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Abstract
We consider the problem of best policy identification in discounted Linear Markov

Decision Processes in the fixed confidence setting, under both generative and forward
models. We derive an instance-specific lower bound on the expected number of samples
required to identify an ε-optimal policy with probability 1 − δ. The lower bound
characterizes the optimal sampling rule as the solution of an intricate non-convex
optimization program, but can be used as the starting point to devise simple and
near-optimal sampling rules and algorithms. We devise such algorithms. In the
generative model, our algorithm exhibits a sample complexity upper bounded by
O((d(1− γ)−4/(ε+ ∆)2)(log(1/δ) + d)) where ∆ denotes the minimum reward gap of
sub-optimal actions and d is the dimension of the feature space. This upper bound
holds in the moderate-confidence regime (i.e., for all δ), and matches existing minimax
and gap-dependent lower bounds. In the forward model, we determine a condition
under which learning approximately optimal policies is possible; this condition is
weak and does not require the MDP to be ergodic nor communicating. Under this
condition, the sample complexity of our algorithm is asymptotically (as δ approaches 0)
upper bounded by O((σ?(1− γ)−4/(ε+ ∆)2)(log( 1δ ))) where σ? is an instance-specific
constant, value of an optimal experiment-design problem. To derive this bound, we
establish novel concentration results for random matrices built on Markovian data.

1 Introduction

In Reinforcement Learning (RL), an agent interacts with an unknown controlled stochastic
dynamical system, with the objective of identifying as quickly as possible an approximately
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optimal control policy. In this paper, we consider dynamical systems modelled through
discounted Markov Decision Processes (MDPs), and investigate the problem of best policy
identification in the fixed confidence setting. More precisely, we aim at devising (ε, δ)-PAC
RL algorithms, i.e., algorithms identifying ε-optimal policies with a level of certainty greater
than 1− δ, using as few samples as possible. Such a learning objective has been considered
extensively in tabular MDPs both in the discounted and episodic settings, most often using
a minimax approach, see e.g. [15, 13, 7, 4, 22, 2, 19, 9, 5, 6] and more recently adopting an
instance-specific analysis [21, 20]. According to the aforementioned work, in tabular MDPs,
the minimal sample complexity for identifying an ε-optimal policy with probability at least
1− δ scales as SA

ε2
log(1/δ) (ignoring the dependence in the time-horizon or discount factor),

where S and A represent the sizes of the state and action spaces, respectively. These results
illustrate the curse of dimensionality (tabular MDPs with limited state and action spaces
only are learnable), and highlight the need for the use of function approximation towards
the design of scalable RL algorithms.

Despite the empirical successes of RL algorithms leveraging function approximation, our
theoretical understanding of these methods remain limited. In this paper, we investigate the
so-called linear MDPs, where linear functions are used to approximate the system dynamics
and rewards. We aim at devising statistically and computationally efficient algorithms for
the best policy identification with fixed confidence learning task. We address this task
under both (i) the generative model, where in each round, a sample of the transition and
reward from any given state-action pair can be observed; and (ii) the forward model, where
the learner has access to a single controlled trajectory of the system. Our contributions are
summarized below.

(a) Sample complexity lower bounds. We derive instance-specific lower bounds that
any (ε, δ)-PAC algorithm must satisfy, for both the generative and forward models. These
lower bounds are characterized by the solution of an intricate optimization problem. We
propose a careful relaxation of these optimization problems. These relaxations suggest an
experiment design approach based on G-optimal design to define the sampling strategy
used to explore the MDP.

(b) Algorithms with a generative model. When the learner has access to a generative
model, inspired by our sample complexity lower bounds, we devise G-Sample-and-Stop
(GSS), a simple (ε, δ)-PAC algorithm that relies on G-optimal design [17, Chap. 21],
least-squares estimators, and a proper stopping rule. We show that the expected sample
complexity of GSS scales at most as ((d(1 − γ)−4)/(∆M + ε)2)(log(1/δ) + d) (up to
logarithmic factors), where ∆M is an appropriately defined instance-specific sub-optimality
gap that depends on the MDPM. This upper bound holds in the moderate-confidence
regime (i.e., for all δ ∈ (0, 1)), and matches existing minimax and gap-dependent lower
bounds.

(c) Algorithms with the forward model. Again inspired by our sample complexity
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lower bounds, we propose G-Navigate-and-Stop (GNS). The analysis of GNS or other
algorithms for the forward model presents many challenges: (i) In contrast with episodic
setting, we do not have the ability to restart the trajectory at each episode. Hence, suitable
conditions are required to ensure that learning is even possible from a single controlled
trajectory. (ii) Because of the linear structure, the uniqueness of the optimal sampling
policy that arise from our lower bounds is not guaranteed, and the set of such optimal
policies does not have nice properties such as convexity. Therefore, a careful sampling
scheme is required. (iii) The data generated when exploring the MDP is Markovian, which
implies that new concentration results for random matrices with Markovian data must be
derived. We overcome these challenges. First, we determine conditions under which learning
approximately optimal policies is possible; these conditions are weak and do not require
the MDP to be ergodic nor communicating. Then, under such conditions, we establish
concentration bounds on random matrices with Markovian data. Finally, we show that
the sample complexity of GNS, under the learnability conditions, is asymptotically (as δ
approaches 0) upper bounded by O

(
((1− γ)−4σ?M,for/(∆M + ε)2) log(1/δ)

)
where σ?M,for

is an instance-specific constant, value of an optimal experiment design problem.

2 Related Work

Linear models in RL have attracted a lot of attention over the last few years. We summarize
below the recent results, related to first episodic MDPs and then discounted MDPs.

Episodic linear MDPs. Most of the studies have aimed at devising algorithms
minimizing regret. Jin et al. [12] propose an optimistic Least Squares Value Iteration
(LSVI) algorithm that achieves a regret upper bound of order Õ(

√
d3H3T ) and that can be

implemented in polynomial time. [10] presents UCRL-VTR, a confidence based algorithm
adapted to the linear MDP setting. The algorithm achieves a gap dependent regret of order
Õ(((d2H5)/∆min) log (T/δ)3). When it comes to best policy identification problems, in
[27], Wagenmaker et al. establish a sample complexity minimax lower bound for the task
of identifying an ε-optimal policy. the lower bound scales as Ω(d2H2/ε2). The authors also
propose an a reward-free algorithm with sample complexity of order Õ(d/ε2)(log(1/δ)+d)H5.
In a subsequent work, Wagenmaker et al. [28] introduce PEDEL, an elimination based
algorithm with instance-specific sample complexity guarantees. In the worst case, the
sample complexity upper bound scales as Õ((dH5/ε2)(dH2 + log(1/δ))). This bound hides
a dependence on λ?min, the maximal minimum eigenvalue of the covariates matrix that can
be induced by a policy. As in our work, the derived instance-specific sample complexity
guarantees are related to G-optimal design and take the following form: C0G+C1 where G =

H4
∑H

h=1 infΛexp maxπ∈Π

‖φπ,h‖Λ−1
exp

log
(
|Π|
δ

)
max{V ?(Π)−V π ,∆min(Π),ε2} with C0 = log

(
1
ε

)
polylog (H, log(1/ε))
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and C1 = poly (d,H, 1/λ?min, log(1/δ), log(1/ε), log(|Π|)). Note that PEDEL requires as
input a set of policies Π. The authors propose a way to approximate the set of all policies
using restricted linear soft-max policies Πε which leads to an overall sample complexity

of order C0H
4
∑H

h=1 infΛexp maxπ∈Πε

‖φπ,h‖Λ−1
exp

(dH2+log( 1
δ

))

max{V ?−V π ,ε2} + C1. In Zanette et al. [30], the
authors also investigate the problem of identifying an ε-optimal policy with a generative
model and propose a Linear Approximate Value Iteration algorithm (LAVI). They leverage
the idea of anchor (state, action) pairs but require a set of such anchor pairs for each layer
h ∈ [H].

Discounted linear MDPs. In [29], Yang et al. focus on the ε-optimal policy
identification problem in the generative setting and present Phased Parametric Q-Learning
(PPQ-learning), an algorithm with sample complexity of order Õ( d

(1−γ)3ε2
log(1

δ )) under
the restrictive assumption that a so-called set of (state, action) anchor pairs exist (see
Assumption 2) and that it is of size d. More precisely, this assumption states that there
exists K ⊂ S × A, a set of anchor (state, action) pairs such that for all (s, a) ∈ S × A,
φ(s, a) can be written as convex combination of features of anchor pairs. The authors
further assume that |K| = d and that all features have non-negative entries and that the
features correspond to probability vectors. The authors finally provide a matching minimax
lower bound of order Ω̃( d

ε2(1−γ)3 ).

Lattimore et al. [18] also consider the ε-optimal policy identification problem in the
generative setting. They devise a sampling rule based on G-optimal design and use an
approximate policy iteration algorithm to recover the optimal policy. Their algorithm seeks
to estimate the Q function directly at each iteration, by first evaluating the value of Q at
anchor (state, action) pairs (determined by the G-optimal design) via rollout, and by then
generalizing using least squares. The sample complexity of their algorithm is of the order
Õ( d

√
d

ε2(1−γ)8 log(1
δ )).

Finally it is worth mentioning [31], where Zhou et al. consider the regret minimization
problem in the forward model. The notion of regret for discounted MDPs is not easy to
define. Here, the authors consider the accumulated difference of rewards between an Oracle
policy and the proposed policy but along the trajectory followed under the latter policy
(this policy could well lead the system into regions of the state space). The proposed
algorithm achieves a regret scaling at most as Ô(d

√
T/(1− γ)2).

4



3 Models and Objectives

3.1 Notation

We denote by ‖x‖ the Euclidean norm of a vector x ∈ Rd. For a given definite positive
matrix M ∈ Rd×d, we denote by ‖x‖M =

√
x>Mx the weighted Euclidean norm of the

vector x ∈ Rd. We denote by ‖M‖ the operator norm of a matrix M ∈ Rd×p. For a positive
definite matrix M ∈ Rd×d, we denote its highest (resp. smallest) eigenvalue by λmax(M)
(resp. λmin(M)), respectively. For a given pair of two symmetric matrices A,B ∈ Rd×d,
we write A � B (resp. A � B) to mean that A − B is positive definite (resp. positive
semi-definite).

3.2 Discounted linear MDPs

We consider an infinite time-horizon discounted MDP, denoted M = (S,A, pM, qM, γ),
where S and A are the state and action spaces, respectively, pM and qM are the dynamics
and reward distributions, respectively, and γ ∈ (0, 1) is the discount factor. More precisely,
starting from state s and given that action a is selected, the probability to move to state
s′ is pM(s, a, s′) and the distribution of the collected reward is qM(s, a). We assume that
qM(s, a) has support on [0, 1], and we denote by rM(s, a) the expected reward of qM(s, a).
S and A are finite sets of respective cardinalities S and A.

Each state-action pair (s, a) is associated to a feature vector φ(s, a) ∈ Rd. We assume
that the feature map φ is known to the learner, that for all (s, a) ∈ S ×A, ‖φ(s, a)‖ ≤ 1,
and that the features (φ(s, a))(s,a)∈S×A span Rd. We are interested in the class of the
so-called Linear MDPs, denoted by M, and defined as follows [12]:

Definition 3.1 (Linear MDPs). We sayM is a Linear MDP if there exists µM, a family
of d measures over S, seen as S × d-dimensional matrix, and θM ∈ Rd, such that for all
s, s′ ∈ S and a ∈ A,

pM(s, a, s′) = φ(s, a)>µM(s′), and rM(s, a) = φ(s, a)>θM, (1)

with max{‖θM‖, ‖µM(S)‖} ≤
√
d.

A deterministic stationary control policy π maps states to actions. We denote by sπt the
state at time t under the policy π, and by π(s) the action selected by π. The performance
of a policy π is expressed through its state value function V π

M and its state-action value
function QπM defined by: for all state-action pairs (s, a) ∈ S ×A,

V π
M(s) = EM

[
+∞∑
t=0

γtrM(sπt , π(sπt ))|sπ0 = s

]
,
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and
QπM(s, a) = rM(s, a) + γ

∑
s′∈S

pM(s, a, s′)V π
M(s′).

An optimal policy π?M for the MDP M maximizes the value function for any state,
i.e., for any policy π, we have V π?M

M (s) ≥ V π
M(s) for all s ∈ S. The state and state-action

value functions of π?M are referred to as the value function V ?
M and the Q function Q?M,

respectively. A policy π is said ε-optimal if maxs∈S V
π
M(s)− V ?

M(s) ≤ ε point-wise, and we
denote by Π?

ε(M) the set of ε-optimal policies ofM.

3.3 Best policy identification

We aim at designing a learning algorithm interacting with the MDPM so as to identify an
ε-optimal policy as quickly as possible. We formalize this objective in a PAC framework,
where a learning algorithm consists of (i) a sampling rule, (ii) a stopping rule and (iii) a
decision rule.

(i) Sampling rule: We distinguish between the generative and the forward model:

1. Generative model: In each round t, the sampling rule may select any (state,
action) (st, at) to explore depending on past observations.

2. Forward model: Under this model, the learner is forced to follow the trajectory
of the system, and only the action may be selected.

Under both models, from the selected pair, the learner observes the next state and
receives a sample of the corresponding reward.

(ii) Stopping rule: This rule is defined through a stopping time τ deciding when the
learner stops gathering information and wishes to output an estimated ε-optimal
policy.

(iii) Decision rule: Based on the observations gathered before stopping, the learner outputs
an estimated optimal policy π̂τ .

We are interested in learning algorithms that are (ε, δ)-PAC in the following sense:

Definition 3.2 ((ε, δ)-PAC algorithms). An algorithm is said (ε, δ)-PAC if at the time it
stops τ , it ouputs a policy π̂τ satisifying:

PM
(

max
s∈S

(
V ?
M(s)− V π̂τ

M (s)
)
< ε

)
≥ 1− δ
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Our goal is to design (ε, δ)-PAC algorithms with minimal sample complexity EM[τ ].
In contrast with most existing analyses, we will derive instance-specific lower and upper
bounds on the sample complexity of such algorithms (ε, δ)-PAC algorithms. In particular,
we wish these bounds to depend on the sub-optimality gap of the MDP M defined by
∆M = mins∈S,a6=π?M(s)(V

?
M(s)−Q?M(s, a)).

4 Sample Complexity Lower Bounds

To state our instance-specific lower bounds, we first introduce the following notation. Given
two MDPs M and M′ in M, we write M � M′ if for every pair (s, a) ∈ S × A, we
have1 pM(s, a, ·) � pM′(s, a, ·) and qM(s, a) � qM′(s, a). In this case, we define the
Kullback-Leibler divergence betweenM andM′ by:

KLM|M′(s, a) = KL(qM(s, a)‖qM′(s, a)) + KL(pM(s, a, ·)‖pM′(s, a, ·)).

We also denote by kl(a, b) the Kullback-Leibler divergence of two Bernoulli distributions
of respective means a and b. Finally, we introduce the following set of MDPs. This set
includes MDPs for which the set of ε-optimal policies does not contain an ε-optimal policy
forM.

Altε(M) =

{
M′ ∈M :

{
M�M′

Π?
ε(M) ∩Π?

ε(M′) = ∅

}

We refer to Altε(M) as the set of alternative MDPs w.r.t. M. Let ΣS×A be the probability
simplex in RSA, and define for all ω ∈ ΣS×A,

TM(ω)−1 = inf
M′∈Altε(M)

∑
s,a

ωs,aKLM|M′(s, a). (2)

With a generative model. For the generative model, we establish the following lower
bound.

Proposition 4.1. Let ε > 0, δ ∈ (0, 1). The sample complexity τ of any (δ, ε)-PAC
algorithm must satisfy: EM[τ ] ≥ T ?M,gen kl(δ, 1− δ) where T ?M,gen = infω∈ΣS×A TM(ω).

The derivation of the lower bound in Proposition 4.1 relies on standard change-of-
measure arguments. We defer the proof to Appendix A. The vector ω ∈ ΣS×A solving the
optimization problem and leading to T ?M,gen can be interpreted as the optimal proportions of
times an optimal algorithm should sample the various (state, action) pairs. It turns out, as in

1Here � refers to the standard symbol for absolute continuity between probability measures.
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the case of tabular MDPs (see [21]), that analyzing and computing this allocation is difficult.
Instead, our strategy will be to derive instance-specific upper bounds of the T ?M,gen that can
be computed in a computationally efficient manner. To state the upper bounds, we introduce
the following quantities: let ω ∈ ΣS×A, Λ(ω) =

∑
(s,a)∈S×A ωs,aφ(s, a)φ(s, a)>, and σ(ω) =

max(s,a)∈S×A ‖φ(s, a)‖2Λ(ω)−1 . Λ(ω) is referred to as the feature matrix. Furthermore, observe
that the function σ(·) corresponds to the so-called G-optimality criterion (see e.g. Chap.
21 in [17]). Our next result is to establish a link between TM(·) and σ(·).

Theorem 4.2. For all ω ∈ ΣS×A, it holds that

TM(ω) ≤ 10σ(ω)

3(1− γ)4(∆M + ε)2
. (3)

Consequently, we have T ?M,gen ≤ U?M,gen , 10d
3(1−γ)4(∆M+ε)2 .

Theorem 4.2 relates the experiment-design approach based on G-optimality to our
instance dependent lower bound. A similar link has been established in the case of best-arm
identification in linear bandits [23]. However, establishing such a link in the case of Linear
Discounted MDPs is more challenging and requires a careful relaxation of the optimization
problem leading to the definition of TM(ω) in (2). The proof of Theorem 4.2 is deferred to
Appendix A.

From an algorithmic perspective, Theorem 4.2 tells us that sampling according to a G-
optimal design ω? (i.e., ω? ∈ arg minω∈ΣS×A σ(ω)) is sufficient to identify an ε-optimal policy
with a sample complexity upper bounded by the gap-dependent quantity U?M,gen log(1/δ).
ω? only depends on the feature map φ and not the uknowns µM and θM, and therefore
may be computed prior to the learning process.

With a forward model. Proposition 4.1 and Theorem 4.2 can be immediately extendend
to the forward model. To simplify the exposition, we will restrict our attention to the
asymptotic lower bounds when δ → 0. As in [20], we can establish that if ωsa denotes
the expected proportion of rounds where the state-action pair (s, a) is visited, then the
allocation ω, asymptotically, must satisfy the balance equations of the Markov chain induced
by the controlled system dynamics: for all s ∈ S,∑

a∈A
ωs,a =

∑
(s′,a′)∈S×A

pM(s′, a′, s)ωs′,a′ . (4)

Define Ω(M) ={ω ∈ ΣS×A : the constraints (4) hold}.

Proposition 4.3. Let ε > 0, δ ∈ (0, 1). In the forward model, the sample complexity
τ of any (ε, δ)-PAC algorithm must satisfy: EM[τ ] ≥ T ?M,for kl(δ, 1 − δ) where T ?M,for =
infω∈Ω(M) TM(ω).
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Theorem 4.4. Let σ?M,for = infω∈Ω(M) σ(ω). Then, we have

T ?M,for ≤ U?M,for ,
10 σ?M,for

3(1− γ)4(∆M + ε)2
. (5)

The proof of Proposition 4.3 and Theorem 4.4 are presented in Appendix A. The upper
bound we obtain on T ?M,for, suggests an experiment design approach where the objective is
to sample according to an allocation ω? ∈ arg minω∈Ω(M) σ(ω). This objective is similar in
spirit to that considered in [28] for Episodic Linear MDPs.

5 The G-Sample-and-Stop Algorithm

We propose G-Sample-and-Stop (GSS), an algorithm whose sample complexity matches the
complexity measure U?M,gen log(1/δ) presented in Theorem 4.2. The algorithm samples the
state-action pairs according to a G-optimal design, and stops when it has gathered enough
information. The adaptive nature of the stopping rule ensures a gap-dependent sample
complexity upper bound.

5.1 Sampling rule

Prior to the learning process, under the GSS algorithm, we start by finding2 an optimal
allocation ω? ∈ arg minω∈ΣS×A σ(ω). Then, at each round t, the algorithm proceeds by
sampling a state-action pair (st, at) according to ω?. Define Pt =

∑t
`=1 φ(s`, a`)φ(s`, a`)

>.
Standard concentration arguments on random matrices ensure that the random matrix Pt
converges to the matrix tΛ(ω?). In particular, tmax(s,a)∈S×A ‖φ(s, a)‖2

P−1
t

will converge
towards σ(ω?). We present this fact in the following proposition, and its proof is deferred
to Appendix B.

Proposition 5.1. Let δ ∈ (0, 1). We have

P
(
t max

(s,a)∈S×A
‖φ(s, a)‖2

P−1
t
≤ 2σ(ω?)

)
≥ 1− δ,

provided t ≥ 10d log
(

2d
δ

)
.

2Finding a G-optimal design is well studied problem. We refer the reader to Chap. 21 in [17] and further
computational considerations are discussed in Appendix B.
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5.2 Least-squares estimation

The stopping and decision rules of GSS leverage the least-squares estimators of the parame-
ters µM and θM. We provide below explicit expressions for these estimators and derive
concentration inequalities characterizing their performance. When the algorithm selects
(state, action) pair (st, at) in round t, it observes the next state s′t and receives the reward
rt. Overall, in round t, the algorithm gathers the experience (st, at, rt, s

′
t). The regularized

least-squares estimators with parameter λ > 0 of µM and θM after t experiences are given
by: for all s ∈ S,

µ̂t(s) = (Pt + λId)
−1

t∑
`=1

φ(s`, a`)1{s′`=s}, and θ̂t = (Pt + λId)
−1

t∑
`=1

φ(s`, a`)r`. (6)

In what follows, we choose λ = 1/d and denote by M̂t the MDP associated to the corre-
sponding least-squares estimators. Let V̂t and Q̂t be its value functions. The performance
of the least-squares estimators can be controlled in the following sense:

Proposition 5.2. Irrespective of the sampling rule, we have for all δ ∈ (0, 1),

P
(
∀t ≥ 1,

∥∥∥θ̂t − θM + γ(µ̂t − µM)>V̂ ?
t

∥∥∥2

Pt
≤ β(δ, t)

)
≥ 1− δ (7)

with the threshold β(δ, t) = C
(1−γ)2 (log (e/δ) + d log (dt)) for some universal constant C > 0.

The proof of Proposition 5.2 is presented in Appendix C along with the precise constants.
Importantly, the threshold β does not exhibit any dependence in S but only in d. This is
thanks to the linear structure that characterizes the value function. Such a structure allows
us to use a net argument on the space of all possible optimal value functions. This idea is
borrowed from [12] and repurposed to our needs.

5.3 Stopping and decision rules

Let us start by describing the stopping rule. For all t ≥ 1, we define the random variable
Z(t) and the threshold β(δ, t) as follows

Z(t) =
3(1− γ)4(∆M̂t

+ ε)2

10 max(s,a)∈S×A ‖φ(s, a)‖2
P−1
t

, and β(δ, t) = C
(

log
(e
δ

)
+ d log (dt)

)
.

The random variable Z(t)/t may be interpreted as an empirical estimator of the lower bound
on U?M,gen established in Theorem 4.2. The choice of the threshold β(δ, t) is motivated
by the concentration result of Propostion 5.2 with C being the universal constant in the
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statement of the proposition. Finally, the stopping rule of GSS is defined by the stopping
time

τ = inf {t ≥ 1 : Z(t) > β(δ, t)} . (8)

This stopping rule is inspired by classical log-likelihood based stopping rules. When the
algorithm stops, it computes π̂τ , an optimal policy for the MDP M̂τ . The description of
GSS is now complete and summarized in Algorithm 1.

Algorithm 1: G-Sample-and-Stop (GSS)
Compute ω? = arg minω∈ΣS×A σ(ω)
while Z(t) ≤ β(δ, t) do

sample (st, at) according ω?

observe the experience (st, at, rt, s
′
t)

update (µt, θt) according to (6) and set t = t+ 1

end
return π̂ = π?t the optimal policy of M̂t

The following Lemma establishes the (ε, δ)-PAC correctness of GSS. It is a consequence
of Propositon 5.2 and its proof is deferred to Appendix C.

Lemma 5.3. Under the GSS algorithm, we have: P (τ < +∞, π̂τ /∈ Π?
ε(M)) ≤ δ.

5.4 Sample complexity guarantees under GSS

Finally, in Theorem 5.4 we present the sample complexity guarantee enjoyed by GSS.

Theorem 5.4. The sample complexity of GSS satisfies, for all ε > 0, δ ∈ (0, 1),

E[τ ] ≤ CU?M,gen

(
log
(e
δ

)
+ d log

(
U?M,gen

))
(9)

where C > 0 is a universal constant. Furthermore, GSS is an (ε, δ)-PAC algorithm.

The proof of Theorem 5.4 is presented in Appendix D. First, observe that the sample
complexity guarantee is valid for all δ ∈ (0, 1) which contrasts with most existing asymptotic
results in best policy identification. Additionally, our guarantee is matching, up to a constant
multiplicative factor, the upper bound established in Theorem 4.2 as δ → 0.
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6 The G-Navigate-and-Stop algorithm

In this section, we present G-Navigate-and-Stop (GNS), an algorithm whose sample complex-
ity matches the complexity measure U?M,for log(1/δ) presented in Theorem 4.4. The design
of GNS, as that of GSS, is guided by our lower bounds. In particular, the stopping and
decision rules are the same as those of GSS and all guarantees related to these components
also hold for GNS, namely Proposition 5.2 and Lemma 5.3. The major difference lies in the
sampling rule where now we have to account for navigation constraints.

6.1 Sampling rule

In what follows, we denote, for ease of notations, for all ` ≥ 1 , φ` = φ(s`, a`). Recall that
Pt =

∑t
`=1 φ`φ

>
` . As already mentioned in the study of the generative model, this random

matrix plays a crucial role. In the forward model, the role Pt is more pronounced and in
fact all our learnability conditions concern this matrix.

6.1.1 Forced exploration

Learning from a single trajectory requires the existence of at least a policy that explores
the MDP sufficiently. Additionally if there is any hope for finding an optimal exploration
strategy then we need at least to guarantee that while searching for such a policy, we do not
get trapped in states that irrevocably limit our exploration. This motivates the definition
of (m,λ)-covering policies.

Definition 6.1 ((m,λ)-covering policy). A policy π is said to be an (m,λ)-covering policy
ofM if there exists m ≥ 1 and λ > 0 such that:

min
s∈S

λmin

(
1

m
EπM

[
m∑
t=1

φtφ
>
t

∣∣∣s1 = s

])
> λ. (10)

We make the following assumption, which is necessary to ensure that learnability is
possible.

Assumption 6.2. There exists an (m,λ)-covering policy πe. Furthermore, the learner is
aware of the policy πe and of m.

It is worth noting that Assumption 6.2 does not require a priori that the MDPM is
ergodic nor communicating. For a more detailed discussion on this assumption, refer to
Appendix B. We are now ready to present our forced exploration scheme.
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Lemma 6.3 (Forced exploration). Let (bt)t≥1 be an arbitrary sequence of actions, possibly
adversarially chosen. Under Assumption 6.2, let (at)t≥1 be a sequence of actions sampled
according to:

at = (1− xt)bt + xtπe(·|st) (11)

where xt = 1 with probability t−1/2m and xt = 0 with probability 1− t−1/2m. Then, we have
P
(
λmin

(∑t
`=1 φ`φ

>
`

)
≥ λ

2

√
t
)
≥ 1− δ, provided that t ≥

(
8m
λ2 log

(
2d
δ

))2.
The proof of Lemma 6.3 relies on a careful decomposition of Pt and using a matrix

martingale Bernstein concentration bound. We refer the reader to Appendix B for the proof.
As it turns out, the high probability guarantee on the growth of the smallest eigenvalue in
Lemma 6.3 is sufficient to ensure consistency of the least-squares estimator of µM. This is
required for the sample complexity analysis of GNS.

6.1.2 Tracking

Before we present our tracking procedure, we present what we refer to as the oracle policy
of a given allocation ω.

Oracle policy. As in [3], given an allocation ω ∈ Ω(M), we define the oracle policy πo(ω)
as follows: for all (s, a) ∈ S ×A,

πo(ω)(a|s) =

{ ωs,a∑
a∈A ωs,a

if
∑

a∈A ωs,a > 0,

1
|A| otherwise.

(12)

It is not difficult to verify that the policy πo(ω) indeed induces the allocation ω.

Optimal allocations. Next, we make the following assumption to avoid unnecessary
technical issues that may arise characterizing the set of optimal allocations.

Assumption 6.4. There exists η > 0 such that
(
arg minω∈Ω(M) σ(ω)

)
∩Ωη(M) = ∅ where

Ωη(M) , {ω ∈ Ω(M) : Λ(ω) � 2ηId}. Furthermore, the learner has access to η.

Under Assumption 6.4, we can characterize the set of optimal allocations3 as being
non-empty, compact and convex. However, it is not guaranteed that the optimal allocation
is unique4. This complicates the design of the tracking procedure. In particular, we cannot

3This claim follows from Berge’s maximum theorem. Refer to appendix D for a formal statement.
4The non-unicity of the optimal allocation also occurs in best arm identification for linear bandits (see

e.g.,[11]). The non-unicity is a consequence of Caratheodory’s theorem.
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use the C-tracking rule used for instance in tabular MDPs as in [3]. To circumvent this
issue, we use lazy updates or a doubling trick. Let T = {2k : k ∈ N}. The allocation ωt
that GNS tracks is updated only when t ∈ T .

Optimization oracle. We assume that the learner has access to an optimization oracle
that given a model M̂, outputs an allocation ω? ∈ arg min

ω∈Ωη/2(M̂)
σ(ω). This optimization

problem is convex and therefore computationally tractable.
We are now ready present the sampling rule of GNS. When t ∈ T , the alogrithm

computes ω? ∈ arg min
ω∈Ωη/2(M̂)

σ(ω), and updates πt as πo(ωt). Now in each round t,
bt is sampled according to πt(·|st) and GNS selects the action at defined in (11). The
pseudo-code of GNS is presented in Algorithm 2.

Algorithm 2: The G-Navigate-and-Stop
Initialize π1 to be the uniform policy
while Z(t) ≤ β(δ, t) do

If t ∈ T then compute ωt ∈ arg min
ω∈Ωη/2(M̂t)

σ(ω) and set πt ← πo(ωt)

following (12)
sample bt ∼ πt(·|st), and at according to (11)
update (µt, θt) according to (6), and set t = t+ 1

end
return π̂t an optimal policy of M̂t

Next, we provide tools for the sample complexity analysis of GNS. One crucial step is
to guarantee that under our sampling scheme, certain random matrices concentrate.

Assumption 6.5. There exists κ > 0, such that for all ω ∈ Ωη/2(M), u ∈ SSA−1,
(s, a) ∈ S ×A, the following holds

Eπ
o(ω)

(
lim
t→∞

Mt(u)|s1 = s, a1 = a
)
≤ κ,

where Eπo(ω) means that the expectation is taken with respect to trajectories generated by
policy πo(ω), and Mt(u) =

∑t
`=1

(
|u>Λ(ω)−1/2φ`|2 − 1

)
.

Essentially, Assumption 6.5 guarantees the convergence of 1
t

∑t
`=1 φ`φ` towards Λ(ω)

when the sample trajectory is generated with the fixed policy πo(ω). The uniform bound
κ across state-action pairs in S × A, allocations in Ωη(M), and all unit vector in RSA
may appear strong. However, it can be shown for instance that if M is ergodic then
κ = O(tmix/η) where tmix is a the mixing time of the MDP M. We provide further
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discussions on this assumption in appendix B. Now, we present our concentration bounds
on random matrices with Markovian data.

Proposition 6.6. Let ωk be the optimal allocation used by GNS between tk < t ≤ tk+1 for
some k ≥ 1. Furthermore, assume that ωk ∈ Ωη(M). Then, under GNS with the forced
exploration (11), under Assumption 6.5, we have, for all ε > 0, δ ∈ (0, 1)

P

 1

tk+1 − tk

tk+1∑
t=tk+1

φtφ
>
t � (1− ε)Λ(ωk)

 ≥ 1− δ,

provided that tk+1 − tk ≥ C max
((

16κ
ε

)2
, 16κ

3ε

) (
log
(
e
δ

)
+ d
)
for some universal constant

C > 0.

The proof of Proposition 6.6 relies on decomposing
∑tk+1

t=tk+1 φtφ
>
t using Poisson’s

equation [8] so as to obtain a martingale that can be easily controlled under Assumption
6.5. We defer the proof to Appendix B along with the precise constants.

6.2 Sample complexity guarantees under GNS

Finally, in Theorem 6.7, we present a sample complexity upper bound for GNS.

Theorem 6.7. The sample complexity of GNS, satisfies for all ε > 0,

E[τ ] ≤ CU?M,for

(
log
(e
δ

))
+ o

(
log
(e
δ

))
(13)

for some universal constant C > 0. Furthermore, the GNS algorithm is (ε, δ)-PAC.

The proof of Theorem 6.7 is slightly more complex than that of Theorem 5.4 due
the navigation constraints. We present the proof in Appendix D. Observe that the GNS
algorithm attains a sample complexity that matches, up to some multiplication constant and
assymptotically (as δ → 0), the complexity measure U?M,for log(1/δ) presented in Theorem
4.4.

7 Conclusion

In this paper, we have first derived instance-dependent lower bounds on the sample
complexity of best policy identification in discounted linear MDPs. As of now, these
instance-dependent bounds remain challenging to exploit algorithmically. Instead, we
proposed a relaxation that links these lower bounds to experiment-design criteria based on
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the G-optimal design. These criteria lead to the sample complexity measures U?M,gen log(1/δ)
and U?M,for log(1/δ) for the generative model and forward model, respectively. Importantly,
these complexity measures are instance-dependent as they exhibit a dependence on the
minimum gap ∆M.

Furthermore, we have established that these experiment design criteria can be exploited
algorithmically by proposing the algorithms GSS amd GNS with sample complexity upper
bounds matching asymptotically U?M,gen log(1/δ) and U?M,for log(1/δ), respectively, as δ → 0.
In fact, GSS enjoys a stronger guarantee that holds for all δ ∈ (0, 1) and matches existing
minimax lower bounds (in the episodic case, these bounds are of the order Ω(d2/ε2)). In
the forward model, we are the first, to the best of our knowledge, to investigate the problem
of ε-best policy indentification for discounted linear MDPs. Notably, we establish, for this
model, conditions under which learnability is possible. These conditions are a priori weaker
than ergodicity and communication.

As a future direction, we believe that it would be interesting to improve the relaxations
of the lower bounds, as well as devising, for the forward model, algorithms with sample
complexity guarantees in the moderate confidence regimes.
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A Sample Complexity Lower Bounds

A.1 Proof of Propositions 4.1 and 4.3

The proofs of the two propositions follows a standard change-of-measure argument (see
[14, 3] and references therein). In our case, this argument is summarized in the following
lemma.

Lemma A.1 (Change-of-measure lemma). For any (ε, δ)-PAC algorithm, for all M′ ∈
Altε(M), we have ∑

(s,a)∈S×A

E[Ns,a(τ)]KLM|M′(s, a) ≥ kl(δ, 1− δ)

where Ns,a(τ) =
∑τ

t=1 1{(st, at) = (s, a)}.

Lemma A.1 is borrowed from [3] (see Lemma 9 in [3]), therefore we omit its proof. Now
introducing, for all (s, a) ∈ S ×A, ωs,a = EM[Ns,a(τ)]/EM[τ ], we immediately see that

EM[τ ]TM(ω)−1 = EM[τ ] inf
M′∈Altε(M)

∑
(s,a)∈S×A

EM[Ns,a(τ)]

EM[τ ]
KLM|M′(s, a) ≥ kl(δ, 1− δ)

(14)

where we recall that TM(·) is defined in (2). From here, to obtain the statements of
Proposition 4.1, it suffices to optimize the quantity TM(ω), more precisely we take T ?M,gen =
infω∈ΣS×A TM(ω). The proof of Propoisition 4.3 follows similarly, but this time we optimize
TM(ω) over ω ∈ Ω(M), namely by setting T ?M,for = infω∈Ω(M) TM(ω). However, note that
for thiscase, we require δ → 0, so that E[τ ]→∞, to ensure that ω ∈ Ω(M). Therefore, the
lower bound in Propoisition 4.3 is asymptotic in δ.

A.2 Gap bounds and value difference lemmas

Next, we present key difference lemmas, that will be useful to relax the optimization
problem that appears in the lower bound.

Lemma A.2. Let ε > 0 and letM′ be an MDP such that π?M /∈ Π?
ε(M′). Then, we have:

∆M + ε ≤ ‖V ?
M − V

π?M
M′ ‖∞ + ‖Q?M −Q?M′‖∞. (15)

Proof of Lemma A.2. π?M /∈ Π?
ε(M′) implies that ε ≤ maxs∈S V

?
M′(s) − V

π?M
M′ (s). Denote

s the state maximizing this quantity. We have π?M′(s) 6= π?M(s). Indeed if it was not the
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case then

V ?
M′(s)− V

π?M
M′ (s) = Q?M′(s, π

?
M′(s))−Q

π?M
M′ (s, π

?
M′(s))

= γpM′(s, π
?
M′(s))

>(V ?
M′ − V

π?M
M′ )

≤ γmax
s′∈S

(V ?
M′(s

′)− V π?M
M′ (s′))

= γ(V ?
M′(s)− V

π?M
M′ (s))

which is a contradiction since γ < 1. Now, since π?M′(s) 6= π?M(s), we have ∆M ≤
V ?
M(s)−Q?M(s, π?M′(s)). We can then write

∆M + ε ≤ V ?
M(s)−Q?M(s, π?M′(s)) + V ?

M′(s)− V
π?M
M′ (s)

= V ?
M(s)− V π?M

M′ (s) +Q?M′(s, π
?
M′(s))−Q?M(s, π?M′(s))

≤ ‖V ?
M − V

π?M
M′ ‖∞ + ‖Q?M −Q?M′‖∞.

Lemma A.3. Let π be any deterministic policy. We have:

‖V π
M−V π

M′‖∞ ≤ ‖QπM−QπM′‖∞ ≤
1

1− γ
max
s,a

∣∣∣φ(s, a)>
(
θM − θM′ + γ(µM − µM′)>V π

M

)∣∣∣ .
(16)

Proof of Lemma A.3. For any s ∈ S, we have V π
M(s)−V π

M′(s) = QπM(s, π(s))−QπM′(s, π(s)).
Hence the first inequality holds. Now, we can write for any pair (s, a) ∈ S ×A

QπM(s, a)−QπM′(s, a) = φ(s, a)>
(
θM − θM′ + γ(µM − µM′)>V π

M

)
+ γpM′(s, a)>(V π

M − V π
M′),

so that

‖QπM −QπM′‖∞ ≤ max
s,a

∣∣φ(s, a)>
(
θM − θM′ + γ(µM − µM′)>V π

M
)∣∣+ γ‖V π

M − V π
M′‖∞

≤ max
s,a

∣∣φ(s, a)>
(
θM − θM′ + γ(µM − µM′)>V π

M
)∣∣+ γ‖QπM −QπM′‖∞,

which implies the second inequality.

Lemma A.4. We have:

‖V ?
M−V ?

M′‖∞ ≤ ‖Q?M−Q?M′‖∞ ≤
1

1− γ
max
s,a

∣∣∣φ(s, a)>
(
θM − θM′ + γ(µM − µM′)>V ?

M

)∣∣∣ .
(17)
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Proof of Lemma A.4. Let s ∈ S. We have by optimality of π?M′ that

V ?
M(s)− V ?

M′(s) = Q?M(s, π?M(s))−Q?M′(s, π?M′(s))
≤ Q?M(s, π?M(s))−Q?M′(s, π?M(s))

≤ ‖Q?M −Q?M′‖∞.

V ?
M′(s)− V ?

M(s) can be bounded the same way using the optimality of π?M, so that this
inequality is true in absolute value which gives the first inequality. Now, we can write for
any pair (s, a) ∈ S ×A

Q?M(s, a)−Q?M′(s, a) = φ(s, a)>
(
θM − θM′ + γ(µM − µM′)>V ?

M

)
+ γpM′(s, a)>(V ?

M − V ?
M′),

so that

‖Q?M −Q?M′‖∞ ≤ max
s,a

∣∣∣φ(s, a)>
(
θM − θM′ + γ(µM − µM′)>V ?

M

)∣∣∣+ γ‖V ?
M − V ?

M′‖∞

≤ max
s,a

∣∣∣φ(s, a)>
(
θM − θM′ + γ(µM − µM′)>V ?

M

)∣∣∣+ γ‖Q?M −Q?M′‖∞

which implies the result.

Remark A.5. In Lemma A.3 and Lemma A.4 we have used the fact that for any (s, a),
‖pM′(s, a)‖1 = 1, but only with M′ and not with M. When working with the LSE
estimators θ̂t and µ̂t, we will construct a MDP M̂t whose transitions probabilities, defined
as φ(s, a)>µt, may not be actual probability vectors. This is not an issue since these lemmas
will only be used with M̂t taking the place of the first MDP which does not require such
property.

A.3 Proof of Theorems 4.2 and 4.4

In this section, we prove Theorems 4.2 and 4.4. First, we establish the following Lemma.

Lemma A.6. LetM∈M be a discounted linear MDP. Then, for all ω ∈ ΣS×A, we have:

TM(ω) ≤ UM(ω) :=
10σ(ω)

3(1− γ)4(∆M + ε)2
. (18)

Proof. We are actually going to show (18), but by considering in the definition of TM(ω) an
infimum over the set of MDPsM′ such that π?M /∈ Π?

ε(M′) – which is larger than Altε(M)
and thus gives a smaller infimum than TM(ω)−1. From now on, we consider one such MDP
M′. The proof proceeds in two steps:

22



(Step 1) Lower bounds on the terms KLM|M′(s, a). The Kullback-Leibler diver-
gence can be lower bounded using Lemma A.10 (see below). For a given pair (s, a), let
f = r+ γV ?

M(s′) where r and s′ denote the random reward and the random next state after
playing the pair (s, a), respectively. f is almost surely bounded by (1− γ)−1 and applying
Lemma A.10 with this choice for f yields:

KLM|M′(s, a) ≥ 6(1− γ)2

5

(
EM(s,a)[r + γV ?

M(s′)]− EM′(s,a)[r + γV ?
M(s′)]

)2
=

6(1− γ)2

5

(
φ(s, a)>

(
θM − θM′ + γ(µM − µM′)>V ?

M

))2
.

Summing over all state-action pairs,∑
(s,a)∈S×A

ωs,aKLM|M′(s, a) ≥ 6(1− γ)2

5

∥∥∥θM − θM′ + γ(µM − µM′)>V ?
M

∥∥∥2

Λ(ω)
. (19)

(Step 2) Introducing the gaps ∆M. Putting together Lemma A.2, Lemma A.3 and
Lemma A.4 (and choosing π = π?M in Lemma A.3), we obtain a bound on the quantity
∆M + ε as follows

∆M + ε ≤ 2

1− γ
max
s,a

∣∣∣φ(s, a)>
(
θM − θM′ + γ(µM − µM′)>V ?

M

)∣∣∣ .
Now, we can apply Lemma A.9 with n = 1, ∆ = 1−γ

2 (∆M + ε), Λ1 = Λ(ω) and φ1 the
feature maximizing the term above, and deduce that∥∥∥θM − θM′ + γ(µM − µM′)>V ?

M

∥∥∥2

Λ(ω)
≥ (1− γ)2(∆M + ε)2

4‖φ‖2
Λ(ω)−1

≥ (1− γ)2(∆M + ε)2

4σ(ω)
.

Putting the above inequality together with (19) and then taking the infimum overM′, we
have:

TM(ω)−1 ≥ 3(1− γ)4(∆M + ε)2

10σ(ω)
. (20)

Proof of Theorem 4.2. Now, to obtain the statement of Theorem 4.2, we optimize the
inequality (18) obtained from Lemma A.6 over ω ∈ ΣS×A, and get

T ?M,gen = inf
ω∈ΣS×A

TM(ω) ≤
10 infω∈ΣS×A σ(ω)

3(1− γ)4(∆M + ε2)
= U?M,gen
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Now, applying Kiefer-Wolfowitz theorem (see Theorem A.7 below) implies that infω∈ΣS×A σ(ω) =
d, and that ω?(M) which achieves the minimum is the so-called G-optimal design (see [17]
and references therein). This concludes the proof of Theorem 4.2.

Proof of Theorem 4.4. To obtain the statement of Theorem 4.4, we use the inequality (18)
obtained from Lemma A.6, and optimize it over ω ∈ Ω(M) to get

T ?M,for = inf
ω∈Ω(M)

TM(ω) ≤
10σ?M,for

3(1− γ)4(∆M + ε2)
= U?M,gen

A.4 Technical lemmas

Theorem A.7 (Kiefer-Wolfowitz [16]). Let Φ ⊆ Rd be a finite set such that span(Φ) = d.
Let Σ be the set of probability distributions on Φ. The following statements are equivalent:

(i) ω? = arg minω∈Σ maxφ∈Φ φ
>(
∑

φ∈Φ ω(φ)φφ>)−1φ,

(ii) ω? = arg maxω∈Σ log det(
∑

φ∈Φ ω(φ)φφ>),

(iii) maxφ∈Φ φ
>(
∑

φ∈Φ ω
?(φ)φφ>)−1φ = d.

Remark A.8. The statement of the Kiefer-Wolfowitz theorem in [16] holds under a much
weaker assumption than that of a finite set Φ. For example, if Φ = {φ(x) : x ∈ X} where
φ : X → Rd is a continuous map on some compact set X , then the equivalence between the
three statements (i), (ii) and (iii) still holds.

Lemma A.9. Let ∆ > 0, φi ∈ Rd and Λi ∈ Rd×d some positive definite symmetric matrices
for i = 1, . . . , n. We have:

inf
x∈Rn×d∑n

i=1 |φ>i xi|≥∆

n∑
i=1

‖xi‖2Λi =
∆2∑n

i=1 ‖φi‖2Λ−1
i

. (21)

Proof of Lemma A.9. The absolute values can be removed from the constraint
∑

i |φ>i xi| ≥
∆, as we can then apply it adding arbitrary signs before each φi and get the same result
since ‖ − φi‖Λ−1

i
= ‖φi‖Λ−1

i
. The Lagrangian of the problem without the absolute value is

L(x, ν) =

n∑
i=1

‖xi‖2Λi − ν

(
n∑
i=1

φ>i xi −∆

)
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and the KKT conditions for optimality are

∀i, 2Λixi − νφi = 0,

ν

(
∆−

n∑
i=1

φ>i xi

)
= 0,

∆ ≤
n∑
i=1

φ>i xi,

ν ≥ 0.

The first one gives 2xi = νΛ−1
i φi. This formula together with the third condition imply

that ν > 0, so that the third condition is an equality and

ν =
2∆∑n

i=1 φ
>
i Λ−1

i φi
=

2∆∑n
i=1 ‖φi‖2Λ−1

i

.

Finally we have

xi = ∆ ·
Λ−1
i φi∑n

i=1 ‖φi‖2Λ−1
i

,

and the solution of the optimization problem is∑n
i=1 φ

>
i Λ−1

i ΛiΛ
−1
i φi(∑n

i=1 ‖φi‖2Λ−1
i

)2 ∆2 =
∆2∑n

i=1 ‖φi‖2Λ−1
i

.

Lemma A.10. Let α and β be two probability measures and f be a bounded random variable
such that f ≥ 0. Then we have the following inequality:

KL(α‖β) ≥ 6

5‖f‖2∞
(Eα[f ]− Eβ[f ])2. (22)

Proof of Lemma A.10. We prove that if Eβ[f ] = 0 then

KL(α‖β) ≥ 6

5‖f‖2∞
Eα[f ]2.

It then suffices to apply this result to f − Eβ[f ] and to notice that if f ≥ 0 then ‖f −
Eβ[f ]‖∞ ≤ ‖f‖∞.
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Let f be centered with respect to β. Using Donsker-Varadhan’s inequality, we know
that for any λ > 0,

KL(α‖β) ≥ Eα[λf ]− log(Eβ[exp(λf)]).

Now,

Eβ[exp(λf)] ≤ Eβ

[
1 + λf + f2

+∞∑
k=2

λk‖f‖k−2
∞

k!

]

≤ 1 +
Vβ[f ]

‖f‖2∞

(
eλ‖f‖∞ − λ‖f‖∞ − 1

)
≤ 1 +

1

4

(
eλ‖f‖∞ − λ‖f‖∞ − 1

)
.

Using log(1 + u) ≤ u,

KL(α‖β) ≥ Eα[λf ]− 1

4

(
eλ‖f‖∞ − λ‖f‖∞ − 1

)
.

Optimizing over λ, by choosing λ = 1
‖f‖∞ log

(
1 + 4 Eα[f ]

‖f‖∞

)
, we get:

KL(α‖β) ≥ 1

4

((
1 + 4

Eα[f ]

‖f‖∞

)
log

(
1 + 4

Eα[f ]

‖f‖∞

)
− 4

Eα[f ]

‖f‖∞

)
.

Using Bernstein’s inequality (1 + u) log(1 + u)− u ≥ u2

2(1+u/3) , we finally have

KL(α‖β) ≥

(
4 Eα[f ]
‖f‖∞

)2

8
(

1 + 4
3
Eα[f ]
‖f‖∞

) =
2Eα[f ]2

‖f‖2∞ + 2
3‖f‖∞Eα[f ]

≥ 6

5‖f‖2∞
Eα[f ]2.

26



B Concentration of Random Matrices and Sampling Rules

In this section, we present all the results related to our sampling rules for both the generative
and forward models. An important quantity that arises in in the analysis is the random
matrix Pt =

∑t
`=1 φ(st, at)φ(st, at)

>. To guarantee any form of learnability, the minimum
eigenvalue of the matrix Pt has to grow with t sufficiently fast.

B.1 The generative model – Proof of Proposition 5.1

Sampling under the G-optimal design. It may be ambitious to target a sampling
allocation that corresponds exactly to the G-optimal design. Instead, we may focus on a
solution that is only approximately optimal. We will say that an allocation (or design)
ω̃? ∈ ΣS×A is an ε-approximate G-optimal design if it satisfies

max
(s,a)∈S×A

‖φ(s, a)‖2Λ(ω̃?)−1 ≤ (1 + ε) inf
ω∈Σ

max
(s,a)∈S×A

‖φ(s, a)‖2Λ(ω)−1 = (1 + ε)d. (23)

Such a solution may be obtained efficiently using a Frank-Wolfe algorithm (see [17] and
references therein). Classically, existing procedures, that use G-optimal design as a basis
for their sampling schemes, do that in a deterministic fashion by requiring a budget of
samples ahead [18], or using efficient rounding procedures coupled with a doubling trick
[23]. For our purposes, we will simply sample according to the obtained G-optimal design
and that will be enough thanks to the concentration results presented below.

We prove the following matrix concentration result, valid for all ε-approximate G-
optimal designs.

Lemma B.1. Let ω̃? ∈ ΣS×A, be an ε-approximate G-optimal design for some ε > 0 (i.e.,
satisfying (23)). Assume that the sequence of state action pairs (st, at)t≥1 are sampled
according to ω̃?, then, for all δ ∈ (0, 1), ρ > 0, we have:

∀t ≥ 2(1 + ε)

(
1

ρ2
+

1

3ρ

)
d log

(
2d

δ

)
, P ((1− ρ)Λ(ω̃?) � Λ(ωt) � (1 + ρ)Λ(ω̃?)) ≥ 1− δ.

Remark B.2. Note that the statement of Lemma B.1, along with the fact that ω̃? is an
ε-approximate G-optimal design, ensures that the event

d

1 + ρ
≤ max

(s,a)∈S×A
‖φ(s, a)‖2Λ(ωt)−1 ≤

(1 + ε)d

1− ρ

holds with probability at least 1− δ, provided t ≥ 2(1 + ε)
(

1
ρ2 + 1

3ρ

)
d log

(
2d
δ

)
. Note that

the maximum over S × A came for free thanks to the matrix concentration, and this
concentration did not require a priori any condition on the finiteness of the set S × A.
Actually, the above generalizes immediately for any continuous and compact state-action
spaces S ×A, provided we can compute an ε-approximate G-optimal design.
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Proof of Proposition 5.1. Specializing the result of Lemma B.1 to the G-optimal design ω?

and choosing ρ = 1/2 gives

∀t ≥ 28d

3
log

(
2d

δ

)
, P

(
max

(s,a)∈S×A
‖φ(s, a)‖2

P−1
t
≤ 2σ(ω?)

)
≥ 1− δ. (24)

This is exactly the statement of Proposition 5.1.

Proof of Lemma B.1. The proof is an application of Matrix Bernstein’s inequality [25]. Let
δ ∈ (0, 1) and t ≥ 1. First, we have:

(Λ̃?)−1/2Λ(ωt)(Λ̃
?)−1/2 − Id =

t∑
`=1

1

t

((
(Λ̃?)−1/2φ(s`, a`)

)(
(Λ̃?)−1/2φ(s`, a`)

)> − Id) .
where we denote Λ̃? = Λ(ω̃?). Denote (X`)1≤`≤t the summands appearing in the sum above.
Note that X` is a symmetric random matrix that satisfies for all ` ≥ 1, ‖X`‖ ≤ (1+ε)d

t a.s.
and ‖E[X2

` ]‖ ≤ (1+ε)d
t2

for the operator norm. Indeed, we have for any (s, a) ∈ S ×A,∥∥∥∥((Λ̃?)−1/2φ(s, a)
)(

(Λ̃?)−1/2φ(s, a)
)>∥∥∥∥ = max

‖x‖=1
x>
(

(Λ̃?)−1/2φ(s, a)
)(

(Λ̃?)−1/2φ(s, a)
)>

x

= max
‖x‖=1

((
(Λ̃?)−1/2φ(s, a)

)>
x

)2

≤ ‖φ(s, a)‖2
(Λ̃?)−1

≤ (1 + ε)d

so that a.s.

‖X`‖ ≤
1

t
max

(∥∥∥∥((Λ̃?)−1/2φ(s`, a`)
)(

(Λ̃?)−1/2φ(s`, a`)
)>∥∥∥∥ , ‖Id‖) ≤ (1 + ε)d

t

and, since E(s,a)∼ω̃?
[(

(Λ̃?)−1/2φ(s, a)
) (

(Λ̃?)−1/2φ(s, a)
)> ]

= (Λ̃?)−1/2Λ̃?(Λ̃?)−1/2 = Id,

E[X2
` ] � E(s,a)∼ω̃?

[(
1

t

(
(Λ̃?)−1/2φ(s, a)

)(
(Λ̃?)−1/2φ(s, a)

)>)2
]

� 1

t2
E(s,a)∼ω̃?

[(
(Λ̃?)−1/2φ(s, a)

)(
(Λ̃?)−1/2φ(s, a)

)>]
×max

s,a

∥∥∥∥((Λ̃?)−1/2φ(s, a)
)(

(Λ̃?)−1/2φ(s, a)
)>∥∥∥∥

� (1 + ε)d

t2
Id.
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Now, using Matrix Bernstein’s inequality (more precisely, we use Theorem 5.4.1. in [26],
see also [25]), we obtain that for all ρ > 0,

P

(∥∥∥∥∥
t∑

`=1

X`

∥∥∥∥∥ > ρ

)
≤ 2d exp

(
− tρ2

2(1 + ε)(1 + ρ/3)d

)
.

This implies that

∀t ≥ 2(1 + ε)

(
1

ρ2
+

1

3ρ

)
d log

(
2d

δ

)
, P

(∥∥∥∥∥
t∑

`=1

X`

∥∥∥∥∥ > ρ

)
≤ δ.

Finally, in order to conclude, observe that

‖(Λ̃?)−1/2Λ(ωt)(Λ̃
?)−1/2 − Id‖ ≤ ρ =⇒ (1− ρ)Λ̃? � Λ(ωt) � (1 + ρ)Λ̃?.

Thus, provided t ≥ 2(1 + ε)
(

1
ρ2 + 1

3ρ

)
d log

(
2d
δ

)
, it follows that

P((1− ρ)Λ̃? � Λ(ωt) � (1 + ρ)Λ̃?) ≥ P
(
‖(Λ̃?)−1/2Λ(ωt)(Λ̃

?)−1/2 − Id‖ ≤ ρ
)
≥ 1− δ.

B.2 The forward model

This part is devoted to the proof of Lemma 6.3 and Proposition 6.6. We start by some
remarks on Assumption 6.2.

B.2.1 Discussion on Assumption 6.2

We establish that assuming the existence of an (m,λ)-covering policy is weaker then
assuming that the underlying MDPM is ergodic or communicating. Lemma B.3 shows
indeed that the former assumption implies the latter.

Lemma B.3. If anM is ergodic or communicating, then there exists an (m,λ)-covering
policy π for some m ≥ 1 and λ > 0.

Proof of Lemma B.3. If an MDPM is communicating, then for each state-pair i = (s, s′) ∈
S×S, there exists a policy πi, and an integer mi ≥ 1 such that Eπi [1{smi = s′}|s1 = s] > 0.
Now defining π = 1

S2

∑
i∈S×S πi, we can clearly see that there exists an m ≥ 1, such that for
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all s, s′, a′ ∈ S ×A× S, Eπi [1{sπm = s′, aπm = a′}|s1 = s] > 0. Now, under the assumption
that the feature maps (φ(s, a))(s,a)∈S×A span Rd, it follows that

Eπ
[
m∑
`=1

φ(s`, a`)φ(s`, a`)
>∣∣s1 = s

]
> 0

Finally, to conclude we note that any ergodic MDP is also communicating, and therefore
our results are proven.

Remark B.4. We can also construct a linear MDPM that admits an (m,λ)-covering policy,
but that is not ergodic nor communicating. A simple example is when the underlyingM
has disjoints communicating classes (C1, . . . , Cn), in the sense that whatever the policy used,
if the state is initially in Ci then it remains in this class forever. SoM is not communicating.
To get the covering property, we need to ensure that for any i, there is a policy such that
E[
∑mi

`=1 φ(s`, a`)φ(s`, a`)
>|s1 = s] > 0 for all s ∈ Ci, and for some mi ≥ 1.

Remark B.5. Assume that there exists an (m,λ)-covering policy, then we make the following
observations.

• In Assumption 6.2, the knowledge πe is without loss of generality. Indeed, if existence
of an (m,λ)-covering policy is guaranteed, then it is not difficult to see that the
uniform policy is also an (m′, λ′)-covering policy for some m′ ≥ 1 and λ′ > 0.

• In Assumption 6.2, the knowledge of m may be relaxed. In fact, when using the
forced exploration scheme (11), we only need an upper bound on m.

In view of the discussion above, we have established a minimal assumption under which
λmin(Pt) grows sufficiently fast (i.e. λmin(Pt) = Ω(tγ) for some γ > 0 with high probability).

B.2.2 Proof of Lemma 6.3

Proof. First, let us assume w.l.o.g. that K := t/m ∈ N \ {0}. For all k ∈ [K], i ∈ [m], let
φk,i = φ(s(k−1)m+i, a(k−1)m+i), and xk,i = x(k−1)m+i. Let us denote for all Denote k ∈ [K],

Λk =
1

m

(
m∑
i=1

φk,iφ
>
k,i

)(
m∏
i=1

xk,i

)

and note that

t∑
`=1

φ(s`, a`)φ(s`, a`)
> = m

K∑
k=1

1

m

(
m∑
i=1

φk,iφ
>
k,i

)
� m

K∑
k=1

Λk

30



Furthermore, let (Fk)k≥1 denote σ-algebra generated by the sequence (s1, a1, ε1, . . . , skm−1, akm−1, xkm−1).
By successive use of the tower rule we can easily verify that:

E[Λk|Fk] =
1

m
E

[(
m∑
i=1

φk,iφ
>
k,i

)(
m∏
i=1

xk,i

)∣∣∣∣Fk
]

= Eπ [Λk|Fk]

(
m∏
i=1

P(xk,i = 1)

)

� λ
m∏
i=1

(
1

t

) 1
2m

Id

=
λ√
t
Id

which implies that
K∑
k=1

E[Λk|Fk] �
Kλ√
t
λ =

√
tλ

m
Id

We also have

‖Λk − E[Λk|Fk]‖ ≤ 2 a.s.

and

‖E[(Λk − E[Λk| Fk])2 |Fk]‖ ≤ E[‖Λk‖2|Fk]

≤ E

∥∥∥∥∥ 1

m

m∑
i=1

φk,iφ
>
k,i

∥∥∥∥∥
2( m∏

i=1

xk,i

)2 ∣∣Fk


≤ E

[(
m∏
i=1

xk,i

)∣∣Fk
]

≤
m∏
i=1

P(xk,i = 1)

≤ 1√
(k − 1)m+ 1

.

Observe that
∑K

k=1 Λk − E[Λk|Fk] is a matrix martingale difference. Therefore, applying
Matrix Bernstein’s inequality for martingales (see e.g. Theorem 1.2 in [24]) gives

P

(∥∥∥∥∥
K∑
k=1

Λk − E[Λk|Fk]

∥∥∥∥∥ ≥ ε
)
≤ 2d exp

(
− ε2

2σK + 4ε/3

)
,
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with

σK =
K∑
k=1

1√
(k − 1)m+ 1

≤
2
√
m(K − 1) + 1

m
≤ 2
√
t

m
.

This leads to:

P

(∥∥∥∥∥
K∑
k=1

Λk − E[Λk|Fk]

∥∥∥∥∥ ≥ σKε
)
≤ 2d exp

(
−σK min

(
ε2,

3ε

2

))
.

Now observe that∥∥∥∥∥
K∑
k=1

Λk − E[Λk|Fk]

∥∥∥∥∥ ≤ σKε =⇒
K∑
k=1

Λk �
K∑
k=1

E[Λk|Fk]− σKεId �
√
t

m
(λ− 2ε) Id,

Setting ε = λ/4 gives

P

(
mλmin

(
K∑
k=1

Λk

)
<

√
tλ

2

)
≤ 2d exp

(
−
√
tλ2

8m

)
.

Finally, we get:

P

(
λmin

(
t∑

`=1

φ(s`, a`)φ(s`, a`)
>

)
<

√
tλ

2

)
≤ 2d exp

(
−
√
tλ2

8m

)
.
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B.2.3 Proof of Proposition 6.6

We present and establish Proposition B.6, which provides a stronger result than that of
Proposition 6.6.

Proposition B.6. Under Assumption 6.5, under the sampling rule (11), denote by πk the
oracle policy used by GNS between tk < t ≤ tk+1, and denote by ωk its induced allocation.
Furthermore, assume that ωk ∈ Ωη(M). Then, we have for all δ > 0, ε ∈ (0, 1)

P

(1 + ε)Λ(ωk) �
1

tk+1 − tk

tk+1∑
t=tk+1

φ(st, at)φ(st, at)
> � (1− ε)Λ(ωk)

 ≥ 1− δ

provided that

tk+1 − tk ≥ C max

((
16κ

ε

)2

,
16κ

3ε

)(
log
(e
δ

)
+ d
)

for some positive constant C > 0.

Proof of Proposition B.6. We seek to establish a concentration bound on the
∑tk+1

t=tk

(
φ(st, at)φ(st, at)

> − Λ(ωk)
)
.

First, we renormalize and instead find a concentration result on the random matrix

W ,
tk+1∑
t=tk

((
Λ(ωk)

−1/2φ(st, at)
)(

Λ(ωk)
−1/2φ(st, at)

)>
− Id

)
.

We know that ‖W‖ = supu∈SSA−1 |u>Wu| since W is a symmetric matrix. We will use
a net argument to establish a concentration on ‖W‖. We introduce for all u ∈ SSA−1,
(s, a) ∈ S ×A, fu(s, a) = |u>Λ(ωk)

−1/2φ(s, a)|2 − 1, so that we may simply write

sup
u∈SSA−1

|u>Wu| = sup
u∈SSA−1

∣∣∣∣∣∣
tk+1∑
t=tk

fu(st, at)

∣∣∣∣∣∣
(Step 1) Using Poisson’s equation: We use Poisson’s equation to rewrite

∑tk+1

t=tk
fu(st, at)

in a convenient form. First, let us denote the transition kernel under policy π := πk (to
simplify the notations), pπ(s′, a′|s, a) = π(a′|s′)p(s′|s, a), for all s, s′ ∈ S,a, a′ ∈ A. We
have to find gu : S ×A → R such that Poisson’s equation (I − pπ)gu = fu holds. A natural
candidate for gu (see [8]) is choosing

gu =
∞∑
j=0

(pπ)jfu.
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We note that under Assumption 6.5, we have

max
(s,a)∈S×A

|gu(s, a)| ≤ κ (25)

which clearly implies that Poisson’s equation is satisfied. To shorten the notation, let
Xt = (st, at). Now by leveraging Poisson’s equation, we may write:∑
tk<t≤tk+1

fu(Xt) =
∑

tk<t≤tk+1

gu(Xt)− EX∼pπ(·|Xt)[gu(X)]

=
∑

tk<t≤tk+1

gu(Xt)− EX∼pπ(·|Xt−1)[gu(X)] + E[g(Xtk−1)]− E[g(Xtk+1
)]

= S1 + S2 + S3 + S4

where we define

S1 =
∑

tk<t≤tk+1

(
gu(Xt)− EX∼pπ(·|Xt−1)[gu(X)]

)
(1− xt),

S2 =
∑

tk<t≤tk+1

(
gu(Xt)− EX∼pπ(·|Xt−1)[gu(X)]

)
(xt − pt)

S3 =
∑

tk<t≤tk+1

(
gu(Xt)− EX∼pπ(·|Xt−1)[gu(X)]

)
pt

S4 =
∣∣E[g(Xtk−1)]− E[g(Xtk+1

)]
∣∣

where pt = E[xt] = t−1/(2m). Recall that xt is the Bernoulli r.v. involved in the definition
of our policy.

(Step 2) Bounding S1, S2, S3, S4: The terms S1 and S2 can be bounded immediately
via standard concentration inequalities and bounds on S3 and S4 follow immediately from
the inequality (25). Indeed:

• Observe that S1 is a martingale. Therefore, using a standard peeling argument
combined with Hoeffding’s Lemma and (25), gives a bound on the moment generating
function of S1:

∀λ > 0, E[exp(λS1)] ≤ exp

(
(tk+1 − tk)λ2κ2

2

)
.

This leads via Markov inequality to the following bound:

P (S1 > (tk+1 − tk)ε) ≤ exp

(
−(tk+1 − tk)ε2

2κ2

)
. (26)
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• Bounding S2 is immediate via Bernstein’s inequality together with (25) by noting
that xt is independent of x1, . . . , xt−1 and X1, . . . Xt for all t ≥ 1. Indeed, we have:

P (S2 > ε) ≤ exp

(
− ε2

2κ2
∑

tk<t≤tk+1
pt + 4

3κε

)

≤ exp

(
− ε2

2κ2(tk+1 − tk)ptk + 4
3κε

)
,

where we used the fact that (pt)t≥1 is a non-increasing sequence. After reparametriza-
tion, we obtain the equivalent inequality:

P (S2 > (tk+1 − tk)ε) ≤ exp

(
− (tk+1 − tk)ε2

2κ2ptk + 4
3κε

)
. (27)

• We can easily bound S3 using (25) as follows

S3 ≤ 2κ(tk+1 − tk)ptk . (28)

• We can easily bound S4 using (25) as follows

S4 ≤ 2κ. (29)

(Step 3) Putting everything toegether: We use a union bound on and to obtain:

P

 ∑
tk<t≤tk+1

fu(Xt) > 2(tk+1 − tk)ε+ 2κ(tk+1 − tk)ptk + 2κ


≤ exp

(
−(tk+1 − tk)ε2

2κ2

)
+ exp

(
− (tk+1 − tk)ε2

2κ2ptk + 4
3κε

)

≤ 2 exp

(
−(tk+1 − tk)

2
min

(
ε2

κ2
,
3ε

κ

))
.

Similarly we have:

P

− ∑
tk<t≤tk+1

fu(Xt) > 2(tk+1 − tk)ε+ 2κ(tk+1 − tk)ptk + 2κ


≤ 2 exp

(
−(tk+1 − tk)

2
min

(
ε2

κ2
,
3ε

κ

))
.
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Thus, by union bound, we have:

P

∣∣∣∣∣∣
∑

tk<t≤tk+1

fu(Xt)

∣∣∣∣∣∣ > 4κ(tk+1 − tk)(ε+ ptk) + 2κ

 ≤ 4 exp

(
−

(tk+1 − tk) min
(
ε2, 3ε

)
2

)
.

(Step 4) Concluding with a net argument: We use an ε-net argument with ε =
1/2 (see Chap. 4 in [26]) to obtain

P

 sup
u∈SSA−1

∣∣∣∣∣∣
∑

tk<t≤tk+1

fu(Xt)

∣∣∣∣∣∣ > 8κ(tk+1 − tk)(ε+ ptk) + 4κ


≤ 4(5d) exp

(
−

(tk+1 − tk) min
(
ε2, 3ε

)
2

)
.

We recall that tk = 2k = tk+1 − tk, therefore ptk = (tk+1 − tk)1/2m, thus as long as

tk = tk+1 − tk ≥
1

ε2m
,

we obtain the desired result.

36



C Least Square Estimation and Stopping Rules

In this appendix, we show the correctness of our stopping rule presented in Lemma 5.3.
This result relies fundamentally on our proposed approach of relaxing of the optimization
problem characterizing the optimal sample complexity lower bounds. We also present the
present the proof of Proposition 5.2 which corresponds to a certain concentration result for
the least-squares estimators we use and relies on the properties of linear MDPs. Finally, we
highlight that Lemma 5.3 and Proposition 5.2 hold regardless of our the sampling strategy
we use, consequently they hold under both the generative and forward model.

C.1 Correctness of the stopping rule - Proof of Lemma 5.3

In the proof of Lemma 5.3, the fact that UM
(
ω
)−1 can be upper bounded as follows

UM
(
ω
)−1 ≤ inf

M′:π?t /∈Π?ε(M)

6(1− γ)2

5

∥∥∥θM − θM′ + γ(µM − µ′M)>V ?
M

∥∥∥2

Λ(ω)
≤ TM(ω)−1

(30)

is critical in the analysis and allows us to construct a stopping rule even when ε = 0.
This upper bound is the fruit of our relaxation of the lower bound (see proof of Lemma
A.6) and justifies the design of our stopping rule as a relaxed generalized likelihood test
τ = inf{t ≥ 1 : Z(t) = tUM̂t

(ωt)
−1 ≥ β(δ, t)},. It is worth mentioning that even though

the form of U?M can be caracterized by the G-optimal design, it does not a priori tell us
how to design a stopping rule without the inequality (30), especially if ε = 0.

Proof of Lemma 5.3. First, let us recall that ωt(s, a) = Ns,a(t)/t for all (s, a) ∈ S × A
where Ns,a(t) is the number of times the state-action pair (s, a) has been visited up to time
t. Now assuming that M̂t is a valid model, then following a similar reasoning as in the
proof of Lemma A.6, we can establish that

UM̂t

(
ωt
)−1

=
3(1− γ)4(∆M̂t

+ ε)2

10σ(ωt)

≤ inf
M′:π?t /∈Π?ε(M̂t)

6(1− γ)2

5

∥∥∥θ̂t − θM′ + γ(µ̂t − µM′)>V̂ ?
t

∥∥∥2

Λ(ωt)
(31)

From the inequality (31), we immediately observe that under the event π?t /∈ Π?
ε(M), we

have:

Z(t) = t UM̂t
(ωt)

−1 ≤ 6(1− γ)2

5

∥∥∥θ̂t − θM + γ(µ̂t − µM)>V̂ ?
t

∥∥∥2

tΛ(ωt)
.
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Hence, we have:

P (τ < +∞, π̂ /∈ Π?
ε(M)) = P (∃t ≥ 1 : Z(t) > β(δ, t), π?t /∈ Π?

ε(M))

≤ P
(
∃t ≥ 1 :

∥∥∥θ̂t − θM + γ(µ̂t − µM)>V̂ ?
t

∥∥∥2

tΛ(ωt)
>

5

6(1− γ)2
β(δ, t)

)
≤ δ.

The fact that this last probability is bounded by δ is exactly the statement of Proposition
5.2 (proven later in this appendix).

Remark C.1. Note that in the proof we assumed that M̂t is a valid linear model. This is
not required for the derivation inequality 31 (see Remark A.5). However, this is required for
Proposition 5.2 to be applied. We provide further remarks on how to adress this technical
detail later on when presenting the proof of Proposition 5.2.

C.2 Properties of linear MDPs

Under the linear MDP assumption, the value and action-value functions of any policy admit
a linear representation. This is presented in Lemma C.2 below, borrowed from [12]. We
provide a proof for completeness.

Lemma C.2. LetM be a discounted linear MDP. For any policy π, there exists a vector
ξπM ∈ Rd such that for any pair (s, a) ∈ S ×A, QπM(s, a) = φ(s, a)>ξπM. Moreover, we have
ξπM = θM + γµ>MV

π
M and ‖ξπM‖ ≤

√
d/(1− γ).

Proof of lemma C.2. Using the Bellman equation together with the linear assumptions, we
directly have QπM(s, a) = φ(s, a)>

(
θM + γµ>MV

π
M
)
(see also [12]). Then∥∥θM + γµ>MV

π
M
∥∥ ≤ ‖θM‖+ γ

∥∥∑
s∈S
|µM(s)|

∥∥‖V π
M‖∞ ≤

√
d+ γ

√
d

1− γ
=

√
d

1− γ
.

In view of Lemma C.2, we know that the set of optimal value functions under the linear
MDP assumption (see Definition 3.1) all belong to the following set:

V? =

{
V ∈ RS : ∃ξ ∈ Rd, V (·) = max

a∈A
φ(·, a)>ξ, ‖ξ‖ ≤

√
d

1− γ

}
. (32)

A key observation is that we may construct an ε-net of V? with respect to the infinity norm
‖ · ‖∞ with minimal cardinality that only depends exponentially on the dimension d and
not the size of the state space S. This observation is made precise in the following lemma,
which is borrowed from [12]. We provide a proof for completeness.
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Lemma C.3. Let N be an ε-net of V? with respect to the inifinity norm ‖ · ‖∞, with
minimal cardinality. Then, we have

|N | ≤

(
1 +

2
√
d

(1− γ)ε

)d

Proof of Lemma C.3. Let V1, V2 ∈ V?, and let ξ1, ξ2 ∈ Rd be there corresponding represen-
tation as ensured by Lemma C.2. We have

‖V1 − V2‖∞ ≤ max
s,a
‖φ(s, a)>(ξ1 − ξ2)‖ ≤ ‖ξ1 − ξ2‖.

Therefore, using this parametrization by ξ, an ε-net of V can be constructed from an ε-net
of an euclidean ball in Rd of radius

√
d/(1− γ). Such net exists and has a cardinality that

is at most
(
1 + 2

√
d

(1−γ)ε

)d (see e.g., [26]).

C.3 Self-normalized concentration tool

Proposition C.4 is the key concentration results we use to establish Proposition 5.2 and
relies on the self-normalized concentration bound established in [1].

Proposition C.4. Let (Ft)t≥1 be a filtration. Let (ηv,t)v∈V,t≥1 be a stochastic process
indexed by a time and the subset V ⊆ RS and taking values in RS. For each v ∈ V, the
process (ηv,t)t≥1 is martingale adapted to (Ft)t≥1 and satisifies supv∈V,t≥1 ‖ηv,t‖∞ ≤ L.
Let (φt)t≥1 be a predictable stochastic process with respect to (Ft)t≥1, taking values in Rd.
Introducing the matrices Φt =

[
φ1 . . . φt

]> and Ev,t =
[
ηv,1 . . . ηv,t

]> and assuming
that the following holds:

(i) for any v, v′ ∈ V, for all t ≥ 1, ‖ηv,t − ηv′,t‖ ≤ ‖v − v′‖∞,
(ii) the set V admits for all ε ∈ (0, L) an ε-net Nε with respect to the infinity norm ‖ · ‖∞

of finite cardinality,

then, for all δ ∈ (0, 1), ε ∈ (0, L), and t ≥ 1, we have: the following event

sup
V ∈V

∥∥∥Φ>t Ev,t

∥∥∥2

(ΦtΦ>t +λtId)
−1 ≤ 2L2 log

 |Nε|det
((

Φ>t Φt + λtId
)

(λtId)
−1
)1/2

δ

+ tdε2

(33)

holds with probability at least 1− δ, and where (λt)t≥1 is a sequence of positive scalars.
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Remark C.5. The threshold of the concentration result in Proposition C.4 can be simplied
provided we have a good upper bound on |Nε|, with a propoer choice of ε and λt. Indeed,
considering that

det
((

Φ>t Φt + λtId

)
(λtId)

−1
)
≤ 1

λdt

(
tr
(
Φ>t Φt + λtId

)
d

)d
≤ 1

λdt

(
t+ dλt
d

)d
=

(
1 +

t

dλt

)d
,

and assuming we have |Nε| ≤
(

1 + 2L
√
d

ε

)d
. Then, choosing ε = 2L√

t
and λt = 1/d, gives

after further basic manipulations the following threshold

L2

(
2 log

(
1

δ

)
+ d log

(
8e4dt2

))
. (34)

Proof of Proposition C.4. The process can be easily controlled when focusing on a single
v ∈ V due to a self-normalized martingale concentration result. In order to control uniformly
over the whole set of parameters, we approximate it by a finite net, which raises an error
term in the threshold. We then control each parameters individually and conclude with a
union bound. In the following, δ > 0, ε ∈ (0, L) and t ≥ 1 are fixed. Define the events

C1 =

sup
v∈V
‖Φ>t Ev,t‖2(Φ>t Φt+λtId)−1 ≤ 2L2 log

 |Nε|det
((

Φ>t Φt + λtId
)

(λtId)
−1
)1/2

δ

+ tdε2

 ,

C2 =

max
v∈Nε

‖Φ>t Ev,t‖2(Φ>t Φt+λtId)−1 ≤ 2L2 log

 |Nε|det
((

Φ>t Φt + λtId
)

(λtId)
−1
)1/2

δ


 ,

C3(v) =

‖Φ>t Ev,t‖2(Φ>t Φt+λtId)−1 ≤ 2L2 log

 |Nε|det
((

Φ>t Φt + λtId
)

(λtId)
−1
)1/2

δ


 ,

where the last event is defined for any v ∈ Nε. Recall that our goal is to show that C1 holds
with probability at least 1− δ.

(i) Establishing ∀v ∈ Vε,P(C3(v)) ≥ 1 − δ/|Nε|. This result is a concentration
inequality on self-normalized processes. It can be found as Lemma 9 in [1] for example.
To apply it, we use the fact that under all the assumptions, for any V ∈ Vε, we have
‖xt(V )‖ ≤ L+ ε ≤ 2L.
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(ii) Establishing P(C2) ≥ 1 − δ. We can immediately see that C2 =
⋂
v∈Nε C3(v).

Then an union bound gives

P[C2] ≥ 1−
∑
v∈Nε

(
1− P(C3(V ))

)
≥ 1−

∑
v∈Nε

δ

|Nε|
= 1− δ.

(iii) Establishing P(C1) ≥ 1− δ. We want to show that C2 ⊂ C1. Notice that if v ∈ V
and v′ ∈ Nε such that ‖v − v′‖∞ ≤ ε, then by using assumption (ii) we have∥∥∥Φ>t (Ev,t − Ev′,t)

∥∥∥2

(Φ>t ΦtλtId)−1
=
∥∥∥(Φ>t Φt + λtId)

−1/2Φ>t (Ev,t − Ev′,t)
∥∥∥2

=

d∑
i=1

∣∣∣((Φ>t Φt + λtId)
−1/2

)>
i

Φ>t (Ev,t − Ev′,t)
∣∣∣2

≤
d∑
i=1

(
t∑

`=1

∣∣∣((Φ>t Φt + λtId)
−1/2

)>
i
φ`

∣∣∣)2

‖(Ev,t − Ev′,t)‖2∞

≤ t
d∑
i=1

t∑
`=1

((
(Φ>t Φt + λtId)

−1/2
)>
i
φ`
)2

max
1≤`≤t

‖(ηv,t − ηv′,t)‖2

≤ t
t∑

`=1

∥∥∥(Φ>t Φt + λtId)
−1/2φ`

∥∥∥2
‖v − v′‖2∞

≤ tε2tr
(

Φt(Φ
>
t Φt + λtId)

−1Φ>t

)
= tε2tr

(
(Φ>t Φt + λtId)

−1(Φ>t Φt + λtId − λtId)
)

= tε2
(
d− λttr

(
(Φ>t Φt + λtId)

−1
))

≤ tdε2,

and we can finally write

max
v∈V
‖Φ>t Ev,t‖2(Φ>t Φt+λtId)−1 ≤ max

V ∈Vε
‖Φ>t Ev,t‖2(Φ>t Φt+λtId)−1 + tdε2,

which implies that C2 ⊂ C1 and concludes the proof.

C.4 Proof of Proposition 5.2

Proof of proposition 5.2. We show that under any sampling rule the (1/d)-regularized least
square estimators verify the following concentration inequality: For any δ ∈ (0, 1) the events

C(t) =

{∥∥∥θ̂t − θM + γ(µ̂t − µM)>V̂ ?
t

∥∥∥2

tΛ(ωt)
≤ 2

(1− γ)2

(
2 log

(√
eζ(2)t2

δ

)
+ d log

(
8e4dt2

))}
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for all t ≥ 1 hold simultaneously with probability at least 1 − δ. More precisely we are
going to show that for any t ≥ 1, P(C(t)) ≥ 1 − δ

ζ(2)t2
. The desired result is then shown

via a simple union bound over t. It is hard to control this quantity with a dynamic
value function, therefore we will control it for all optimal value functions by controlling
supv∈V?

∥∥θ̂t − θM + γ(µ̂t − µM)>v
∥∥2

tΛ(ωt)
instead, assuming that M̂t is a valid model, and

use a net argument.

Denote δt = δ
ζ(2)t2

for clarity. Recall the definitions of the 1
d -regularized least square

estimators θ̂t and µ̂t :

θ̂t =

(
Φ>t Φt +

1

d
Id

)−1

Φ>t Rt, µ̂t(s) =

(
Φ>t Φt +

1

d
Id

)−1

Φ>t St(s),

where Φt =
(
φ(s1, a1) · · · φ(st, at)

)>, Rt =
(
r1 · · · rt

)> and St(s) =
(
δs,s′1 · · · δs,s′t

)>.
Recall that tΛ(ωt) = Φ>t Φt. For any v ∈ V

θ̂t − θM + γ(µ̂t − µM)>v

=

(
Φ>t Φt +

1

d
Id

)−1(
Φ>t Rt −

(
Φ>t Φt +

1

d
Id

)
θM + γ

(
Φ>t S

>
t −

(
Φ>t Φt +

1

d
Id

)
µ>M

)
v

)
=

(
Φ>t Φt +

1

d
Id

)−1

Φ>t

(
Rt − ΦtθM + γ(S>t − Φtµ

>
M)v

)
− 1

d

(
Φ>t Φt +

1

d
Id

)−1 (
θM + γµ>Mv

)
=

(
Φ>t Φt +

1

d
Id

)−1

Φ>t Ev,t −
1

d

(
Φ>t Φt +

1

d
Id

)−1

ξ(v)

where we denote ξ(v) =
(
θM + γµ>Mv

)
and define ηv,t = rt− φ>t θM + γ(v(s′t)− φ>t µ>Mv) =

rt − E[rt|Ft−1] + γ(v(s′t) − E[v(s′t)|Ft−1]) and Ev,t = Rt − ΦtθM + γ(S>t − Φtµ
>
M)v =(

ηv,a · · · ηv,t
)>. It follows that∥∥∥θ̂t − θM + γ(µ̂t − µM)>v

∥∥∥2

Φ>t Φt

≤

∥∥∥∥∥
(

Φ>t Φt +
1

d
Id

)−1

Φ>t Ev,t −
1

d

(
Φ>t Φt +

1

d
Id

)−1

ξ(v)

∥∥∥∥∥
2

Φ>t Φt+
1
d
Id

=

∥∥∥∥Φ>t Ev,t −
1

d
ξ(v)

∥∥∥∥2

(Φ>t Φt+
1
d
Id)−1

≤ 2
∥∥∥Φ>t Ev,t

∥∥∥2

(Φ>t Φt+
1
d
Id)−1

+
2

d2
‖ξ(v)‖2(Φ>t Φt+

1
d
Id)−1
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Lemma C.2 states that ‖ξ(v)‖ ≤
√
d

1−γ . Since the greatest eigenvalue of (Φ>t Φt + 1
dId)

−1 can
be upper bounded by d, we can finally write

sup
v∈V

∥∥∥θ̂t − θM + γ(µ̂t − µM)>v
∥∥∥2

Φ>t Φt
≤ 2 sup

v∈V

∥∥∥Φ>t Ev,t

∥∥∥2

(Φ>t Φt+
1
d
Id)−1

+
2

(1− γ)2
.

It is immediate to see that the first two conditions in Proposition C.4 are satisfied by
taking L = (1− γ)−1 and the third one (i.e., (ii)) is given by Lemma C.3. Therefore we
can apply the proposition with λt = 1

d and obtain for all t ≥ 1

P
(

sup
V ∈V

∥∥∥Φ>t Ev,t

∥∥∥2

(Φ>t Φt+
1
d
Id)−1

≤ 1

(1− γ)2

(
2 log

(
1

δt

)
+ d log

(
8e4dt2

)))
≥ 1− δt.

The event in the bound above directly implies C(t) and we can finally conclude that
P(C(t)) ≥ 1− δt for all t ≥ 1.

Remark C.6. As we have mentioned earlier in the proof, we require that M̂t is a valid
linear MDP model, which might not be the case under the plain LSE. Luckily, this is not a
big issue and can be addressed by estimating V̂ ?

t and Q̂?t as follows. At time t, we obtain
with the LSE the estimates µ̂t and θ̂t. With these estimates we construct the rewards
and transitions as follows: r̂t(s, a) = φ(s, a)>θ̂t, p̂t(s′|s, a) = φ(s, a)>µ̂t(s

′), for all s, s′ ∈ S
and a ∈ A. However, observe that the estimates p̂t(·|s, a) are not necessarily transition
probabilities. Therefore, there is no guarantee that a solution to the Bellman equation exist
under M̂t. This issue can be solved by using the following truncated Bellman equation

∀(s, a) ∈ S ×A, Q̂?t,h(s, a) = min

{
φ(s, a)>

(
θ̂t + γµ>t V̂

?
t,h+1

)
,

√
d

1− γ

}

with V̂ ?
t,h(s) = maxa∈A Q̂

?
t,h(s, a) and V̂ ?

t,H+1 = 0 for some H large enough. Then we
use V̂ ?

t , V̂ ?
t,1. With this construction, we can guarantee that all V̂ ?

t,h belong to a set of
value functions that has a similar structure to V? but with a slightly larger radius. This
construction is identical to that considered by Jin et al. [12] for the episodic setting with the
LSE and can be viewed as a natural extension to the discounted setting. For our purposes
and to keep the exposition simpler, we will simply assume that under the LSE there exists
V̂ ?
t and Q̂?t satisfying:

∀s, a ∈ S ×A, Q̂?t (s, a) = φ(s, a)>
(
θ̂t + γµ>t V̂

?
t

)
V̂ ?
t (s) = max

a∈A
Q̂?t (s, a).

and that V̂ ?
t ∈ V?. This only simplifies the analysis and it is without loss of generality.
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D Sample Complexity Analysis

In this appendix, we present the sample complexity analysis of both GSS and GNS.

D.1 A useful perturbation bound

Before, proceeding with the proof of Theorem 5.4 and Theorem 6.7, we present a useful
result that allows us to carefully analyze the quantities U?M,gen and U?M,for, as we vary
the modelM. We present Lemma D.1 below, which is valid for both the generative and
forward models. Therefore, in what follows, we will abuse notations and use U?M to mean
both U?M,gen and U?M,for for any linear MDPM.

Lemma D.1. For any t ≥ 1, we have:∣∣∣(U?M)−1 − (U?M̂t
)−1
∣∣∣ ≤ 6(1−γ)2

∥∥∥θ̂t − θM + γ(µ̂t − µM)>V̂ ?
t

∥∥∥2

Λ(ωt)
+

(
5

4
− σ(ω?)

σ(ωt)

)
(U?M)−1.

(35)
where U?M can be either U?M,gen or U?M,for for any linear MDP modelM.

Before proving Lemma D.1, we present Lemma D.2, used as an intermediate step.

Lemma D.2. we have

|∆M̂t
−∆M| ≤

2

1− γ
max
s,a

∣∣∣φ(s, a)
(
θ̂t − θM + γ(µ̂t − µM)>V̂ ?

t

)∣∣∣ . (36)

Proof of Lemma D.2. For clarity, we denote for both MDPs, for any (s, a) ∈ S × A,
∆s,a = V ?(s)−Q?(s, a), so that ∆M = mins∈S,a6=π?(s) ∆s,a. Let (s, a) be the pair such that
∆M = ∆M,s,a. If a 6= π?t (s) then ∆M̂t

≤ ∆M̂t,s,a
and (∆M̂t

−∆M) ≤ (∆M̂t,s,a
−∆M,s,a).

Else, since both MDPs have exactly |S| optimal state/action pairs (one for each state),
the fact that the pair (s, a) is optimal for M̂t but not for M means that there exists
a pair (s′, a′) optimal for M but not for M̂t, and we have ∆M̂t

−∆M ≤ ∆s′,a′(M̂t) =

∆s′,a′(M̂t)−∆s′,a′(M). Either way, and doing the same reasoning to bound ∆M −∆M̂t
,

we can find a pair (s, a) such that

|∆M̂t
−∆M| ≤ |∆M̂t,s,a

−∆M,s,a|

= |V̂ ?
t (s)− Q̂?t (s, a)− V ?

M(s) +Q?M(s, a)|

= |V̂ ?
t (s)− V ?

M(s) +Q?M(s, a)− Q̂?t (s, a)|

≤ ‖V̂ ?
t − V ?

M‖∞ + ‖Q̂?t −Q?M‖∞.

The result is then obtained combining the above inequality and Lemma A.4.
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Proof of Lemma D.1. Observe that by triangular inequality, we have:∣∣∣(U?M)−1 − (UM̂t
(ωt))

−1
∣∣∣ ≤ ∣∣(U?M)−1 − (UM(ωt))

−1
∣∣+
∣∣∣(UM(ωt))

−1 − (UM̂t
(ωt))

−1
∣∣∣

and the first term can be rewritten∣∣(U?M)−1 − (UM(ωt))
−1
∣∣ =

(
1− U?M(UM(ωt))

−1
)

(U?M)−1 =

(
1− σ(ω?)

σ(ωt)

)
(U?M)−1.

For the second term, setting u(ωt)
−1 = 3(1− γ)4/(10σ(ωt)), we obtain∣∣∣(UM(ωt))

−1 − (UM̂t
(ωt))

−1
∣∣∣ = u(ωt)

−1
∣∣∣(∆M + ε)2 − (∆M̂t

+ ε)2
∣∣∣

= u(ωt)
−1
∣∣∣(∆M̂t

+ ∆M + 2ε
)(

∆M̂t
−∆M

)∣∣∣
= u(ωt)

−1
∣∣∣(∆M̂t

−∆M
)2

+ 2(∆M + ε)
(
∆M̂t

−∆M
)∣∣∣

≤ u(ωt)
−1
(
∆M̂t

−∆M
)2

+ 2

√
1

4
u(ωt)−1(∆M + ε)2

√
4u(ωt)−1

(
∆M̂t

−∆M
)2

≤ u(ωt)
−1
(
∆M̂t

−∆M
)2

+
1

4
(UM(ωt))

−1 + 4u(ωt)
−1
(
∆M̂t

−∆M
)2

≤ 5u(ωt)
−1
(
∆M̂t

−∆M
)2

+
1

4
(U?M)−1

using (UM(ωt))
−1 ≤ (U?M)−1 for the last step. To conclude, it remains to show that

3(1− γ)4

2σ(ωt)

(
∆M̂t

−∆M
)2 ≤ 6

∥∥∥θ̂t − θM + γ(µ̂t − µM)>V̂ ?
t

∥∥∥2

Λ(ωt)
.

From Lemma D.2, we get:∣∣∆M̂t
−∆M

∣∣ ≤ 2

1− γ
max
s,a

∣∣∣φ(s, a)>
(
θ̂t − θM + γ(µ̂t − µM)>V̂ ?

t

)∣∣∣ .
The final result is obtained by applying Lemma A.9 with n = 1, φ1 the feature maximizing
the term above and ∆ = 1−γ

2

∣∣∆M̂t
−∆M

∣∣.
D.2 With the generative model - Proof of Theorem 5.4

Proof of Theorem 5.4. Recall the threshold

β(δ, t) =
12

5

(
2 log

(√
eζ(2)t2

δ

)
+ d log

(
8e4dt2

))

45



and the stopping time

τ = inf {t ≥ 1 : Z(t) > β(δ, t)} ,

where Z(t) = t (UM̂t
(ωt))

−1. In what follows we will use the notation U?M = U?M,gen. In
order to establish the sample complexity upper bound, we are going to find a time T such that
for any t ≥ T , P(τ > t) = O

(
1
t2

)
, so that we can bound E[τ ] by T plus a constant. Thanks to

Lemma D.1, we have {τ > t} ⊂
{
t (UM̂t

(ωt))
−1 ≤ β(δ, t)

}
⊂
{
t (U?M)−1 ≤ β(δ, t) + tB(t)

}
,

where we set

B(t) = 6(1− γ)2
∥∥∥θ̂t − θM + γ(µ̂t − µM)>V̂ ?

t

∥∥∥2

Λ(ωt)
+

(
5

4
− σ(ω?)

σ(ωt)

)
(U?M)−1.

Now, recall that when proving Proposition 5.2, we have shown that, for any δ′ > 0 and for
any t ≥ 1, we have:

P
(∥∥∥θ̂t − θM + γ(µ̂t − µM)>V̂ ?

t

∥∥∥2

tΛ(ωt)
≤ 5

6(1− γ)2
β(δ′, t)

)
≥ 1− δ′

ζ(2)t2
.

Moreover, Lemma B.1 states that if t ≥ 28d
3 log

(2ζ(2)dt2

δ′

)
, then with probability at least

1 − δ′

ζ(2)t2
, we have σ(ωt) ≤ 2σ(ω?). Choosing δ′ = 1 and plugging both bounds in the

definition of B(t), we have with an union bound that, for all t ≥ T1,

P
(
tB(t) ≤ 5β(1, t) +

3t

4
(U?M)−1

)
≥ 1− 2

ζ(2)t2
,

where we define

T1 =
56d

3
log(2ζ(2)d) +

112d

3
log

(
112d

3

)
=

56d

3
log

(
6272ζ(2)d3

3

)
,

so that according to Lemma D.9, t ≥ T1 implies t ≥ 28d
3 log(2ζ(2)dt2). Now to conclude,

we only need to show that this event implies
{
t (U?M)−1 > β(δ, t) + tB(t)

}
when t is large

enough. Assume that tB(t) ≤ 5β(1, t) + 3t
4 (U?M)−1. Since δ < 1 we have β(1, t) < β(δ, t)

and β(δ, t) + tB(t) ≤ 6β(δ, t) + 3t
4 (U?M)−1. To show that this is bounded by t (U?M)−1 is

equivalent to show that 24β(δ, t) ≤ t (U?M)−1. Again, we can show that this last bound is
true when t ≥ T2 thanks to Lemma D.9, where we define

T2 = U?M
576

5

(
2 log

(√
eζ(2)

δ

)
+ d log(8e4d)

)
+ U?M

576(d+ 2)

5
log

(
576(d+ 2)

5

)
.

We have shown that, when t ≥ max(T1, T2),

P(τ > t) ≤ P
(
t (U?M)−1 ≤ β(δ, t) + tB(t)

)
≤ P

(
tB(t) > 5β(1, t) +

3t

4
(UM̂t

(ωt))
−1

)
≤ 2

ζ(2)t2
.
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Therefore, with T = max(T1, T2),

E[τ ] =
∑
t≥0

P(τ > t) =
T−1∑
t=0

P(τ > t) +
+∞∑
t=T

P(τ > t) ≤ T +
+∞∑
t=T

2

ζ(2)t2
≤ T + 2.

D.3 With the forward model - Proof of Theorem 6.7

The proof of Theorem 6.7 is more complex than that of Theorem 5.4 because of the
navigation constraints. Indeed, the analysis of the sample complexity of GNS requires a
careful definition of certain good events under which the stopping rule can be controlled.

D.3.1 Continuity properties of the optimal solution

Lemma D.3. Let us denote σ? : M 7→ infω∈Ωη(M) max(s,a)∈S×A ‖φ(s, a)‖Λ(ω)−1 and the
set of optimal allocations C?η :M 7→ arg minω∈Ω(M) max(s,a)∈S×A ‖φ‖Λ(ω)−1.

(i) σ is continuous and convex on Ωη(M), and attains its maximum on this set.

(ii) σ? is continuous in µM.

(iii) C?η(M) ⊆ Ωη(M) and is non-empty, compact and convex.

Proof of Lemma D.3. Proof of (i). This result follows from the fact that ω 7→ tr
(
Λ−1(ω)φ(s, a)φ(s, a)>

)
is a continuous and convex map on Ωη(M) for all (s, a) ∈ S×A. Thus, taking the maximum
of convex and continuous functions results in a continuous and convex function.

Proof of (ii) and (iii). This an immediate consequence of Berge’s maximum theorem.
Indeed, observe that Ω(M) is a set of linear constraints that are parametrized continuously
by µM. Then, note that by assumption, it must hold that the optimums C?(M) ⊆ Ωη(M),
and we know from (i) that σ is continuous on Ωη(M). Therefore, Berge’s maximum theorem
applies and we obtain the desired result.

The following remark is an immediate consequence of Lemma D.3 and the continuity
of the mapping that associates to each allocation its oracle policy.

Remark D.4. There exists ξ > 0, where for all M̂t such that maxs∈S ‖µ̂t(s)− µM(s)‖ ≤ ξ,
then for any allocation ω̂t ∈ arg min

ω∈Ωη(M̂)
σ(ω), it must hold that underM, the oracle

policy πo(ω̂t) induces ωt ∈ Ωη/2(M), and we have

min
ω∈Ωη(M)

σ(ω) ≤ σ(ωt) ≤ 2 min
ω∈Ωη(M)

σ(ω).
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D.3.2 The good events under the sampling rule of GNS

LSE consistency. In view of Remark D.4, whenever maxs∈S ‖µ̂t(s)− µM(s)‖ ≤ ξ, it is
guaranteed that the allocation ωt ∈ arg min

ω∈Ωη(M̂)
σ(ω) satisifies σ(ωt) ≤ 2 minω∈Ω(M) σ(ω).

We will define the following set

E1,T =
T⋂

t=d
√
Te

{
max
s∈S
‖µ̂t(s)− µM(s)‖ ≤ ξ

}
(37)

Now we show that the event E1,T holds with high probability. To this objective, we first
establish Lemma D.5.

Lemma D.5. Under assumption 6.2, under GNS with forced exploration (11), we have:
for all ε > 0, δ ∈ (0, 1),

∀t ≥ t1(δ), P
(

max
s∈S
‖µ̂t(s)− µM(s)‖ ≤ ε

)
≥ 1− δ,

with
t1(δ) =

C1

λ2
max

(
m2,

1

ε4

)(
d log(d) + log(S) + log

(e
δ

))2

where C1 is some positive universal constant.

Lemma D.5 follows from our forced exploration scheme under the minimal learnability
Assumption 6.2. We present the proof at the end of this subsection. Now, combining
Lemma D.5 together with a union bound over d

√
T e ≤ t ≤ T , we immediately get:

Lemma D.6. Under Assumption 6.2, under GNS with forced exploration (11), we have:
for all ε > 0, for all T ≥ 1,

P
(
Ec1,T

)
≤ δ1(T ) = T exp

(
−λT

1/4

C1
min

(
1

m
, ξ2

)
+ d log(d) + log(S) + 1

)
(38)

where we recall that (m,λ) are the paramaters of the covering policy πe used by the sampling
rule of GNS (11), and C1 is a positive universal constant.

Sampling optimally. Under the event E1,T , eventhough it is guaranteed that σ(ωt) ≤
2 minω∈Ω(M) σ(ω), the sampling rule under GNS still uses a forced exploration and whenever
it does not, it samples according to πo(ωt). Therefore, we still have to guarantee, that
eventually we will be sampling optimally. Define the event

E2,T =

{
T max

(s,a)∈S×A
‖φ(s, a)‖

(
∑T
t=1 φ(st,at)φ(st,at)>)

−1 ≤
8σ?(M)

(1− ε)

}
.
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We establish Lemma D.7 below, which guarantees that indeed we will eventually sample
according to an approximately optimal allocation. Lemma D.7 relies on the concentration
result for random matrices with Markovian data established in appendix B (see Proposition
6.6).

Lemma D.7. Under Assumption 6.4 and Assumption 6.5, under GNS, we have for all
ε > 0, for all T ≥ 1,

P(Ec2,T |E1,T ) ≤ δ2(T ) =
log(T )

log(2)
exp

(
−
√
T

C ′
min

(( ε

16κ

)2
,

3ε

16κ

)
+ d+ 1

)
.

Proof of Lemma D.7. First, we analyze the deviations of the random matrix
∑T

t=1 φ(st, at)φ(st, at)
>

in high probability. Let L,K ≥ 0 be such that

tK < T ≤ tK+1 and tL−1 <
⌈√

T
⌉
≤ tL. (39)

We may write

T∑
t=1

φ(st, at)φ(st, at)
> �

tL∑
t=1

φ(st, at)φ(st, at)
> +

K−1∑
k=L

tk+1∑
t=tk+1

φ(st, at)φ(st, at)
>

�
K−1∑
k=L

tk+1∑
t=tk+1

φ(st, at)φ(st, at)
>,

where we used the fact that ‖φ(s, a)‖ ≤ 1 and tL ≤ 2
√
T (by definition of the set T ). Now,

by Proposition 6.6, we have for all L ≤ k ≤ K + 1

P

 tk+1∑
t=tk+1

φ(st, at)φ(st, at)
> � (tk+1 − tk)(1− ε)Λ(ωk)

 ≥ 1− δ

provided that

tk = tk+1 − tk ≥ C max

((
16κ

ε

)2

,
16κ

3ε

)(
log
(e
δ

)
+ d
)
.

Thus, by a union bound, we have:

P

K−1∑
k=L

tk+1∑
t=tk+1

φ(st, at)φ(st, at)
> �

K−1∑
k=L

(tk+1 − tk)(1− ε)Λ(ωk)

 ≥ 1− (K − L)δ
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provided that

tL ≥
√
T ≥ C max

((
16κ

ε

)2

,
16κ

3ε

)(
log
(e
δ

)
+ d
)
.

Now, note that under the event E1,T , we have: K∑
k=L

tk+1∑
t=tk+1

φ(st, at)φ(st, at)
>

−1

� 1

tK − tL

(
K∑
k=L

(tk+1 − tk)
tK − tL

(1− ε)Λ(ωk)

)−1

� 1

(1− ε)(tK − tL)

K∑
k=L

tk+1 − tk
tK − tL

Λ(ωk)
−1.

This leads, under the event E1,T , to

max
(s,a)∈S×A

‖φ(s, a)‖2
(
∑T
t=1 φ(st,at)φ(st,at)>)

−1

≤ 1

(1− ε)(tK − tL)

K−1∑
k=L

tk+1 − tk
tK − tL

max
(s,a)∈S×A

‖φ(s, a)‖Λ(ωk)−1

≤
maxL≤k<K max(s,a)∈S×A ‖φ(s, a)‖Λ(ωk)−1

(1− ε)(tK − tL)

≤ 2σ?(M)

(1− ε)(tK − tL)

≤ 8σ?(M)

(1− ε)T

where the last inequality comes from tK − tL ≥ T/2 − 2
√
T ≥ T/4 and holds whenever

T ≥ 64. Thus,

P
(

max
(s,a)∈S×A

‖φ(s, a)‖2
(
∑T
t=1 φ(st,at)φ(st,at)>)

−1 ≤
8σ?(M)

(1− ε)T

∣∣∣∣E1,T

)
≥ 1− log(T )δ

log(2)

as long as

√
T ≥ C ′max

((
16κ

ε

)2

,
16κ

3ε

)(
log
(e
δ

)
+ d
)
.

Choosing δ = δ2(T ) to be the parameter satisfying equality in the above inequality concludes
the proof.
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Proof of Lemma D.5. Let s ∈ S, we have:

‖µ̂(s)− µM(s)‖2 ≤
‖µ̂t(s)− µM(s)‖2tΛ(ωt)+γId

λmin(tΛ(ωt) + γId)

Now, we know by Lemma 6.3, that

∀t ≥
(

8m

λ
log

(
2d

δ

))2

, P

(
λmin(tΛ(ωt) + γId) ≥

t1/2λ

2
+ γ

)
≥ 1− δ.

Next, as an immediate consequence of the self-normalized inequality in Proposition D.8, we
have

P
(
‖µ̂t(s)− µM(s)‖2tΛ(ωt)+γId

≤ 2

(
2 log

(
(γ−1t+ 1)d

δ

)
+
√
γ‖µM(s)‖2

))
≥ 1− δ

using the fact that ‖µ(s)‖ ≤
√
d and γ = 1/d. This gives, for all t ≥ 1

P
(
‖µ̂t(s)− µM(s)‖2tΛ(ωt)+γId

≤ 4 log

(
e(2dt)d

δ

))
≥ 1− δ.

Using a union bound, we obtain that:

P
(

max
s∈S
‖µ̂t(s)− µM(s)‖2tΛ(ωt)+γId

≤ 4 log

(
e(2dt)dS

δ

))
≥ 1− δ.

Thus, by a union bound again:

∀t ≥
(

8m

λ
log

(
2d

δ

))2

, P
(

max
s∈S
‖µ̂t(s)− µM(s)‖2 ≤ 8√

tλ
log

(
2e(2dt)dS

δ

))
≥ 1− δ

(40)

which leads to

∀t ≥ max

((
8m

λ
log

(
2d

δ

))2

,

(
8

ε2λ
log

(
2e(2dt)dS

δ

))2
)
,

P
(

max
s∈S
‖µ̂t(s)− µM(s)‖ ≤ ε

)
≥ 1− δ.

After further simplifications, using Lemma D.9, we obtain the desired result.
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D.3.3 Proof of Theorem 6.7

The proofs follows from the same arguments as those used in the proof of Theorem 5.4,
with the only exception that now we have to analyze {τ > t} under the events E1,t ∩ E2,t

Proof of Theorem 6.7. The proof follows the same strategy as in the proof of Theorem 5.4,
except that we will use different events to control {τ > t}. More precisely, we will use
the events E1,t and E2,t. In what follow, we will use U?M to denote U?M,for and recall the
notation ωt,s,a = Ns,a(t)/t where Ns,a(t) is the number of times the state-action pair (s, a)
has been visited up to time t. For the sake of clarity, let us also introduce the event

E3,t =

{∥∥∥θ̂t − θM + γ(µ̂t − µM)>V̂ ?
t

∥∥∥2

tΛ(ωt)
≤ 5

6(1− γ)2
β(1, t)

}
and observe that by Proposition 5.2, we have P(E3,t) ≥ 1−delta3(t) with δ3(t) = 1/(ξ(2)t2).
We will analyze the event {τ > t} under the event E1,t ∩ E2,t ∩ E3,t. First, observe that by
definition of the stopping rule τ , and by Lemma D.1, we have

{τ > t} ⊆
{
t(U?M)−1 ≤ β(δ, t) + tB(t)

}
,

where we defined

B(t) = 6(1− γ)2
∥∥∥θ̂t − θM + γ(µ̂t − µM)>V̂ ?

t

∥∥∥2

Λ(ωt)
+

(
5

4
− σ(ω?)

σ(ωt)

)
(U?M)−1.

Next under the event E1,t ∩ E2,t ∩ E3,t, we have

tB(t) ≤ 5β(1, δ) +
3t

4
(U?M)−1

which leads to

{τ > t} ∩ E1,t ∩ E2,t ∩ E3,t ⊆
{
t

4
(U?M)−1 ≤ β(δ, t) + 5β(1, t)

}
.

Following similar computations as in the proof of Theorem 5.4, the event
{
t
4(U?M)−1 ≤ β(δ, t) + 5β(1, t)

}
=

∅ whenever t ≥ t(δ), where

t(δ) = U?M
576

5

(
2 log

(√
eζ(2)

δ

)
+ d log(8e4d)

)
+ U?M

576(d+ 2)

5
log

(
576(d+ 2)

5

)
.

We have just shown that for all t ≥ t(δ), we have

{τ > t} ⊆ Ec1,t ∪ Ec2,t ∪ Ec3,t = (Ec1,t ∩ E2,t) ∪ Ec2,t ∪ Ec3,t.
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Hence, we obtain

E[τ ] =
∞∑
t=1

P(τ > t)

≤
t(δ)∑
t=1

P(τ > t) +
∞∑

t=t(δ)

P((Ec1,t ∩ E2,t) ∪ Ec2,t ∪ Ec3,t)

≤ t(δ) +

∞∑
t=t(δ)

P(Ec1,t ∩ E2,t) + P(Ec2,t) + P(Ec3,t)

≤ t(δ) +

∞∑
t=t(δ)

P(Ec1,t|E2,t) + P(Ec2,t) + P(Ec3,t)

≤ t(δ) +
∞∑

t=t(δ)

δ1(t) + δ2(t) + δ3(t).

Now, note that
∑∞

t=t(δ) δ1(t) + δ2(t) + δ3(t) <∞. Therefore, we conclude by writing

lim sup
δ→0

E[τ ]

log(1/δ)
≤ lim sup

δ→0

t(δ)

log(1/δ)
+ lim sup

δ→0

∑∞
t=t(δ) δ1(t) + δ2(t) + δ3(t)

log(1/δ)
. U?M,for.

D.4 Miscelleneous results and concentration tools

Proposition D.8 is an immediate consequence of the self-normalized concentration result
established in [1] (see Lemma 9 in [1]) together with a net argument. Therefore, we simply
present the result below without a proof.

Proposition D.8. Let (Ft)t≥1 be a filtration. Let (ηt)t≥1 be a stochastic process adapted to
(Ft)t≥1 and taking values in Rp. Let (φt)t≥1 be a predictable stochastic process with respect
to (Ft)t≥1, taking values in Rd. Furthermore, assume that ηt+1, conditionally on Ft, is a
zero-mean, σ2-sub-gaussian 5. Then, for all δ ∈ (0, 1), the following event∥∥∥∥∥∥

(
t∑

`=1

φ`φ
>
` + λId

)−1/2( t∑
`=1

φ`η
>
`

)∥∥∥∥∥∥
2

≤ 4σ2 log

(
5p det((λ−1(

∑t
`=1 φ`φ

>
` ) + Id))

δ

)

holds with probability at least 1− δ.
5We say that a random variable is σ2-sub-gaussian, if for all λ ∈ R, E[exp(λX)] ≤ exp

(
λ2σ2/2

)
.
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Lemma D.9. Let a, b > 0. A sufficient condition for t > a log(t) + b to hold is that
t ≥ 2a log(2a) + 2b.

Proof of Lemma D.9. Let t ≥ 2a log(2a) + 2b. Then

t ≥ a t
2a

+
t

2
> a log

(
t

2a

)
+ a log(2a) + b ≥ a log(t) + b.
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E Numerical Experiments

We assess the performance of GSS on toy examples.

Linear MDPs. We consider the following linear MDPs with dimension d = S2, where
S denotes the number of states. the state space is S = {1, . . . , S}, and the actions are
A = {(as, i), s ∈ S, i = 1, . . . , A0}. Denote by es,s′ the unit vector in Rd in the direction
(s, s′). The feature vectors are defined as follows:

φ(s, (as′ , i)) =
A0 + 1− i
A0 + 1

es,s′ +
i

A0 + 1
es,s′+1.

The expected rewards are defined by the vector θ ∈ Rd with for all (s, s′) ∈ S, θ(s,s′) = rs,
i.e., the reward does not depend on the selected action. Rewards are Bernoulli with means
θ. The transition probabilities are defined through µ by: for all s, s′, s” ∈ S,

µ(s′′)(s,s′) = (1− ρ)1s′=s′′ +
ρ

S
.

Choosing for example S = 4 and A0 = 3, when in state s the player will observe an
expected reward of rs regardless of the action, and the available transition distributions
will be

(1− ρ)



0.75 0.25 0 0
0.5 0.5 0 0
0.25 0.75 0 0

0 0.75 0.25 0
0 0.5 0.5 0
0 0.25 0.75 0
0 0 0.75 0.25
0 0 0.5 0.5
0 0 0.25 0.75


+ ρ



0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25


where each row represents an action. Assume that the states are ordered by increasing
expected reward. Then the optimal policy is the one choosing the last action from all states.
Moreover, the gap can be shown to be equal to

∆ = γ(1− ρ)
rS − rS−1

(A0 + 1)
.
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Parameters. We are going to plot the sample complexity of the GSS algorithm as a
function of d and ∆, which are respectively controlled by S and ρ. The values used for the
non varying parameters are the following : S = 4, A0 = 3, ρ = 0.2, γ = 0.9, δ = 0.05 and
ε = 0. Choosing ε = 0 allows us to highlight the capability of our algorithm to produce an
instance-specific sample complexity for optimal policy identification. Finally, we choose the
expected rewards to be (rs)s∈S =

(
1

2S ,
3

2S , . . . ,
2S−1

2S

)
.

Stopping rules. We will compare the performance of GSS with that of an algorithm
sharing the same sampling rule as GSS but with an optimal stopping rule. The latter stops
whenever the algorithm has identified the best policy. For GSS, we use the a stopping
threshold scaling as our theoretical threshold but with different constants. Specifically,
the threshold is βmod(δ, t) = 12

5

(
2c1 log

(
1
δ

)
+ c2d log

(
8e4dt2

))
with c1 = 10−4 and c2 =

1.25 × 10−6. We run the GSS algorithm with this adjusted threshold and also replace
(1− γ)−4 with (1− γ)−1 when computing UM̂t

(ωt) as the dependency in γ is known to be
sub-optimal.

In order to fasten the computation, M̂t is computed and the stopping rule tested only
every power of 1.2. Moreover, the transition matrix of the estimate M̂t is projected onto
the simplex before computing ∆(M̂t) by value iteration.

Results. Every point plotted corresponds to values averaged over N = 500 runs. The
sample complexity and the performance of the optimal policy estimated at various steps
are presented in Figure 1.

The stopping rule of GSS leads to a sample complexity of the same order of magnitude
as that of GSS with the oracle stopping rule. But GSS stops later, as expected. the sample
complexity increases with both with the dimension d and the inverse of the gap ∆. For
reference, the first curve is expected to show a growth of d3 because the gap is proportional
to 1/S so d2/∆2 grows as S6 = d3. The second curve is expected to grow as 1/∆2. Note
that we selected δ = 0.05. In all experiments, the proportion of runs where the algorithm
did not identify the best policy was under this threshold. Finally, for Figure 1(c), we plot
the sub-optimality error of the optimal policy estimated at various steps. This error for the
estimated policy π̂ is defined as ‖V ?˘V π̂‖∞.
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Figure 1: Sample complexity vs. d. Figure 2: Sample complexity vs. ∆.

Figure 3: Sub-optimality of the optimal esti-
mated policy after t steps.
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