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Abstract. Trajectory planning is a critical process that enables au-
tonomous systems to safely navigate complex environments. Signal tem-
poral logic (STL) specifications are an effective way to encode complex,
temporally extended objectives for trajectory planning in cyber-physical
systems (CPS). However, the complexity of planning with STL using
existing techniques scales exponentially with the number of nested op-
erators and the time horizon of a given specification. Additionally, poor
performance is exacerbated at runtime due to limited computational bud-
gets and compounding modeling errors. Decomposing a complex speci-
fication into smaller subtasks and incrementally planning for them can
remedy these issues. In this work, we present a method for decomposing
STL specifications to improve planning efficiency and performance. The
key insight in our work is to encode all specifications as a set of basic
constraints called reachability and invariance constraints, and schedule
these constraints sequentially at runtime. Our experiment shows that the
proposed technique outperforms the state-of-the-art trajectory planning
techniques for both linear and non-linear dynamical systems.

Keywords: Signal Temporal Logic - Planning - Cyber Physical Systems

1 Introduction

Most autonomous robots interacting with the physical world need to achieve
complex objectives while dealing with uncertainty and stochasticity in their en-
vironment. This problem is exacerbated by short response times expected while
ensuring runtime efficiency. Hence, formulating these complex objectives accu-
rately is a crucial step in realizing the desired behaviors for robotic operations.

Temporal logics such as linear temporal logic (LTL) [19] and signal temporal
logic (STL) [16] provide a precise way to encode objectives that are expressed in
a natural language. STL has received special attention in the community due to
its rich quantitative semantics that can quantitatively measure satisfaction of a
given property that encodes an objective. Additionally, it can be used to describe
complex properties over real valued signals such as state trajectories arising
from continuous dynamical systems. For robotic planning, STL can be used to
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Fig. 1. Left: An STL specification ¢ with multiple nested temporal operators and a
possible decomposition into subtasks. Right: A sample trajectory that satisfies ¢ in a
planar environment.

describe complex behaviors with concrete time deadlines such as those found in
trajectory planning and task planning. Planners can use these specifications to
generate specification-conforming behavior.

A significant amount of common robotic objectives can be interpreted as
a sequence of subtasks. It has been shown that incremental subtask planning
can be done more efficiently compared to planning for a composite task [5,7,
18]. However, when STL is used to represent these composite tasks, incremental
planning becomes challenging. This issue is because STL semantics can encode
the sequential nature of tasks but does not expose this structure to the plan-
ner. In such cases, the planners are forced to work with complex long-horizon
specifications. When the horizon of the specification is longer than the planning
horizon, planners can often generate suboptimal or violating plans. This problem
is exacerbated when planning occurs at runtime with computational constraints
and compounding modeling errors [2].

In this work, we propose a theory to decompose long-horizon, arbitrarily
nested specifications into sub-specifications that can be satisfied incrementally.
We define recursive rules for decomposition and propose a novel scheduling al-
gorithm for incremental task planning. The key insight here is to “divide and
conquer” STL requirements while ensuring, by construction, that the resulting
plan satisfies the original composite specification. We illustrate the effectiveness
of our proposed approach over an experiment involving robot exploration prob-
lems with linear and non-linear dynamics. Our preliminary experiment shows
that our approach is able to more efficiently generate plans for complex, com-
posite specifications in comparison to the existing state-of-the-art STL-based
planning methods. In addition, our decomposition technique is agnostic to the
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underlying system dynamics and the choice of planner, and can potentially be
adapted by different planners.
The key contributions of this paper are:

— A method for decomposing an STL specification into a set of smaller STL
specifications that represent subtasks (Section 4.2);

— A planning algorithm that incrementally schedules and executes these sub-
tasks (Sections 4.3 and 4.4);

— An evaluation of the proposed approach over a benchmark of motion plan-
ning tasks (Section 5).

2 Motivation

We illustrate the problem of planning from complex specifications using an ex-
ample from the motion planning domain. We use a planning problem similar to
the one defined in [14].

As illustrated in Figure 1, the goal of the agent (robot) is to visit regions
R; and R4 sequentially while avoiding an unsafe region, R3. Additionally, upon
reaching Ry, the agent needs to stay in it for 10 time steps. We combine three
common motion planning patterns such as sequenced visit, stabilization, and
global avoidance to create a specification with timed deadlines as follows:

D=1 A P2
é1 = 00,10 (R1 A 020,300,101 (R4))
¢2 = Ojg,60 (—R3)

The state-of-the-art (SOTA) technique for planning from @, originally pro-
posed in [20], involves encoding the STL specification and the system dynamics
as Mixed Integer Program (MIP) constraints and solving the constrained opti-
mization problem in a receding horizon fashion. A new binary decision variable is
introduced for each atomic proposition per time step in the STL specification. A
known drawback of this technique is its exponential worst-case complexity with
respect to the number of binary variables [12]. Various encoding modifications
have been suggested to enhance the efficiency of the technique by reducing the
number of variables and constraints [21, 12].

However, even with reduced variable encoding, current methods excel primar-
ily with short-horizon specifications. When encoding nested temporal operators,
a large number of additional variables and constraints are needed to capture
the relationship between different temporal operators, in contrast to non-nested
operators, where temporal constraints associated with each operator are consid-
ered independently. For example, let us take the subformula 20,300j0,10) (R4)
from ¢;. For encoding this subformula into an MIP, we would need 11 (outer
eventually) + 121 (inner always) = 132 binary variables.® In general, as the
nesting depth increases, the number of variables can increase exponentially.

3 For the outer ¢ clause, 11 binary variables are introduced to encode that the inner
O clause is satisfied within interval [20,30]; for each time point in [0,10] interval,
another set of 11 variables are introduced, thus resulting in 11*11 = 121 variables.
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In this work, we propose a technique to improve the scalability of STL plan-
ning algorithms through decomposition of STL specifications. Our idea is in-
spired by human planning, where long-term goals are achieved by breaking tasks
into incremental sub-goals [8]. Concretely, by decomposing the specification, we
effectively remove the complexity of nested operators and also reduce the length
of the lookahead horizon.

A possible decomposition of the specification @ into four subtasks is as fol-
lows:

schy = Q0,10 (121) A Ojo 10 (—13)

scha = Oty +20,t 21 +30) (F24) A Oty 420, 51 +30) (7 123)
schy = Ot py+0,tp4+10] (7R3 A Ra)

schy = D[tR42,60](_‘R3)

Here, the symbolic time variables (tg1,tRr4,tr42) indicate when those sub-
tasks get satisfied. More specifically, tr4 indicates when the agent reaches Region
1 and tgr4o indicates when the agent has been inside Region 4 for 10 timesteps
after reaching it. These variables then shift the time intervals of the other con-
straints that depend on them (e.g., time tg; from schy is used to concretize
the time intervals for schq, whose time of satisfaction, in turn, influences schs).
These subtasks have shorter time horizons and no nested temporal operators,
resulting in MIP constraints that are less complex than those that would result
from composite specifications. As shown later in Section 5, this decomposition-
based approach has potential to significantly improve the efficiency of planning.

3 Preliminaries

STL is a logical formalism used to define properties of continuous time real
valued signals [16]. A signal s is a function s : T — R™ that maps a time domain
T C R to a real valued vector. Then, an STL formula is defined as:

p=p| = dN | OV | O Uap ¥

where 1 is a predicate on the signal s at time ¢ in the form of p = u(s(t)) > 0
and [a, b] is the time interval (or simply I). The until operator U defines that
¢ must be true until ¢ becomes true within a time interval [a,b]. Two other
operators can be derived from wuntil: eventually (Flap ¢ = T Uy ¢) and
always (Giap) ¢ := ~Flap —0).

Definition 1. Given a signal s; representing a signal starting at time t, the
Boolean semantics of satisfaction of sy = ¢ are defined inductively as follows:

s e u(s(t) > 0
st = (st o)
st @1 N2 = (st = 91) A(st = ¢2)
st EFlap(p) <= W elt+a,t+b st sy =¢
s¢ = Glap(p) <= V' et+a,t+bst. sy =¢
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Fig. 2. Overview of the STLINC approach

Apart from the Boolean semantics, quantitative semantics are defined for a sig-
nal to compute a real-valued metric indicating robustness, i.e., the strength of
satisfaction or violation.

Definition 2. Given a signal s; representing a signal starting at time t, the
quantitative semantics of satisfaction of sy |= ¢ are defined inductively as follows:

p(ses pe) = pu(xe) — ¢

(shﬁﬁp) _p(8t7 )
p(sts 1 A p2) = min(p(st, 1), p(st, p2))
p(s6; Fla(0)) = pepna Hb]ﬂ(smﬂ)
(staG[a b]( )) t/e[t+ant+b] (SMP)

For example, suppose that we are given (1) ¢ = Gpg 3(distToR3(t) > 3.0), which
states that the agent should maintain at least 3.0 meters away from region Rg for
the next 4 time steps and (2) signal s; that contains sequence (3.0, 2.5, 3.0, 3.5)
for distToR3. Evaluting the robustness of satisfaction of ¢ over s; would result
in a value of —0.5, implying that the agent violates the property by a degree of
0.5 (i.e., it fails to stay away from R3 by 0.5 meters).

4 Approach

4.1 Basic Concepts and Definitions

The overview of our planning framework (STLINC) is shown in Figure 2. The
key idea behind this approach is that a bounded STL formula in our fragment
can be decomposed into a finite set of the following two types of task constraints,
each of which is associated with time interval I = [a, b] and state proposition p:
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Reachability: The system ensures that p holds over at least one time step
t within I.
Invariance: The system ensures that p holds over every step ¢t within I.

Based on this idea, the framework carries out the incremental planning process
over three steps. First, the flattener takes a user-specified STL specification (¢)
and decomposes it into two sets of task constraints, X3 and X, which contain
the reachability and invariance constraints, respectively. The decomposition is
performed such that satisfying all of the constraints in these two sets implies the
satisfaction of the original formula ¢.

Next, the scheduler takes the two sets, X7 and XV, and generates a sequence
of atomic tasks, o = {(aty,at;...aty), where (1) each atomic task at is a non-
nested STL formula consisting of G, 4)(p) or Fiq 4 (p) (where p is a propositional
formula) and (2) two different atomic tasks do not overlap in their time intervals.
After this sequence is generated, the planner executes these atomic tasks one by
one in the designated order. Once all tasks are executed, the system will have
fulfilled X7 and X7, thus satisfying the original goal of ¢. The rest of this section
describes each of the three steps in detail.

STL fragment Our approach is designed to handle specifications written in
the following fragment of STL:

¢ = Flap)(9) | Glay) (@) | o1 A2 | p
pu=piAp2|p1Vp2|p|p

where p is a propositional formula that does not contain any temporal oper-
ator, and g is an atomic proposition. We target this STL fragment as (1) it
signficantly simplifies the decomposition process and (2) it is still expressive
enough to capture many common behavioral patterns in the robotics planning
domain [17]. Note that the fragment allows a nesting of temporal operators of an
arbitrary depth, which is important for specifying sequential tasks. For example,
the objective of wisiting locations in a particular order can be defined as:

¢ = Fyy 5(lu A Flia0)(l2 A Fin(13)))

where [y, 5, 3 represent the locations to be visited.

Task constraints As mentioned at the beginning of the section, an STL for-
mula imposes two types of constraints over system behavior: reachability and
invariance constraints, which are formally defined as follows:

Definition 3 (Reachability set). A reachability set, X7 € P(T x T x U) is a
set of tuples of form (I, h,p), each stating that there exists some time t in interval
[, h], inclusively, such that proposition p holds over the system state at time t.

Definition 4 (Invariance set). An invariance set, X¥ € P(T x T x U), is a
set of tuples of form (L, h,p), each stating that for every time t in interval [I, h],
inclusively, proposition p holds over the system state at time t.
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®=d1 A P2
(XL, XY, TCy) = FLAT(¢1)
$=rp FLAT (X5, X5, TCy) = FLAT(2) FLATA
TC = XY =xJUX
TC =TO, UTC,
(ZS = F[a,b]¢1 (XE,XY,TCl) = FLAT(¢1) A3
AT={(t+ Lt +hp) |30 hp)€XT)
XY ={(t+1,t+h,p) | 3, h,p) € A7}
TC = TCy U{(a,b.1)}
¢ =Glaydr, (X7, X7, TCy)=TFLAT(¢1)
FraT-V

X?={(k+1,k+1,p)]|3( h,p) € X’ AkE [a,b]}
XY = gp(g+l7b+h,p) | 3(, h,p) € X7}
1

Fig. 3. Flattening rules

We introduce an additional set of constraints that specify intervals over sym-
bolic time variables that are introduced during the flattening of F' formulas:

Definition 5 (Time variable intervals). A time variable interval set, TC €
P(T x T x T), is a set of tuples of the form (I, h, v), each stating that symbolic
time variable v takes a value in the interval [I, h), inclusively.

4.2 Flattening

Given an input STL specification, ¢, the goal of flattening is to construct two sets
of constraints—reachability and invariance sets—whose satisfaction also implies
the satisfaction of ¢. Flattening is applied recursively based on the structure
of ¢, as shown through the rules in Figure 3. Along with XY and X7, each
recursive step produces an additional auxiliary output T'C, which is later used
by the scheduler to resolve symbolic time variables.

Flat-p In the basic case where ¢ = p, flattening generates one reachability
constraint that requires p to be satisfied at the current time (i.e., I = h = 0).
Hence, the reachability set for ¢ is (0,0, p).

Flat-A Given cojunctive formula ¢ = ¢ A @2, the invariance set for ¢ is the
union of XY and Ay; i.e., every invariance constraint in ¢; and ¢, must be
satisfied. Similarly, the reachability set for ¢ is the union of X7 and Xj; i.e.,
every reachability constraint in ¢, and ¢ must be satisfied.

Flat-3 Given ¢ = Fj,)(¢1), for each constraint (Iy,hi,p1) € X7, flattening
involves shifting interval [l1,hi] by a symbolic time variable ¢ € [a,b]. This
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bound on ¢ is encoded by adding a tuple (a,b,t) to T'C. Intuitively, this can be
understood from the following transformation similar to the one in [13]:

Flay (F[c,d] (¢1)) = Floyepta (1)

Here, instead of adding a and b directly to the upper and lower bound, respec-
tively of time interval [c,d], we add a symbolic variable that can take a value
between a and b. For example, given specification ¢ = Fjz 5(p), X 3 would contain
constraint (¢ + 0,t + 0,p) and T'C would contain (2, 5,1).

As another example, consider specification ¢ = Fa 5)(p2 A Fi1,3)(p1)). When
the FraT-3 rule is applied, the resulting X~ contains (ty +t1 + 0,1y + ¢, +0,pl)
and (ta, t2, p2), and T'C contains {(1, 3,%1), (2,5, t2) }. Here, t; is introduced when
Frar-3 rule is applied to the innermost F operator (F7; 3)); t2 is then introduced
when FLAT-3 is applied for outermost F operator (Fla 5)).

The flattening of an F' formula applied to an invariance set is handled simi-
larly. Consider a specification of the form

¢ = Flap (1) = Fla4)(Gle,q (P))

with &Y = {(c,d,p)}. Here, according to the Boolean STL semantics, there
exists a t € [a,b] such that V' € [t + ¢,t + d], p must be satisfied. Hence, in
the resulting invariance set for ¢, the time interval for the existing invariance
constraint is shifted by ¢. This bound on t is encoded by adding a tuple (a, b, t)
to T'C. For example, given specifcation ¢ = Fia 51(G3,10(P)), XY would contain
constraint (¢ + 3, + 10, p) and T'C' would contain (2, 5,t).

Flat-V The flattening of an V formula over A} is handled in the following way.
Consider a specification of the form:

¢ = Glap)(01) = Gla,p) (Fie,q)(p))

with X7 = {tc} = {(t1,t1,p)} and TC = {(e,d,t,)}. Since ¢ states that con-
straint tc must hold at every time step between [a, b], the idea is to create multiple
reachability constraints of form (¢; + k,¢; + k,p), one for each time value k in
interval [a,b]. For example, let ¢ = G[1 100 (Fj1,5(p)). After flattening, X for ¢
would contain 100 reachability constraints, each in form of (t; + k,t; + k, p) for
1 <k <100.

The flattening of an V over &Y is handled in the following way. Consider a
specification of the form

¢ = Glap)(91) = Gla,5)(Gle,a ()

with X7 = {tc} = {(c,d, p)}. Since ¢ states that constraint tc must hold at every
time step between [a, b], by shifting the interval of each constraint by [a, b], the
resulting formula X7 is constructed as {(a + ¢, b+ d, p)}. Intuitively, this can be
understood from the following transformation similar to the one in [13]:

Glap)(Gle,q)(01)) = Glagepra)($1)
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We now introduce a theorem that establishes the soundness of our flattening
operation with respect to a given STL specification.

Lemma 1. Let ¢ be an input STL specification, and let (X3, XY, TC) be the
output of flatten(¢). Then, for every signal s;:

Vv € V(vars(TC)) oVz € X7 U XY o5, |= Inst(z,v) = s, = ¢

where vars is a function that returns the set of all symbolic variables in TC),
V(X) is the set of all possible assignments of values to variables in X (restricted
to values in their respective time intervals), and Inst(x,v) instantiates symbolic
variables in constraint x with the values from v.

In other words, if every possible reachability or invariance constraint is satisfied
over a particular signal, then the original specification ¢ must also hold over the
same signal.

4.3 Symbolic Time Resolution

The X7 and XV constraints generated from flattening may contain multiple sym-
bolic variables. To enable scheduling, STLINC first attempts to resolve as many
of these variables as possible by applying substitution rules to the constraints.

Algorithm 1 shows the sketch of the symbolic time resolution (STR) process.
As inputs, it takes the output of the flattening procedure—the X3 and XV
constraints, and the time intervals over symbolic time variables. As outputs, it
produces (1) a new pair of X2 and XY, with some of the time variables replaced
by concrete time values, and (2) time variable intervals (T'C") that specifies, for
each concrete constraint produced in (1), an interval during which the constraint
must be satisfied. This latter set of time intervals are used to enforce conjunctive
constraints (i.e., ¢1 A ¢2) to be satisfied simultaneously.

The algorithm iterates through the time variables in the bottom-up order
(i.e., starting with the variables that appear in the lower part of an AST for
a given STL expression). For each constraint that contains variable ¢ (line 4),
STR applies two types of substitutions, depending on whether the constraint is
a reachability or an invariance constraint.

Invariance constraints An invariance constraint, = (I, h,p), with time vari-
able t € [a, b] represents an STL expression Fl, 4 (Gpi,n p) (where ¢ appears in
{ and h, and p is an atomic proposition). Intuitively, this expression can be re-
garded a kind of “reach and stay” task, where the system must first reach a state
where p holds within time interval [a 4+ [,b + {], and then continue to satisfy p
for the following (h — ) time steps. The rule APPLYFG takes constraint = and
interval tc, and produces a new pair of reachability and invariance constraints,
as follows:

ArPLYFG(z = (I, h,p),tc = (a,b,t)) = ((a + 1,0+ 1, p), (tsat, tsat + 1 — 1, p))
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Algorithm 1 Symbolic Time Resolution (STR)

1: Input: Flattened constraints X2, XV, time variable intervals TC

2: Output: Modified constraints X3, X7, new time variable intervals T'C"
3:TC'=10

4: for tc = (a,b,t) in TC do

5: XY := FILTER(XY, t), X7 := FILTER(X7, 1)
6: for z = (I, h,p) in XY do

T (v?,y") := APPLYFG (z,tc)

8: X7 =270y}

9: X7 = (X7 —{z}) U {y"}

10: TC :=TC' U{(t+1,t+1,1-saT(3)), (t + 1+ 1, + h, T-sAT(3y"))}
11: end for
12: for z = (I, h,p) in X7 do

13: y? := APPLYFF(z,tc)

14: X7 = (X7 - {z}) u{y’}

15: TC' :=TC" U{(t+1,t+h,1-sa1(y”))}
16: end for

17: end for

18: return (X3, X7, 7C")

where tgq¢ is a new symbolic variable that represents the time at which p is
satisfied between (a +1,b+1).

In addition, STR adds two time variable intervals (line 10) to ensure that:
(1) the new reachability constraint, y7, is satisfied exactly at (¢ + ) and (2)
the invariance constraint, 37, is satisfied subsequently for the following (I — h)
steps. Here, T-SAT(y) returns a symbolic time variable representing the time of
satisfaction of constraint y.

Consider the example in Figure 4. One of the invariance constraints that
flattening generates is (¢41,t+5,r1), which depends on time variable ¢t € [1, 20].
The application of APPLYFG results in constraints stating that (1) the system
must satisfy p within [2,21], and (2) from the point of the satisfaction of this
constraint (t2), it must hold p true for the following (5 — 1) = 4 steps. Note that
the other invariance constraint, (1,35, —r3), remains untouched, as it does not
depend on any time variable.

Reachability constraints A reachability constraint, = (I, h,p), with time
variable t € [a, b] represents an STL expression Fi, 3 (Fj;,p) p). When a pair of F
operators are nested in this manner, they can be simplified by using the following
substitution rule:

AprPLYFF (z = (I, h,p), tc = (a,b,t)) = (I + a,h + b, p)

The resulting reachability constraint, y7, replaces the existing constraint in A3
(line 14). In addition, a new time variable interval is added to ensure that y= is
satisfied between (¢ + 1) and (¢ + h).
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@ Flattening output:  Resolution output:
@ @ X3+t t+t,r2)  x3(6,35,72)i4=1
I3 (27 21,7"1)id=2
a @ XY+ 1,t+5,m1) xV(te,t2 +4,71)id=3
(17357“713) (1135aﬁ7’3)id:4
@ @ TC t € [1,20] TC ty € [t +6,t+15]
t' € [6,15] to €[t +1,t+1]

t,
@ @ ts € [t+ 2, + 5]

Fig.4. An AST for an example STL specification, F}i 20](G1,5/(r1) A Fg,15)(12)) A
G'1,35)(—r3), with outputs from the flattening and symbolic time resolution steps. Each
constraint resulting from the resolution step is assigned an identifier (id); a symbolic
time variable that represents the time of satisfying the constraint is annotated with id
as the subscript (i.e., t2 represents the satisfaction of reachability constraint (2,21, r1)).

For the example in Figure 4, flattening produces one reachability constraint,
(t+t',t+ ¢, ry). During the first iteration of the outermost loop (line 4), STR
selects te = (5,15,t') and applies APPLYFF to the constraint, producing a new
reachability constraint (¢ + 5,¢ 4+ 15,r2). In next iteration, STR selects tc =
(1,20,t) and applies APPLYFF to (¢t + 5,t + 15,72), producing an additional
reachability constraint (6,35, r3).

Note that at the end of resolution for the example (Figure 4), variable ¢
appears in multiple intervals in T'C’. In the following section, we describe how
STLINC schedules tasks to generate concrete values for the time variables incre-
mentally one-by-one, ultimately synthesizing a plan that satisfies the original
STL formula.

Lemma 2. Let (X3, XY, TC) be the output of flatten(¢) and (X3, Xy, TC')
be the output of STR(X3, XY, TC). Then, for every signal s;:

Vo € V(vars(TC')) o (Voy € X5 U XY o s |= Inst(xq,v)) =
(Vo € XTU X" o5, = Inst(x,v))

In other words, if every reachability and invariance constraint generated from
STR is satisfied under some instantiation (v) of symbolic time variables in TC”,
then the original set of flattened constraints must also be satisfied under the
same condition.

4.4 Scheduling

Given the output from the resolution step (the two constraint sets, X3, X" and
the time interval variables, TC"), the goal of the scheduler is synthesize a plan
that satisfies the original STL specification ¢. To achieve this, the scheduler
iteratively interacts with a planner that is capable of synthesizing a plan to



12 P. Kapoor et al.

Algorithm 2 Schedule

1: Input: X3, XY, TC’

2: Output: Signal span for synthesized plan

3: Splan = <>

4: < := CoMPUTEORDER(X?, &Y, TC")

5: currTasks :== NEXTTAsks(X7, XY, <, 0)

6: while currTasks # 0 do

7 currTasks := SLICE(currTasks)

8: atomicTask := NEXTATOMIC(currT asks)
9: currTasks := currTasks — {atomicTask}
10: Satomic := PLAN (atomicT ask)

11: if sqtomic = () then break end if

12: Splan = S Satomic

13: satTasks := EXTRACTTIME(Satomic)

14: currTasks := currTasks U NEXTTASKS(XH, XY, <, satTasks)
15: end while
16: return spian

satisfy an atomic task formula of form Fi, y(¢1) A Giap)(P2), where ¢ and
@2 are quantifier-free STL expressions. The scheduling process is incremental:
The scheduler generates a sequence of atomic tasks formulas and invokes the
planner to solve them one-by-one, using information (i.e., the time of satisfaction
of a reachability or invariance constraint) generated by the planner to resolve
any dependencies on symbolic time variables that were introduced during the
flattening and resolution steps. The scheduling algorithm (Alg. 2) comprises of
three major parts: ordering, slicing of constraints, and planning of atomic tasks.

Ordering In the first step (line 4), the scheduler computes a partial order (<)
among the given reachability and invariance constraints, to determine which of
these constraints must be satisfied before others. In particular, given a pair of
constraints, x1 and xo, 7 < xo if and only if the time of satisfaction of x
necessarily precede that of x5, based on the time intervals that are assigned to
those constraints in X3 or XV.

If one or more of x; and x5 depends on another symbolic variable, t, for
satisfaction, then the information in T'C’ is used to determine the presence of
a precedence relationship. Consider ¢; and t3 from Figure 4; after resolution,
the satisfaction of these two constraints depend on the symbolic variable ¢ (as
specified in T'C"). Although the value of ¢ is unknown, it can be determined that
for any possible value of t, t3 will necessarily be satisfied before ¢; (i.e., t3 < t1).
Overall, for this example, COMPUTEORDER determines that to < t3 < t1. Note
that ¢4 does not appear in this ordering as it needs to be satisfied in parallel
with these other constraints.

Slicing The scheduler then determines the first set of constraints (or tasks)
to be carried out based on the order < (line 5). In general, the time intervals
over these constraint may overlap with each other in an arbitrary way. Recall,
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however, that each atomic task to be solved by the planner must be in form
Fia4)(¢1) A Gla,5)(¢2). Thus, the scheduler must first convert the constraints in
currTasks into a set of atomic tasks constraint; this step involves slicing one or
more constraints in currTasks (line 7).

Due to limited space, we provide the full de-
tails of the slicing algorithm in the appendix.
We briefly illustrate it here using an example, P2t
shown in Figure 5. For our running example, the :
first set of constraints to be fulfilled is {to = TW
(2,21,71),t4 = (1,35,-r3)}. To generate atomic RCREA 145:(22,35,13)
tasks out of these, the SLICE operation slices t4
into three constraints, t4,,t4p,t4c; this, in turn,
results in the following three atomic tasks: Fig. 5. A slicing example.

Gpay(—-rs) Fla,01)(r2) A Ga,21)(—73) G22,35)(—73)

However, the slicing step may introduce dependencies among the atomic
tasks, especially for the constraints in X. For example, suppose that task
Fig21)(r2) is further split into two slices, Fis 19)(r2) and Fjia21)(72). Since 73
needs to be satisfied only once in interval [2,21], we would need to ensure that
we are not over-constraining the space of possible behaviors by requiring 72 to
be satisfied twice, as the slices would imply. To achieve this, we keep track of
dependencies among constraints, which are used by the scheduler to remove
unnecessary atomic tasks (e.g., remove Fjip211(72) once 7 is satisfied between
[2,12]). This dependency management is handled inside NEXTTASKS (Algorithm
2, Line 14).

Planning atomic tasks Once atomic tasks have been generated through slic-
ing, the scheduler selects the next atomic task and invokes the planner (lines
8-10). If the planner is able to synthesize a plan that satisfies the atomic task,
it returns a signal that represents the satisfying trajectory, which is then ap-
pended to the cumulative signal spq, (line 12); if not, the scheduler terminates
by returning the signal that contains a partially satisfactory plan (line 11).

From the synthesized signal, the scheduler extracts the constraints from A3
and X'V that were satisfied, along with the concrete time values for their sat-
isfaction (line 13). This information (satTasks) is then used to determine the
next increment of constraints to be solved.

Finally, when all of the constraints in X7 and XY have been satisfied, the
scheduler terminates by returning spiq, as the final plan.

Lemma 3. Let spian be the output of Schedule(X3, X¥, TC') and v be an
assignment of values to symbolic time variables in TC', which are determined
during the scheduling step. Then, the following statement holds:

Vo € X7 U XY o sy, | Inst(z,v)

In other words, the synthesized plan, spiqn, satisfies all of the reachability and
invariance constraints that were generated from the preceding flattening and
STR steps.
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STL Specification Pattern
o1 | Fio,15)(R1)ANFis 25) (R2) AFl20,30] (R3) AG[0,40) (mO1)| R+A
®2 |Flo,151(R1 A Flo,15(R2)) A Glo,a0)(=O1) SVFA

@3 |Flo,15](R1 A Fjo,15/(R2 A Flo 201 (R3 A Fo,15/(R1))))| SV
¢a | Fio,15Go,10) (R1) A Flo,35/(R2) A Glo,40)(—O01) R+A+SB
@5 | Flo,15(R1 A Flo,20)Glo,101(R2)) SV+5B

Table 1. Benchmark STL specifications created from motion planning patterns. Here,
R: Reach, A: Avoid, SV: Sequenced Visit, SB: Stabilization.

Building on Lemmas 1, 2, and 3, we finally introduce a theorem to state that
our proposed approach generates a plan that satisfies the given specification ¢:

Theorem 1. Given specification ¢ and spian as the output of the scheduling
algorithm, spian = ¢.

5 Evaluation

This section begins with a detailed description of our experimental setup, includ-
ing specifications and implementation details, alongside the research questions
we aim to address. Following this, we present our findings and conclude with a
discussion of our approach over the benchmarks.

5.1 Experimental Setup

Specifications. We investigated multiple motion planning STL specifications
from [6,17]. Based on the most common planning patterns, such as Reach (R),
Avoid (A), Stabilisation (SB), Sequenced Visits (SV) etc., we created represen-
tative STL benchmark specifications as outlined in Table 1. These specifications
are defined over STL subformulas of the form R; or O; where R; / O; is satisfied
if the agent is inside Region i or Obstacle i. These subformulas are defined in
a similar fashion using conjunction of linear and nonlinear predicates as done
in [12]. Please refer to [12] for more information on how these are defined for
rectangular/circular regions.

Implementation Details. We investigate planning from benchmark specifi-
cations in two robot exploration environments (similar to Figure 1), namely
LinEnv and NonLinEnv created using STLPY [12]. STLPY has the functionality
to encode any arbitrary STL formula, dynamics and actuation limits into con-
straints and use existing state-of-the-art solvers (Gurobi [10], SNOPT [9], etc.,)
to generate satisfying plans. Our two environments are both planar but differ in
underlying dynamics governing the robot. LinEnv has linear dynamics (Double
Integrator) whereas NonLinEnv has nonlinear dynamics (Unicycle). We bench-
mark our technique against existing MICP methods (for linear dynamics) and
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other gradient-based techniques like SNOPT (for non-linear dynamics). We use
Python to implement our tool* while using stlpy and Drake [23] to encode the
STL constraints. Additionally, we use Gurobi or SNOPT to solve the final con-
strained optimization problem. All experiments were run on a workstation with
an Intel Xeon W-1350 processor and 32 GB RAM.

Benchmarks and Research Questions. We compare against the state-of-the-
art techniques proposed in [4] (which we call standard MICP) and [12] (reduced
MICP). Since the standard MICP encoding is only defined for environments with
linear dynamics, we compare our technique against reduced MICP encoding for
NonLinEnv. Reduced MICP claims better performance over standard MICP for
long horizon and complex specifications due to their efficient encoding of dis-
junction and conjunction with fewer binary variables. However, standard MICP
is faster for short-horizon specifications due to solver-specific presolve routines
that leverage the additional binary variables for simplification.

Since our focus is on both short- and long-horizon specification with deep
levels of temporal operator nesting, we benchmark against both techniques. The
two main metrics we are concerned with are the time taken for solving and the
final robustness values. To make the comparison fair, the total time taken by
our technique includes the time taken by the flattener, scheduler, and solvers.

The two main research questions we investigate in this paper are:

1. RQ1: Does our decomposition technique result in shorter solve times?
2. RQ2: Does our decomposition technique result in higher robustness scores?

5.2 Results

Table 2 summarizes the results for STLINC performance compared to the base-
lines. In the tables, N represents the horizon of the specification and D represents
the maximum depth of temporal nesting; TO represents a timeout, which means
the solver did not terminate despite running it for 30 minutes. In those cases, the
solver’s output plan robustness is represented as -inf (which means no solution
was found in the given time).

For LinEnv for all the specifications, our robustness values are comparable
to the two techniques but our solve times are either lower or comparable to
the baselines. Additionally, for specification ¢3, which has the deepest tempo-
ral nesting, our method significantly outperforms both baseline methods that
experience timeouts.

For NonLinEnv for ¢ and ¢4, the baseline encoding performs better in terms
of solving time but STLINC only does slightly worse. However, for specification
o2, ¢3 and ¢5, STLINC significantly outperforms the baselines.

* https://github.com /parvkpr/MCTSTL
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Spec|N|D Solve time (s) Robustness
LinEnv NonLinEnv LinEnv NonLinEnv
[4] | [12] |StrINc| [12] |STLINc| [4] | [12] |[STLINC| [12] [STLINC
¢1 |40/0(0.845| 2.698 | 0.891 |0.890| 1.464 | 0.500 |0.500| 0.500 |0.430| 0.572
¢2 |30{1(2.459| TO | 0.402 [12.674| 0.892 |0.491 | -inf | 0.491 | -inf | 0.594
¢3 (603 TO | TO | 0.874 [15.829| 1.554 | -inf | -inf | 0.228 | -inf | 0.065
¢4 |40(2(0.318|0.330 | 0.629 |1.049| 1.131 |0.494|0.500| 0.500 |0.470| 0.364
¢s |40| 2 |2.829|28.490| 0.694 |83.193| 1.776 | 0.500 |0.500| 0.500 | -inf | 0.596

Table 2. STLINC Performance Benchmarking for LinEnv and NonLinEnv against stan-
dard MICP ([4]) and reduced MICP ([12]).

Summary. Our technique excels significantly for nesting depths > 1 in both
LinEnv and NonLinEnv. However, for nesting depths < 1, the baseline tech-
niques outperform us due to marginal overhead from flattening, scheduling, and
solver invocations. The encoding for these specifications involves fewer binary
variables, and the preprocessing overhead of using STLINC outweighs the per-
formance benefits. Nevertheless, the experiment suggests that our technique is
more efficient for multi-step tasks with deep temporal nesting, outperforming
baselines by an order of magnitude.

6 Related Work

Trajectory synthesis from STL specifications is an active area of research for
which multiple approaches have been proposed in the past few years [20,2,21,
1,15]. One of the first papers in this direction involved translating STL speci-
fications into constraints within a Mixed Integer Linear Program (MILP) [20].
This approach is sound and complete but faces scalability challenges for long-
horizon specifications. To remedy this drawback, the original encoding has been
modified by focusing on abstraction-based techniques [22] and reducing binary
variables via logarithmic encoding [12]. Most of these techniques focus on re-
ducing the MILP’s complexity to observe performance benefits. Recently, the
focus has shifted to developing techniques that leverage robustness feedback
as a heuristic for trajectory synthesis instead of using MILP. These techniques
involve using reinforcement learning [1, 11], search-based techniques [3] and con-
trol barrier functions [15] to generate STL satisfying trajectories. While these
methods offer greater scalability, they are not complete and frequently struggle
to accommodate complex specifications because of the intrinsically non-convex
optimization problem posed by robustness semantics.

In this work, we focus on MILP-based techniques due to their completeness
guarantees and improve their scalability by modifying input STL specifications
themselves. However, since we perform structural manipulation of the specifica-
tions themselves, our decomposition technique is planner-agnostic and can also
use learning- or search-based planners. Decomposition of STL specifications has
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been studied before in [13,24]. However, our work differs from existing work
in multiple ways. In [24], the authors restrict themselves to an STL fragment
that does not allow nesting of temporal operators, while a key contribution of
our work is handling deep nested specifications. In [13], the authors perform
structural manipulation using a tree structure. However, their focus is on multi-
agent setups and they handle nested operators conservatively, especially for the
eventually operator. This conservative notion generates specification satisfying
behavior but it can be overly restrictive. Our interpretation is more flexible and
in line with the Boolean semantics defined for the same operators.

7 Limitations and Future Work

In this work, we propose a structural manipulation-based technique for the tem-
poral decomposition of STL specifications, enabling the incremental fulfillment
of these specifications. We show our method generates correct-by -construction
trajectories that satisfy deeply nested specifications with long time horizons for
which existing baseline STL planning techniques struggle.

While the proposed approach is promising, our current decomposition tech-
nique does not handle disjunction. Additionally, the technique is sound but not
complete, and designed to prioritize satisfaction over optimality. This limita-
tion stems from incremental planning of objectives, which can be locally opti-
mal compared to global planning, which considers the entire problem space. In
future work, we aim to enrich our scheduling algorithm with backtracking capa-
bility, which can generate multiple satisfying plans, to overcome this limitation.
Furthermore, for probabilistic systems, we plan to employ conformal prediction
techniques to overcome compounding modeling error issues. Another avenue for
future work is to adapt our theory to accommodate learning and heuristic-based
approaches, such as reinforcement learning. Finally, our decomposition theory
can potentially be employed for other STL applications, such as falsification,
testing and runtime assurance and we plan to investigate that in the future.
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A  Appendix

A.1 Slicing Algorithm and Illustration

Our slicing algorithm is illustrated in Algorithm 3 and its application is demon-
strated using the running example. In this example, the first set of constraints
to be fulfilled is {t2 = (2,21,71),t4 = (1,35,-r3)}. In the first step (line 3),
we identify the lowest and the highest time bounds out of all the constraints in
currTasks (which, for the example, would be 1 and 35). Then, in lines 5 to 11,

for the horizon, we identify which constraints are active at each given time
step. After this step, in lines 14 to 29, we first create “slices”, which involves
generating multiple time intervals out of time steps where similar constraints are
active. Then, we create constraints of type X* and XY out of them by combining
propositions of constraints of the same type. For the running example, these time
slices would be [1,1], [2,21] and [22,35]. Finally, the constraints are converted into
the following three atomic tasks:

G 1y(—rs3) Fl2.211(r2) A G2,217(—73) G22,35)(—73)
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Algorithm 3 SLICE

: Input: Set of currTasks X°¢
: Output: Set of atomic tasks constraints xe
tmin, tmaz := HORIZON(currTasks)
active := ()
: for t in [tmin, tmae| dO
actives = ()
for x = (I, h,p) in X° do
if t in [I, h] then active; := active; (z) end if
end for
active := active  actives
: end for
12: tiow := tmin
13: x¢ = {}
14: for t in [tmin + 1, tmaz] do
15: if active[t — 1]! = active[t] then

U IS A el e

— =
»—Agp

16: XemP = getivelt — 1]

17: X = {(tiow, t — 1, T)}

18: XL = {(tiow, t — 1, T)}

19: for z = (I, h,p) in X**™? do
20: if 2 in X7 then

21: AL p = X2 p A p
22: else

23: XL p = X p Ap
24: end if

25: end for

26: xe = x yatemr g xlemr
27: tlou) =1

28: end if

29: end for

30: return X¢




