sets. The size of the training set comprised of 112,104 line
vectors, whereas the remaining 28,026 line vectors were used for evaluating
the learning of the model.

21

5.4. Attribute Noise

The extension provided in the study focuses on examining the effect of
eliminating instances with attribute noise on the learning performance for
TCS. To identify possible causality between attribute noise and learning per-
formance, a controlled experiment was carried out. This subsection describes
the experimental design and operations conducted to examine the causality.

5.4.1. Adopted Data-Set

In this study we wanted to get an initial understanding of the effect
of attribute noise on the learning performance of an ML model for TCS.
Therefore, we experimented the effect of attribute noise removal on a subset
of observations and attributes from the class-noise cleaned data. The selected
subset was created by randomly selecting 19,815 instances and 800 attributes.
This data-set will act as the control group and will be used as a baseline for
the class-noise cleaned data.

According to Ganganwar [38], a data-set is called imbalanced when it
contains many more samples under one class than from the rest of the classes.
Accordingly, we inspected the distribution of the samples in the control group
with respect to the binary classes (defective and non-defective) to determine
the balance of classes. Figure 6 shows that the distribution of instances in
the non-defective class contains many more samples than the defective class
(14400 to 5415 samples). Based on this distribution and given that we only
have two classes (binomial distribution), we consider the control group to be
imbalanced. To overcome this problem, we chose to upsample instances in
the minority class using the resample’ module provided in the Scikit-learn
library [39]. The idea of oversampling is to randomly generate samples from
the minority class instances until the number of minority class is the same
as the number of majority class.

5.4.2. Independent Variable and Ezxperimental Subjects

In this study, attribute noise removal was the only independent variable
(treatment) examined for an effect on classification performance. Ten varia-
tions of the treatment were selected. Namely, 5%, 10%, 15%, 20%, 25%, 30%,
35%, 40%, 45%, 50%. Each treatment level corresponds to a fraction size of
observations that gets eliminated before training the ML model in MeBoTS.
We used 25-fold stratified cross validation on the control group to derive
25 experimental subjects on which the treatment is applied. Each subject is
treated as a hold out group for validating an RF model which gets trained

22

25000

20000

15000
m Non-Defective Lines

m Defective Lines
10000

5000

Figure 6: The Distribution of Classes In The Adopted Data-Set

on the remaining 24 training subjects. A total of 275 trials derived from the
25-folds were conducted - each 25 trials for evaluating the performances of a
learner under one treatment level.

5.4.3. Dependent Variables

The dependent variables are three evaluation measures used for the per-
formance of an ML classifier — Precision, Recall, and F-score. The three
evaluation measures are defined as follows:

e Precision is the fraction of passing-classified tests that are actually
passing.

e Recall is the fraction of really passing tests that are classified as passing.

e The F-score is a harmonic mean between precision and recall.

When the precision of a classifier is high, less test cases that do not detect
faults in the system under test are executed, whereas when the recall is high
less false alarms about detected faults are produced. Therefore, the higher
the precision and recall a classifier gets, the better the test selection process.

23

5.4.4. FExperimental Hypotheses

Three hypotheses are defined according to the goals of this study and
tested for statistical significance in Sectionb.4.5. The hypotheses were based
on the assumption that data-sets with more attribute noise have a signifi-
cantly negative impact on the classification performance of an ML model for
TCS compared to data with no attribute noise. The hypotheses are as follow:

e HOp: The mean Precision is the same for a model with and without
attribute noise

plp = p2p (1)

e HOr: The mean Recall is the same for a model with and without at-
tribute noise

plr = p2r (2)

o HOf: The mean F-score is the same for a model with and without at-
tribute noise

plf = p2f (3)

For example, the first hypothesis can be interpreted as: a data-set with a
higher attribute noise ratio will result in significantly lower Precision rate, as
indicated by the mean Precision score across the experimental subjects. After
evaluating the hypotheses, we compare the evaluation measures under each
treatment level with those at 0% attribute noise removal level.

5.4.5. Data Analysis Methods

The experimental data were analyzed using the scikit learn library [39].
To decide whether to use a parametric or non-parametric test for the analysis,
a normality test was carried out. First, we plotted the frequency distribu-
tion graphs for the three dependent variables under each treatment level to
see if they deviate from a normal distribution. To further validate the vi-
sual inspection, a Shapiro-Wilk test was carried out. The results showed
that 3 dependent variables are not normally distributed (see Section 6.2 for
details). Based on the normality test results, we decided to use two non-
parametric tests, namely: Kruskal-Wallis and Mann-Whitney. To evaluate

24

the hypotheses, the Kruskal-Wallis was selected for comparing the median
scores between the three evaluation measures under the 11 treatment levels.
The Mann—Whitney U test was selected to perform a pairwise comparison
between the evaluation measures under each treatment level and the same
measures with no treatment (0% noise removal).

5.4.6. Attribute Noise Removal

As mentioned earlier, the adopted data-set acts as the control group in
this experiment. This control group is used to examine the effect of the
treatment on the learning performance of the ML model in MeBoTS (RF).
Moreover, we use this group as a baseline for comparing the effect of class
noise handling and the attribute noise removal approaches on learning.

To apply the treatment, we began by running the PANDA algorithm on
the control group. The output is an ordered list of observations that are
ranked with respect to the amount of noise identified in their attributes.
Table 3 shows an excerpt of the three top ranked observations generated
in the ordered list. Note that due to the non-disclosure agreement with our
industrial partner, all original keywords in the ‘Code Line’ column, such as
variable and class names, are replaced with artificial variable names. The
indexes in the first column of the list are used to retrieve and eliminate a
fraction of observations from the training subjects. The size of the fraction
depends on the desired treatment level. For instance, a treatment of 5%
implies retrieving 5% of observations that are top ranked in the PANDA'’s
list (5% of 19,815 LOC) and from the training subjects and removing them. In
this experiment, ten variations of the treatment was applied (5%, 10%, 15%,
20%, 25%, 30%, 35%, 40%, 45%, and 50%). For each treatment, a fraction
of observations that is equivalent in ratio to the treatment level is fetched
and removed from the training subjects. As soon as those observations are
removed, the training subjects are fed into an ML model for training and the
precision, recall, and f-score are recorded for the model.

In this experiment, a bin size of five was used in the PANDA. This means
that each attribute in the analyzed data is split into five bins and the com-
parison between each pair of attributes is done relative to those bins. The
implementation of the PANDA algorithm used in this study can be found at
the link in the footnote?.

4https://github.com/khaledwalidsabbagh /Handling_Attribute_Noise_ PANDA

25

Index Code Line Noise Score
1181 __class__ ((constructor)) 518
1056 | if (lisNotEmpty() && sharedPool) 518
1051 // addPoolConfig return value 518

Table 3: An Excerpt Of the Output Generated From PANDA

6. Evaluation Results

In this section, we present and compare the results of learning obtained
from training on 1) the original and class-noise cleaned data, and 2) the
class-noise cleaned data and the class and attribute noise cleaned data-sets.
We report the learning in terms of precision, recall, and f-score.

6.1. Original vs. Class Noise Cleaned Data

The performance measurements of the RF classifier built on the class-
noise cleaned data is plotted using a confusion matrix, as shown in Figure
7. The Figure shows a non-normalized matrix for the predicted and actual
values of test case verdicts for all lines in the test set. The first cell on
the upper left hand side corresponds to the number of lines (6,543) that are
predicted to trigger test case failures and are actually true. On the same
diagonal, the last cell to the bottom right of the matrix indicates the number
of lines (15,688) that are predicted to be non-defective and are actually true,
and require no testing. The remaining entries in the test set correspond to
the number of misclassified lines.

The bar chart in Figure 8 illustrates the performance measures of the
classifier built on the original and class-noise cleaned data. The results re-
veal that handling class noise in the uncleaned data improves the learning
performance by 70% recall, 37% precision, and 59% F-score compared to the
learning achieved on the original data.

6.2. Class Noise Cleaned vs. Class and Attribute Noise Cleaned Data

This subsection discusses the results of the descriptive statistics and sta-
tistical tests conducted to evaluate hypotheses HOp, HOr, and HOf presented
in Section 5.4.4. The results reported in this section are used for drawing
a comparison between the effectiveness of handling class noise and attribute
noise on the learning performance. Figures 9, 10, and 11 show three box-plot
graphs, which were plotted to visually inspect the effect of removing observa-
tions with attribute noise at each treatment level on the dependent variables.

26

14000

iled A 6543 3510
Failed 12000

10000

True label

- 8000

- 6000
Passed 2286

r 4000

o>
e
((’b§ Q’b{’{,

Predicted label

Figure 7: Confusion Matrix For a Classifier Trained on Class Noise cleaned Data

A first observation from the graphs suggests a lack of causality between the
treatment and the three dependent variables. This observation was further
supported by examining the mean scores of each dependent variable in the
descriptive statistics, as shown in Tables 4, 5, and 6. Note that the precision,
recall, and f-score reported in the three tables under 0% treatment level are
different than those obtained from training on the class-noise cleaned data.
This is because the control group was used as a baseline for the class-noise
cleaned data from which the ML model was built.

To begin the evaluation of the hypotheses, we start by checking the nor-
mality in the distribution of the three dependent variables. The frequency
distribution of the variables were plotted for the 275 trials (25 trials for each
treatment level) to visually inspect normality, as shown in Figures 12, 13,
and 14. Then, the Shapiro-Wilk test was carried out to further support the
observations drawn from the graphs. As can be seen from the graphs, the
distributions appear to be negatively skewed (asymmetric), and thereby the
assumption of normality in the distribution of the three variables do not
hold. The Shapiro-Wilk test results supported the observation drawn from
the graphs and revealed that the null hypotheses of normality for the three
dependent variables can be rejected (p-value <0.05), as shown in Tables

27

100

30 87 84
81

80
70
60
50 44
40
30 25
20 17
’ .

0

Precision Recall F-score

M Original m Class Noise Curated

Figure 8: Learning Performance On the Original and the Class Noise cleaned Data Sets

Treatment | N | Mean | SD | SE | 95% Conf. | Interval
0% 25| 0.53 |0.05]0.01 0.51 0.55
5% 25| 0.53 |0.03]0.01 0.51 0.54
10% 25 0.51 0.1 | 0.02 0.47 0.55
15% 251 051 |0.120.02 0.46 0.56
20% 25 0.5 0.09 | 0.02 0.47 0.54
25% 251 052 |0.02| 0.0 0.51 0.53
30% 25 0.5 0.08 | 0.02 0.47 0.53
35% 25| 0.51 |0.07]0.01 0.48 0.54
40% 25| 0.53 |0.05]0.01 0.51 0.55
45% 25| 0.53 |0.04 |0.01 0.51 0.54
50% 25| 0.53 |0.05]0.01 0.51 0.55

Table 4: Descriptive Statistics For Precision.

6.26.2. Since we have issues with normality in the samples, we decided to run

28

1.0

0.8
¢ *
+
c 06 i ' . J X '
o 4
8 o e o B e e T - e =
[
% 0.4 ! ' * ' ' !
L]
+
0.2 + -
4
*
0.0 ¢

0 5 10 15 20 25 30 35 40 45 50
removed_noise

Figure 9: The Distribution of Precision Values Under the Treatment Levels

-

04 . ‘

1.0

0.8

-

0.6

recall

0.2 ! '

+

00 L] —
0 5 10 15 20 25 30 35 40 45 50
removed_noise

Figure 10: The Distribution of Recall Values Under the Treatment Levels

a non-parametric test for comparing the difference between the performance
measures under the 10 treatment levels.

To examine the effect of removing observations with top rank attribute
noise on the learning, the Kruskal-Wallis test was conducted. Table 9 sum-

29

1.0

0.8
+ .
0.6 L
o~ 5 t ' . ¢
8 ¢ ‘ ' ‘
2' . , 1 ’] ;
04 [' . U *
‘ '
]
0.2 . ;
*
0.0 y

0 5 10 15 20 25 30 35 40 45 50
removed_noise

Figure 11: The Distribution of F-Score Values Under the Treatment Levels

Treatment | N | Mean | SD | SE | 95% Conf. | Interval
0% 25 0.88 |0.13]0.03 0.83 0.93
5% 251 0.83 [0.17] 0.03 0.76 0.9
10% 25 0.8 0.25 | 0.05 0.7 0.9
15% 25 0.78 |0.27] 0.05 0.67 0.89
20% 25 0.8 0.25 | 0.05 0.7 0.9
25% 251 0.88 [0.17] 0.03 0.81 0.95
30% 251 0.84 |0.23] 0.05 0.75 0.93
35% 251 0.85 [0.22]0.04 0.76 0.94
40% 25| 0.77 |0.23 | 0.05 0.67 0.86
45% 251 0.82 [0.21]0.04 0.74 0.9
50% 25 0.8 0.22 | 0.04 0.72 0.89

Table 5: Descriptive Statistics For Recall.

marizes the statistical comparison results, indicating no significant difference
in Precision, Recall, and F-score. Specifically, the results of the comparison
for precision showed a test statistics of 7.96 and a p-value of 0.63. Likewise, a
significant difference in the comparisons between the evaluation measures of
Recall and F-score (Recall Results: Test Statistics = 8.62, p-value = 0.56 , F-
Score Results: Test Statistics = 8.56, p-value = 0.57) values were not found.

30

Frequency

B
o

Frequency

120

100

80

[=1]
o

20

Precision

Figure 12: Frequency Plot For the Precision Scores

0.0 0.2 0.4 0.6

Recall

Figure 13: Frequency Plot For the Recall Scores

31

Treatment | N | Mean | SD | SE | 95% Conf. | Interval
0% 25| 0.66 | 0.04|0.01 0.64 0.67
5% 25| 0.64 | 0.06 | 0.01 0.61 0.66
10% 25| 0.61 0.14 | 0.03 0.55 0.66
15% 25 0.6 0.16 | 0.03 0.53 0.66
20% 25| 0.61 |0.14 | 0.03 0.55 0.66
25% 25| 0.65 | 0.06 | 0.01 0.62 0.67
30% 25| 0.62 |0.13]0.03 0.57 0.67
35% 25| 0.63 |0.12|0.02 0.58 0.68
40% 25| 0.61 0.1 | 0.02 0.57 0.65
45% 251 0.63 0.1]0.02 0.59 0.67
50% 25| 0.62 0.1 |0.02 0.58 0.66
Table 6: Descriptive Statistics For F-Score.
5% 10% 15% 20% 25%
Precision Stat=0.91, | Stat=0.51, | Stat=0.61, | Stat=0.57, | Stat=0.85,
p=0.03 p<0.05 p<0.05 p<0.05 p <0.05
Recall Stat=0.87, | Stat=0.78, | Stat=0.79, | Stat=0.72, | Stat=0.69,
p<0.05 p<0.05 p<0.05 p<0.05 p<0.05
F-Score Stat=0.75, | Stat=0.55, | Stat=0.65, | Stat=0.59, | Stat=0.76,
p<0.05 p<0.05 p<0.05 p<0.05 p<0.05

Table 7: The Shapiro-Wilk Results For Normality From 5% to 25% Treatment Levels.

30% 35% 40% 45% 50%
Procision Stat=0.48, | Stat=0.57, | Stat=0.89, | Stat=0.78, | Stat=0.85,
p<0.05 p<0.05 p=0.01 p<0.05 p<0.05
Recall Stat=0.69, | Stat=0.67, | Stat=0.87, | Stat=0.76, | Stat=0.82,
p<0.05 p<0.05 p<0.05 p<0.05 p<0.05
F_Score Stat=0.55, | Stat=0.6, | Stat=0.89, | Stat=0.74, | Stat=0.78,
p<0.05 p<0.05 p=0.01 p<0.05} p<0.05

Table 8: The Shapiro-Wilk Results For Normality From 30% to 50% Treatment Levels.

Therefore, no statistical evidence could be found to support the rejection of
the null hypotheses HOp, HOr, HOf.

32

100

Frequency
-

00 02 04
F_score

Figure 14: Frequency Plot For the F-Score Scores

p-value | statistics
Precision | p=0.63 | Stat=7.96
Recall p=0.56 | Stat=8.62
F-score | p=0.57 | Stat=8.56

Table 9: Statistical Results For the Comparison Between the Evaluation Measures Under
All Treatment Levels.

7. Discussion

To answer the research question of how to improve test case selection
by handling class and attribute noise?, we compare the results reported in
Sections 6.1 and 6.2, and draw a comparison between the effectiveness of han-
dling class noise and attribute noise. The comparison results are achieved by
examining the precision, recall, and f-score in Tables 4, 5, and 6, and Figure
8. Recall from Section 5.4.1 that the performance measures obtained at 0%
treatment level (control group) are treated as the baseline measures. The
remaining treatment levels are used to examine the effectiveness of handling
attribute noise at different levels on the performance of the ML model used
in MeBoTS.

By examining the performance measures in the Tables and Figure, the

33

following observations are drawn from the comparison:

e compared with the other two trials of training, using an uncleaned
data-set for training provides the lowest learning performance.

e training a learner on a class-noise cleaned data would improve the per-
formance of the learner by 70% recall, 37% precision, and 59% F-score,
compared to a learner built on uncleaned data.

e training a learner on a class and attribute noise cleaned data results in
almost no change in the prediction of passing test cases that are really
passing (recall drop of 4%).

These observations imply that training a classifier on a class-noise cleaned
data will yield to a better performance with respect to precision and recall
than the other two Trials of training. Particularly, the results suggest that
building a learner on class-noise cleaned data will allow testers to correctly
exclude 8 out of 10 actually passing test cases from execution (81% precision).
In addition, the results reveal that training a learner on a PANDA cleaned
data would result in building a learner that is biased towards the positive
class. The implication that these results bring in the domain of TCS are that
tester would falsely exclude 5 out of every 10 actually passing test cases from
execution. These results are in line with the conclusions drawn by Brodley
and Friedl, and Zhu and Wu [29][15], which suggest that attribute noise is
less harmful than class noise on the inductive performance.

Based on the results and discussion points, the following recommenda-
tions are suggested to testers:

e To avoid randomness in the prediction of test case verdicts, uncleaned
data should not be used for building a learner for TCS.

e Testers should consider measuring the ratio of class noise in the data
at hand before building a model for TCS. This would direct the testing
effort by choosing an appropriate noise handling strategy. For example,
if the ratio of class noise is small, then testers can rely on the robustness
of ML algorithms without correcting or eliminating training instances.
If the noise ratio is large, then testers would decide on a correction or
elimination based strategy for cleaning noise.

e Testers should focus on cleaning class noise from the training data, but
not necessarily the attribute noise.

34

8. Threats to Validity

When analyzing the threats to validity of our study, we followed the
framework recommended by Wohlin et al.[40] and discuss the validity in
terms of: external, internal, construct, and conclusion.

Ezxternal Validity:. External validity refers to the degree to which the
results can be generalized to applied software engineering practices.

Test Cases Sample. Since our original uncleaned data are related to twelve
test cases only, it is difficult to decide whether the studied sample of code
churns is representative to the overall population. However, the selection
of the studied sample was done randomly. This increases the likelihood of
drawing a representative sample.

Control group. The control group used in this study consisted of a rela-
tively small number of observations and attributes (19,815 observations and
800 attributes). This may pose a risk on the representativeness of the sam-
ple with respect to the overall population. However, the derivation of the
control group was done by randomly selecting attributes and observations
from the class-noise cleaned data. This increases the likelihood of drawing a
representative sample in the control group.

Source code. In this study, we only used a single industrial program to
examine the effect of class and attribute noise on the learning performance of
a classifier. Therefore, we acknowledge that the generalization of the findings
is difficult. However, we can accept this threat, since the goal of this paper
is to gain an initial understanding of the effect of attribute and class noise.

Nature of test failure. There is a probability of mis-labelling code changes
in the original data if test failures were due to factors external to defects in
the source code (e.g., machinery malfunctions or environment upgrades).
To minimize this threat, we collected data for multiple test executions that
belong to several test cases, thus minimizing the probability of identifying
tests that are not representative.

Internal Validity. Internal validity refers to the degree to which conclu-
sions can be drawn about the causality between independent and dependent
variables.

Configuration. In this study, the ranking of noisy observations produced
by PANDA was determined using a bin size of five. Since the binning size in
PANDA may affect the ranking of noisy observations [20], there is a likelihood
that we chose a bin size that does not identify the highest noisy observations

35

in the sample data. As a result, the applied treatment may not have elimi-
nated all observations that come with the highest attribute noise. This may
have an effect on the learning. However, our results showed that the stan-
dard deviations in the learning scores were not largely despaired across the
25 subjects, which means that the effect of the chosen bin size had a similar
effect on learning across all experimental subjects.

Instrumentation. A potential internal threat is the presence of unde-
tected issues in the scripts used for vector transformation, data-collection,
and PANDA’s implementation. This threat was controlled by carrying out a
careful inspection of the scripts and testing them on small subsets.

Machine Learning Model. The evaluation of learning was done using Ran-
dom Forest only - the results were drawn from a single type of ML model.
Hence, the tolerance of RF to noise and its performance will differ when
using other types of learning algorithms. However, in this study, we focus
on improving the learning performance by handling class and attribute noise
irrespective of which model is most suited for noise tolerance.

Construct Validity. Construct validity refers to the degree to which exper-
imental variables accurately measure the concepts they purport to measure.

The Binning Algorithm. The binning algorithm used in the original work
of PANDA was not explicitly stated in the original publication[20]. As a
result, we used the sort_values function in the PANDA module of the scikit
learn library to discretize attribute values into bins of predefined sizes. Thus,
our implementation of the algorithm may differ than the one used in the
original work. However, the authors of the original publication state that
any binning algorithm can be used without affecting the performance.

The Calculation of Noise Score. The description for calculating the stan-
dardized noise score in the original publication of PANDA[20] created a con-
fusion with respect to whether the mean and standard deviation should be
calculated for each partition in x; or z;. On the one hand, the description
states that the standardized noise score for attribute value x;, is calculated
relative to the partitioned attribute value for instance 1,Z;,. On the other
hand, the description states that ‘the mean and standard deviation of the
non-partitioned attributes xy j+; relative to each bin Tj—q 1 1s calculated’.
In our implementation, we interpreted the relativeness between an attribute
value z;, with the partitioned attribute value for instance ¢, 2;k by subtract-
ing the attribute value x;, from the mean to standard deviation ratio of the
bin in z; relative to x;,. The alternative interpretation would be to subtract

36

x;, from the mean to standard deviation ratio of the elements in z; relative
to the bin in z;. Nevertheless, our implementation was manually inspected
on a small set of line vectors (as shown in Section 3.4) and the ranking of
noisy observations were in line with the definition of attribute noise provided
in the original publication [20].

Magjority class problem. Upon applying the treatment on the experimen-
tal subjects under the 10 levels, there is a chance that the prediction was
biased towards one of the classes due to an imbalance in the distribution of
classes. Due to the computational cost required to check the balance across
25 subjects for 10 treatment levels (250 trials), we could not validate that
the post treatment subjects are balanced. Nevertheless, the results drawn
from the learner’s precision and recall (mean precision= 52, mean recall=
81) indicate that the learner was not biased towards a particular class.

Conclusion Validity. Conclusion validity focuses on how sure we can be
that the treatment we use really is related to the actual outcome we observe.

Differences among subjects. The descriptive statistics indicated that we
have a few outliers in the sample. Therefore, we ran the analysis twice (with
and without outliers) to examine if they had any impact on the results.
Based on the analysis, we found that dropping the outliers had no effect on
the results, thus we decided to keep them in the analysis.

9. Conclusion and Future Work

In this paper, we set out to study the effect of class and attribute noise
found in training data on the learning performance of an ML model for test
case selection. We chose to study the effect of handling two types of noise
(class and attribute) using a correction and an elimination based approaches.
The results from this study suggest that handling class noise is important
for improving the prediction of test case verdicts, whereas no similar con-
clusion about attribute noise could be drawn. As a consequence, testers who
choose to use an ML-based approach for test case selection should consider
handling class noise in the training data, but not necessarily attribute noise,
for achieving a higher learning performance in the prediction of test case
verdicts. There are still several questions that need to be addressed before
concluding that handling class noise is more important than attribute noise.
A first question is about finding whether other elimination approaches for
identifying and handling attribute noise can have a different effect on learn-
ing than PANDA. A second question is whether similar results about the

37

effect of class and attribute noise handling can be generalized when using
other data-sets. Future research about the impact of class and attribute
noise should experimentally explore the effect of both noise types by seeding
class and attribute noise into a clean data-set and evaluating the learning
effect. Other research directions include testing different approaches for han-
dling class and attribute noise such as tolerance of different ML algorithms.

References

1]

E. Knauss, S. Houmb, K. Schneider, S. Islam, J. Jiirjens, Supporting
requirements engineers in recognising security issues, in: International
Working Conference on Requirements Engineering: Foundation for Soft-
ware Quality, Springer, pp. 4-18.

S. Kim, E. J. Whitehead Jr, Y. Zhang, Classifying software changes:
Clean or buggy?, IEEE Transactions on Software Engineering 34 (2008)
181-196.

M. Ochodek, R. Hebig, W. Meding, G. Frost, M. Staron, Recognizing
lines of code violating company-specific coding guidelines using machine
learning, Empirical Software Engineering 25 (2020) 220-265.

H. Sajnani, Automatic software architecture recovery: A machine learn-
ing approach, in: 2012 20th IEEE International Conference on Program
Comprehension (ICPC), IEEE, pp. 265-268.

S. Wang, T. Liu, L. Tan, Automatically learning semantic features for
defect prediction, in: 2016 IEEE/ACM 38th International Conference
on Software Engineering (ICSE), IEEE, pp. 297-308.

7. Cai, L. Lu, S. Qiu, An abstract syntax tree encoding method for
cross-project defect prediction, IEEE Access 7 (2019) 170844-170853.

T. B. Noor, H. Hemmati, Studying test case failure prediction for test
case prioritization, in: Proceedings of the 13th International Conference
on Predictive Models and Data Analytics in Software Engineering, pp.
2-11.

N. Nagappan, T. Ball, Use of relative code churn measures to predict
system defect density, in: Proceedings of the 27th international confer-
ence on Software engineering, ACM, pp. 284-292.

38

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

K. W. Al-Sabbagh, M. Staron, R. Hebig, W. Meding, Predicting test
case verdicts using textual analysis of committed code churns, in: Joint
Proceedings of the International Workshop on Software Measuremen-
tand the International Conference on Software Process and Product
Measurement (IWSM Mensura 2019), volume 2476, pp. 138-153.

K. W. Al-Sabbagh, M. Staron, R. Hebig, W. Meding, Improving data
quality for regression test selection by reducing annotation noise, in:
2020 46th Euromicro Conference on Software Engineering and Advanced
Applications (SEAA), IEEE, pp. 191-194.

T. M. Khoshgoftaar, N. Seliya, K. Gao, Rule-based noise detection for
software measurement data, in: Proceedings of the 2004 TEEE Inter-
national Conference on Information Reuse and Integration, 2004. IRI
2004., IEEE, pp. 302-307.

D. Guan, W. Yuan, Y.-K. Lee, S. Lee, Identifying mislabeled training
data with the aid of unlabeled data, Applied Intelligence 35 (2011)
345-358.

F. Muhlenbach, S. Lallich, D. A. Zighed, Identifying and handling mis-
labelled instances, Journal of Intelligent Information Systems 22 (2004)
89-109.

T. Zimmermann, P. Weifigerber, Preprocessing cvs data for fine-grained
analysis., in: MSR, volume 4, pp. 2-6.

X. Zhu, X. Wu, Class noise vs. attribute noise: A quantitative study,
Artificial intelligence review 22 (2004) 177-210.

C. M. Teng, Combining noise correction with feature selection, in: In-
ternational Conference on Data Warehousing and Knowledge Discovery,
Springer, pp. 340-349.

C. E. Brodley, M. A. Friedl, et al., Identifying and eliminating misla-
beled training instances, in: Proceedings of the National Conference on
Artificial Intelligence, pp. 799-805.

T. M. Khoshgoftaar, J. Van Hulse, Identifying noise in an attribute of
interest, in: Fourth International Conference on Machine Learning and
Applications (ICMLA’05), IEEE, pp. 6-—pp.

39

[19]

[20]

[21]

[22]

[23]

[24]

[26]

[27]

28]

K.-A. Yoon, D.-H. Bae, A pattern-based outlier detection method iden-
tifying abnormal attributes in software project data, Information and
Software Technology 52 (2010) 137 — 151.

J. D. Van Hulse, T. M. Khoshgoftaar, H. Huang, The pairwise at-
tribute noise detection algorithm, Knowledge and Information Systems
11 (2007) 171-190.

G. A. Liebchen, Data cleaning techniques for software engineering data
sets, Ph.D. thesis, Brunel University, School of Information Systems,
Computing and Mathematics, 2010.

H. Hata, O. Mizuno, T. Kikuno, Fault-prone module detection using

large-scale text features based on spam filtering, Empirical Software
Engineering 15 (2010) 147-165.

O. Mizuno, S. Tkami, S. Nakaichi, T. Kikuno, Spam filter based ap-
proach for finding fault-prone software modules, in: Proceedings of the
Fourth International Workshop on Mining Software Repositories, IEEE
Computer Society, p. 4.

L. Aversano, L. Cerulo, C. Del Grosso, Learning from bug-introducing
changes to prevent fault prone code, in: Ninth international workshop on
Principles of software evolution: in conjunction with the 6th ESEC/FSE
joint meeting, ACM, pp. 19-26.

K. W. Al-Sabbagh, R. Hebig, M. Staron, The effect of class noise on
continuous test case selection: A controlled experiment on industrial
data, in: International Conference on Product-Focused Software Process
Improvement, Springer, pp. 287-303.

T. M. Khoshgoftaar, J. Van Hulse, Empirical case studies in attribute
noise detection, IEEE Transactions on Systems, Man, and Cybernetics,
Part C (Applications and Reviews) 39 (2009) 379-388.

C.-M. Teng, A comparison of noise handling techniques., in: FLAIRS
Conference, pp. 269-273.

J. R. Quinlan, Induction of decision trees, Machine learning 1 (1986)
81-106.

40

[29]

[30]

[31]

C. E. Brodley, M. A. Friedl, Identifying mislabeled training data, Jour-
nal of artificial intelligence research 11 (1999) 131-167.

M. Ochodek, M. Staron, D. Bargowski, W. Meding, R. Hebig, Using
machine learning to design a flexible loc counter, in: 2017 IEEE Work-
shop on Machine Learning Techniques for Software Quality Evaluation
(MaLTeSQuE), IEEE, pp. 14-20.

R. Moser, W. Pedrycz, G. Succi, A comparative analysis of the efficiency
of change metrics and static code attributes for defect prediction, in:
Proceedings of the 30th international conference on Software engineer-
ing, pp.- 181-190.

S. Amasaki, Y. Takagi, O. Mizuno, T. Kikuno, A bayesian belief network
for assessing the likelihood of fault content, in: 14th International Sym-
posium on Software Reliability Engineering, 2003. ISSRE 2003., IEEE,
pp. 215-226.

J. Deng, L. Lu, S. Qiu, Y. Ou, A suitable ast node granularity and
multi-kernel transfer convolutional neural network for cross-project de-
fect prediction, IEEE Access 8 (2020) 66647-66661.

T. B. C. Arias, P. Avgeriou, P. America, Analyzing the actual execution
of a large software-intensive system for determining dependencies, in:
2008 15th Working Conference on Reverse Engineering, IEEE, pp. 49—
58.

A. Hamou-Lhadj, T. C. Lethbridge, A survey of trace exploration tools
and techniques, in: Proceedings of the 2004 conference of the Centre for
Advanced Studies on Collaborative research, pp. 42-55.

J. A. Séez, J. Luengo, F. Herrera, Evaluating the classifier behavior
with noisy data considering performance and robustness: The equalized
loss of accuracy measure, Neurocomputing 176 (2016) 26-35.

M. Balint, R. Marinescu, T. Girba, How developers copy, in: 14th IEEE
International Conference on Program Comprehension (ICPC’06), IEEE,
pp. 56—68.

41

[38] V. Ganganwar, An overview of classification algorithms for imbalanced
datasets, International Journal of Emerging Technology and Advanced
Engineering 2 (2012) 42-47.

[39] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, E. Duchesnay,

Scikit-learn: Machine learning in Python, Journal of Machine Learning
Research 12 (2011) 2825-2830.

[40] C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson, B. Regnell, A. Wesslén,
Experimentation in software engineering, Springer Science & Business
Media, 2012.

10. Appendices

Appendix A

42

Attribute Noise

Performance

Random Forest

Random Forest

metrics n_estimater=100 | n_estimater=300
Acc 0.54 0.53
Prec 0.53 0.50
0% Rec 0.88 0.82
F-score 0.66 0.62
MCC 0.13 0.10
Acc 0.54 0.53
Prec 0.53 0.52
5% Rec 0.83 0.84
F-score 0.64 0.64
MCC 0.1 0.10
Acc 0.53 0.52
Prec 0.51 0.51
10% Rec 0.80 0.87
F-score 0.61 0.64
MCC 0.09 0.09
Acc 0.53 0.52
Prec 0.51 0.51
15% Rec 0.78 0.93
F-score 0.60 0.66
MCC 0.08 0.10
Acc 0.52 0.52
Prec 0.50 0.51
20% Rec 0.80 0.95
F-score 0.61 0.66
MCC 0.07 0.1

43

Attribute Noise

Performance

Random Forest

Random Forest

metrics n_estimater=100 | n_estimater=300
Acc 0.53 0.52
Prec 0.52 0.51
25% Rec 0.88 0.95
F-score 0.65 0.66
MCC 0.10 0.07
Acc 0.52 0.52
Prec 0.50 0.51
30% Rec 0.84 0.94
F-score 0.62 0.66
MCC 0.06 0.074
Acc 0.53 0.53
Prec 0.51 0.51
35% Rec 0.85 0.91
F-score 0.63 0.65
MCC 0.1 0.11
Acc 0.53 0.53
Prec 0.53 0.51
40% Rec 0.77 0.78
F-score 0.61 0.61
MCC 0.09 0.08
Acc 0.54 0.53
Prec 0.53 0.52
45% Rec 0.82 0.85
F-score 0.63 0.63
MCC 0.13 0.10
Acc 0.54 0.54
Prec 0.53 0.52
50% Rec 0.80 0.83
F-score 0.62 0.64
MCC 0.11 0.11

44

