
EasyChair Preprint
№ 10801

A Toolkit for Automatically Generating and
Modifying VR Hierarchy Tile Menus

Xiyu Bao, Yulong Bian, Meng Qi, Yu Wang, Ran Liu, Wei Gai,
Juan Liu, Hongqiu Luan and Chenglei Yang

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

August 31, 2023



CGI2023 manuscript No.282

A Toolkit for Automatically Generating and Modifying VR
Hierarchy Tile Menus

Xiyu Bao · Yulong Bian · Meng Qi · Yu Wang · Ran Liu · Wei Gai* ·
Juan Liu · Hongqiu Luan · Chenglei Yang

Abstract Current VR/AR system development stu-

dios lack a toolkit to automatically generate hierarchi-

cal tile menu layouts and menu prototypes for VR/AR

devices without the need for user programming. This

paper proposes a toolkit that automatically generates

a hierarchy tile menu layout via a modified circular

treemap algorithm and allows users to interactively ar-

range and resize tiles to form various layouts with their

preferences or needs via a circle packer method and

then automatically generates a VR/AR menu proto-

type based on the outputted layout. Moreover, repro-

gramming is also not required each time when the hier-

archy is modified, or the menu layout is redesigned. The

user test shows that the proposed toolkit simplifies the

creation of hierarchy tile menu layouts, improves the

creation efficiency of users, and allows users to flexibly

Xiyu Bao
School of Software, Shandong University, Shandong, China

Yulong Bian
School of Mechatronics & Information Engineering, Shandong
University, Shandong, China

Meng Qi
Shandong Normal University, Shandong, China

Yu Wang
School of Software, Shandong University, Shandong, China

Ran Liu
Shandong Normal University, Shandong, China

�Wei Gai, E-mail: gw@sdu.edu.cn
No. 1500, Shunhua Road, High-tech District, Jinan, Shan-
dong, China. +86 18678869650

Juan Liu
School of Mechatronics & Information Engineering, Shandong
University, Shandong, China

Hongqiu Luan
School of Software, Shandong University, Shandong, China

Chenglei Yang
School of Software, Shandong University, Shandong, China

create hierarchical tile menu prototypes based on their

design idea.

Keywords Tile menu · Toolkit · User Interface ·
Virtual Reality/Augmented Reality

1 Introduction

The rise of the Metaverse has increased the interest

in Virtual Reality (VR) and Augmented Reality (AR),

making VR/AR applications more promising. Interac-

tion menu techniques in VR/AR applications have be-

come a significant research topic [13]. While 3D menus

have been explored [12,27,7], adaptive 2D menus are

commonly used in VR/AR applications due to users’

familiarity with controlling 2D menus [24].

Tile menus are widely used in VR/AR applications
due to their efficient and flexible selection operations.

They allow users to arrange and resize each tile in a

grid format [5,36,6]. Common forms of tile menus in

VR/AR include Palace menus (e.g., the main menu

on HoloLens 2), Coverflow menus [3], Gallery menus

(e.g., the library menu on Oculus Quest 2), and Drawer

menus (e.g., the menu toolbar on Oculus Quest 2) [13].

Several applications and studies have been conducted

on tile menus. Microsoft introduced tile menus in the

Windows 8 start screen for launching programs and ap-

plications [11]. Live Tile Anywhere [1] is an app that

allows users to create custom Live Tiles and add them

as widgets on their desktops. In the VR/AR domain,

gMenu system was proposed [16], which uses a scalable

grid to create customizable tile menu layouts. However,

existing VR/AR development platforms only support

grid-based tile arrangements with rectangular shapes,

lacking hierarchical relationships.

Prototyping hierarchical tile menus for VR/AR en-

vironments traditionally involves UI designers using tools



2 Xiyu Bao et al.

(a)

(b)

Fig. 1: Comparison of control interfaces generated by our toolkit and the common AR/VR system control interfaces.

(a) Common AR/VR tile menus. most of which are generated based on rectangular mesh, herein, the left is an A

menu, the middle is a VR menu, and the right is a hierarchical menu: (b) Tile menus with various layouts generated

by our toolkit, herein, the left is a tile menu generated by packing hexagon tiles, the middle is tile menus generated

by packing triangle, rectangle and circle tiles in different shaped canvases, and the right is a hierarchical tile menu.

like Adobe Illustrator to create menu layouts and pro-

grammers importing the designs into development plat-

forms (e.g., Unity3D). Programmers also need to imple-

ment hierarchical relationships and menu view switch-

ing when users interact with the buttons.

To address these challenges, this paper proposes a

toolkit for automatically generating hierarchical tile menu

layouts and prototypes. The toolkit consists of two parts:

Generator and Creator. The Generator generates con-

cise layouts using a modified circular treemap algo-

rithm, allowing interactive tile arrangement and resiz-

ing. The Creator automatically generates menu proto-

types in Unity based on the layouts. User studies vali-

date the effectiveness of the toolkit.

In summary, our contributions are as follows:

(1) We proposed two tools: Generator and Creator.

The Generator can automatically generate hierarchi-

cal tile menu layouts from user input and allow users

to interactively rearrange and resize tiles from various

layouts in real time. The Creator can automatically pro-

totype hierarchical tile menus based on the layout from

the Generator in Microsoft HoloLens 2.

(2) We proposed a method to automatically pack

regular poly-gon-shaped tiles in a non-rectangular can-

vas and enable users to drag a tile in any direction,

resize a tile and rotate a tile. In the modification pro-

cess, most areas between tiles do not overlap, and edges

between tiles can be aligned.

(3) We performed user studies and found that our

toolkit is convenient and efficient for users to create a

customizable hierarchy tile menu for VR/AR environ-

ments.

2 Related work

2.1 VR/AR menus

In VR/AR environments, interaction operations such as

selection, manipulation, travel, wayfinding, and system

control are crucial. Among these, menus serve as the

primary means of system control. While there have been

numerous studies on selection, manipulation, travel, and

wayfinding in VR/AR, research on menus has been rel-

atively limited. Raimund et al. [13] conducted a com-

prehensive survey and classification of 3D menus based

on various criteria.

In VR/AR, graphical menus are more commonly

used compared to voice or gesture-based menus. Clas-

sic 2D graphical menus have been adapted to the 3D

environment of VR/AR, taking into account their fa-

miliarity and ease of use for users with minimal training

required to confidently navigate them [16].



A Toolkit for Automatically Generating and Modifying VR Hierarchy Tile Menus 3

2.1.1 Tile menu

Tile menus are widely used for their efficiency in selec-

tion operation and their feature of supporting users to

flexibly translate and scale each tile and arrange their

layout at will [5,30,6]. Microsoft has used the style of

rectangle tile since Windows 8. Although tile menus are

deprecated in Windows 11, there are still tools (such as

Live Tiles Anywhere) for creating tile menus. There is

also some other work on optimizing packing tiles in a

window, which can be seen as a combinatorial optimiza-

tion problem [19,23].

Tile menus are also engaged in mainstream VR/AR

systems, such as Microsoft HoloLens 2. However, they

only provide plugins with limited functionality for de-

velopers to rearrange tiles in a grid format, which is not

enough for developers to create customizable menus.

The menu boundary and tile shape in the existing tile

menus are also rectangular, and the scalability is poor,

which is similar to other typical VR/AR menus. When

submenu items of a menu item are displayed, this menu

item will not be visible, and users cannot perceive the

global information.

2.1.2 Hierarchical menus

The number of displayed items in virtual graphics menus

is crucial for efficient menu navigation and selection op-

erations in VR/AR applications [26]. Hierarchical menus

are more suitable for these applications as they reduce

the screen space required to display the hierarchy [13].

Existing menu hierarchies include TUISTER [10], vir-

tual windtunnel menus [9], collapsible cylindrical trees

[13,12], and cone trees [31], which provide an arbitrary

number of sub-items. However, current tile menus in

VR/AR lack hierarchical design and display all menu

items at once [16]. Treemaps, commonly used for vi-

sualizing hierarchical data, can be employed to auto-

matically generate hierarchical menus [32,33]. Although

previous works have focused on visualizing hierarchical

data using treemaps [39,4,37,29,21,34,38], they do not

address modifying the treemap layout. Existing menu

hierarchies lack a nested structure like a tree diagram,

leading to issues such as occlusion and space occupation

in VR/AR displays.

2.2 Graphical layout optimization

Tile menus, like GUIs windows and widgets, are primar-

ily rectangular and designed for rectangular screens.

Optimizing tile packing is a combinatorial optimiza-

tion problem. Kacem et al. [23] proposed an algorithm

for dynamically generating 2D rectangular tile menus.

It considers the context of use, packs rectangular ob-

jects into variable-size screens, and supports menu hi-

erarchies. Dayama et al. [14] explored grid generation

for GUIs from four perspectives: layout creation, con-

straint solving, combinatorial optimization, and inter-

active generation. They introduced a method based on

mixed integer linear programming for diverse grid-based

layouts. However, these approaches focus on packing

rectangles within windows.

To pack rectangular UI elements in freeform dis-

play spaces, Riemann et al. [28] used environmental

constraints. Niyazov et al. [26] decomposed interfaces

into deformable units and controlled their positions and

behaviors, allowing packing of non-rectangular UI el-

ements. To our knowledge, no previous approach ad-

dresses readjusting non-rectangular UI elements in freeform

display spaces.

2.3 Toolkit for menu or hierarchical view

Several HCI and information visualization toolkits have

been proposed and evaluated, including Infovis [17] and

Prefuse [20]. Many of these toolkits are relevant to menus

in virtual environments. TULIP [8] introduced a menu

system using Pinch Gloves, while the gMenu system

[16] utilized a stretchable grid as a container for cus-

tomizable tile menus. Considerations such as layout,

style, and personalized design are crucial for interac-

tive menus in VR/AR. Other systems, like the tile-

based mixed reality authoring interface [7], PalmType

[36], and the menu with circular arrangement [18], of-

fer unique approaches to interface design in VR/AR

environments. However, there is a need for a more effi-

cient, flexible, and customizable hierarchical tile menu

generation toolkit that supports various shapes in non-

rectangular display spaces. Additionally, users should

have the ability to interactively adjust tile properties

and design layouts according to their preferences or

needs. Current toolkits have limitations in supporting

personalized design options for users.

3 System description

Given the three above problems: the tile menu can only

automatically arrange rectangular tiles within rectan-

gular boundaries; users can only rearrange and resize

tiles within a grid format; there is a lack of tools to au-

tomatically prototype VR/AR hierarchical tile menus.

The goals of our proposed toolkit are:

(1) Automatically pack tiles of different shapes in

any shape canvas, e.g., hexagon.



4 Xiyu Bao et al.

(2) Enable users to readjust tiles interactively (e.g.,

position, size, shape) and flexibly design and modify

various layouts by combining their preferences or needs.

(3) Automatically generate hierarchical tile menu

prototypes for VR/AR applications.

The overall framework of our toolkit is shown in

Figure 2. The system includes the Generator for auto-

matically generating and modifying menu layouts and

the Creator for automatically prototyping menus. Users

can use the Generator to generate and modify the menu

layout. The Generator uploads the layout file to the

server cloud, then the Creator downloads it from the

cloud and renders the menu for display. Sometimes pro-

grammers take on the role of UI designers. However, UI

designers rarely act as programmers because they are

usually unfamiliar with the Unity editor, so we deploy

the Generator on the web platform and integrate the

Creator into Unity as a plug-in.

Fig. 2: System framework.

As shown in Figure 3(a), the user uses the Gener-

ator to design a hierarchical menu interface layout on

the web page. Then, as shown Figure 3(b), the Creator

automatically generates a hierarchical menu prototype
in the Unity editor.

(a) (b)

Fig. 3: (a)Generator, (b)Creator.

3.1 Generator

We introduce the Generator with a specific example. As

mentioned earlier, our first goal is to automatically gen-

erate hierarchical menu layouts with non-rectangular

tiles within certain boundaries. Figure 4 shows an ex-

ample of a hierarchical tile menu. Figure 4(a) shows a

simple pet hierarchy, and Figure 4(b) and Figure 4(c)

are two layouts of a hierarchical tile menu with a cat

head border shape and a circular button shape. Accord-

ing to the previous method, in addition to designing

the child node layout of the Pet node (Figure 4(b)), it

is also necessary to design the child node layout of the

other non-leaf nodes when they are focused. For exam-

ple, Figure 4(c) shows the layout of one of the non-leaf

nodes – the node “Cat”.

(a) (b) (c)

Fig. 4: (a) tree structure of menu, (b) layout of node

“Pet” and (c) layout of node “Cat”.

In order to simplify repetitive work, the Generator

can automatically generate the layouts of each non-leaf

node according to the tree structure, boundary shape,

and tile shape selected by the user. Then users can pre-

view and switch the layout of each node in the Genera-

tor, interactively re-adjust the tiles (e.g., location, size,

shape) in a specific layout, and flexibly modify the lay-

out by combining tiles with their preferences or needs.

Fig. 5: Generator interface.

The interface of the Generator includes four parts,

as shown in Figure 5 the upper left shows the local view

of the menu, which is used to switch the displayed non-

leaf node and render the layout of the current non-leaf

node. It allows users to adjust the layout of the cur-

rent node. The lower left is the menu bar for input and

output. The properties of the currently displayed node

(including id, name, location, radius, and angle) can be

modified on the upper right, and the global boundary



A Toolkit for Automatically Generating and Modifying VR Hierarchy Tile Menus 5

shape and cell shape can be switched. The lower right

shows the global view of the entire menu, the same as

the content displayed in a VR/AR device.

3.2 Creator

The second goal is to prototype VR/AR hierarchical tile

menu based on the designed menu layout automatically.

In this paper, we take HoloLens 2 as an example and

implement the Creator as a plug-in for HoloLens 2 in

Unity3D.

The Creator can be divided into two parts: Scripts

and Resources. Scripts are the core part of the system,

including reading XML files and storing the layout of

each non-leaf node, binding the clicking event of each

non-leaf node, and rendering the layout of a specific

node. Resources are a variety of related resources, such

as background images, tile icons, and prefabs (a built-

in resource type of Unity). The Creator can automati-

cally generate a menu prototype based on the XML file,

which can be previewed in Unity3D or interacted with

gestures in HoloLens 2.

4 Generating menu layout

As mentioned above, there are two requirements when

generating interface layout: in order to generate a hier-

archical menu layout conveniently and quickly, we need

to generate non-rectangular tiles within non-rectangular

boundaries automatically; in order to support users to

adjust and design the menu layout according to their

needs, we need to set constraints among tiles within

the non-rectangular boundary, so that the tiles can be
edge-aligned for easy combination.

In the following, we introduce how to automatically

pack tiles of different shapes in a canvas of any shape

to generate a hierarchical tile menu layout, and then

introduce a method that supports users to adjust tiles

and flexibly create various layouts interactively.

4.1 Automatically generation method of hierarchical

menu layout

In this section, we start with the input format, then

explain how to automatically calculate the hierarchical

menu layout, output format, and implementation.

4.1.1 Input

We take tree structure data, bounding container, and

button shape as input since hierarchical menus mainly

consist of these essential elements. The input format of

the tree structure is a series of menu items specified by

the user. Herein, each menu item contains the node’s

unique identifier, the name, the weight, and the unique

identifier of its parent node. The bounding container

is represented as an array of polygon vertices, each el-

ement storing the two-dimensional coordinates of the

vertices. The button shape can be selected as a circle

or regular polygon.

4.1.2 Method

The Generator generates a treemap layout using a mod-

ified circular treemap algorithm [40]. The algorithm ar-

ranges sub-circles within a circle space to create a uni-

fied layout for hierarchical data. To improve computa-

tion efficiency, we make the following enhancements:

We modify the treemap generation method to calcu-

late the positions and radii of all cells simultaneously,

starting from a normalized initial circle. The correct

positions are rendered linearly during display.

For the convenience of description, we define the

layout of a node as the attributes (position, size, ro-

tation angle) of its child cells within a circular bound-

ary. The actual circle represents the boundary when

rendered, and the actual layout represents the cell at-

tributes within the rendered circle. The normal packing

layout represents the layout of a node, and the focused

packing layout represents the layout when the node is

focused.

Using the disk packing algorithm [40], we compute

the initial layouts of the ”pet” and ”cat” nodes simul-

taneously (Figure 7(a) and Figure 7(b)).

The Creator renders the actual layout of the ”cat”

node within its parent node ”Pet” (Figure 7(c)) by ap-

plying the offset and scaling based on the initial circle

and actual circle properties.

4.1.3 Implementation

First, for each non-leaf node T , we calculated the cell

partition of its child nodes, according to the tree struc-

ture of T . Since the shapes of cells in circular treemap

are circular, therefore, we specified a circle C = (p, r)

as the cell boundary for T , where p is the center of C

and r is the radius of C. Then, we performed the fol-

lowing processing for each non-leaf node synchronously

by Algorithm 1.

Next, we took the data structure shown in Figure

4(a) as an example, combined with Figure 8, to intro-

duced the process of generating the entire hierarchical

tile menu under the premise of a given boundary con-

tainer (cat head) and button shape (regular hexagon).



6 Xiyu Bao et al.

(a) (b) (c) (d)

Fig. 6: The interface generation process of a non-leaf node. (a) the initial power diagram. (b) the state after

re-computing the location of each site. (c) recalculated power diagram. (d) final circle packing result.

(a) (b) (c)

Fig. 7: (a) and (b) are the initial layout of the “pet” and

“cat” and (c)the actual normal layout of node “Cat”

and the actual focused layout of node “Cat”

Algorithm 1: Packing Layout Algorithm.

Input: non-leaf node T .
Output: the normal layout of T .

1 Get the number n of child nodes, let each child node
as a site, and get the weight of each child node as
weight of corresponding site. Scatter n sites inside
the boundary circle C randomly.

2 Divide boundary circle C by variational disk packing
algorithm in [35]. Thus, we get circle Ci = (pi, ri),
i=1,. . . ,n, which is corresponding to each site.

3 Calculate and save the transformation relationship of
position, size and orientation of each Ci relative to
C.

In the initialization phase, for all non-leaf node T ,

we computed the normal packing layout PT by Algo-

rithm 1 in parallel, where each node corresponds to the

initial circle C. Figure 7(b) shows the normal packing

layout of the non-leaf node “cat”. For each child node

Ti of T, we temporarily enlarged the weight of Ti and

calculated the focused packing layout PTi
of its parent

node Tj , such as the focused packing layout of node

“cat”, see Figure 7(a). We saved the packing layout as

a transformation relation of position, size, and orienta-

tion of each Ci relative to C, where Ci represents each

child node of T . The process of the initialization phase

is shown in Algorithm 2.

In the interactive phase, for the initial display inter-

face and a given boundary container (cat’s head shape),

the root node T0 corresponds to this shape, and we cal-

culated the inscribed circle CT0 of the shape (Figure

8(a)). Then we mapped the normal packing layout PT0

to CT0
according to the parameter information between

the unit circle C and CT0
, such as the radius ratio.

Then we computed the inscribed polygon (Figure 8(c))

of each circle (Figure 8(b)) in PT0
, and rendered the

initial interface (Figure 8(d)).

For the current interface, assuming node Ti is fo-

cusing and the parent of Ti is Tj , we mapped the fo-

cused packing layout P ′
Ti

to CTj
. Then we computed

the inscribed polygon (Figure 8(f)) of each circle (Fig-

ure 8(e)) in PTj , and got the interface (Figure 8(g)).

Herein, we calculated the inscribed circle CTi
of the

shape of node Ti (Figure 8(h)), then we mapped the

normal packing layout PTi to CTi . Then we computed

the inscribed polygon (Figure 8(j)) of each circle (Fig-

ure 8(i)) in PTi
, and rendered the interface after node

Ti was clicked (Figure 8(k)).

4.2 Readjust hierarchical menu layout

We explore a new approach to keep a stable and pre-

dictable layout during adjust-layout user interaction,

i.e., dragging a tile within its parent tile with drag-

move-drop mouse interaction and scaling a tile with a

slide-mouse wheel interaction.

4.2.1 Interface layout modification

After the interface is automatically generated, designers

may also need to make interactive optimization modifi-

cations, including general and structural modifications.

General modification. Users can perform modifica-

tion operations (translation, rotation, and scaling of

cells) for each cell in each node, see Figure 9. We define

three operation interactions: the user drags the center



A Toolkit for Automatically Generating and Modifying VR Hierarchy Tile Menus 7

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k)

Fig. 8: Generation process of a hierarchical interface with cat’s head boundary shape and regular hexagon button

shape.

Algorithm 2: Calculating layout packing for

initialization phase.

Input: the tree structure data, boundary container,
and button shape.

Output: the normal packing layouts and the
focused packing layouts.

1 foreach T in all non-left nodes do
2 Compute and output the normal packing layout

PT by Algorithm 1 in parallel.
3 foreach child node Ti of T do
4 Increase the weight of Ti to half of the sum

weight of all the child nodes of T .
5 Calculate and output the focused packing

layout P ′
Tj

of T by Algorithm 1.

6 end

7 end

of the cell with one finger to move the cell (see Fig-

ure 9(a)); the user taps and holds the edge of the cell

with one finger to move towards/away from the center

of the cell, and changes the cell size (see Figure 9(b));

the user taps the edge of the cell with one finger and

rotates around its center of the cell to rotate it (see

Figure 9(c)). This node modification does not need the

recalculation of the treemap but only needs to be saved

to the modified node structure and passed to its de-

scendants. Hence, the whole modification process is in

real-time.

Structural modification. The Generator enables users

to modify the hierarchy structure on the generated in-

terface (see 10).

Tiles can be added, deleted, or moved with tap and

drag interaction. The circle packing algorithm only needs

to be called at most twice per modification.

h
(a) (b) (c)

Fig. 9: Three cell modification methods (the above is

before modification, and the following is after modifi-

cation. (a), (b) and (c) are translation, zoom and rota-

tion, respectively).

(a) (b)

Fig. 10: moving node C from the child node of root to

node B. (a) before modification, (b) after modification.

4.2.2 Support algorithm

The circumcircle ensures that sibling cells of a particu-

lar shape do not overlap when they are generated, see

Figure 11(a) and Figure 11(c). The inscribed circle en-

sures that sibling cells of a specific shape are all within

their parent nodes when generated, see Figure 11(b).

The inscribed circle ensures that sibling cells of a spe-

cific shape do not overlap as much as possible during

adjustment, see Figure 11(c).



8 Xiyu Bao et al.

(a) (b) (c)

Fig. 11: (a) the circumscribed circle constraint of the cell during automatic generation (b) the inscribed circle

constraint of the cell during automatic generation (c) the inscribed circle constraint of the cell during modification.

We use the modified Circlepacker algorithm to sup-

port the layout adjustment. Circlepacker models [25]

assume graphical objects (typical nodes of a network)

are part of a physical space ((x, y) position) and get

mechanical, gravity, and electrostatic forces applied to

them.

We assume each child of the parent cell is assigned

a circle with two position parameters ci(x, y) and a ra-

dius ri. Typically, we render the static layout of this

set of cells generated by the circular treemap. When a

user modifies the state of a tile, the Generator passes

the position and radius of the inscribed circle of the

tile to the Circlepacker model [25], obtains the state of

other tiles in real-time, and renders them on the can-

vas. When the user stops the operation, all tiles stop

moving, and the layout remains stable.

4.3 Output

As mentioned, the layout of the hierarchical menu in-

cludes the normal packing layout of each non-leaf node

and the focused packing layout of each non-leaf node

when it is focused. Therefore, the XML file output by

our toolkit includes the boundary shape polygon, but-

ton shape, and the normal layout of each non-leaf node

and the focused layout of each non-leaf node.

5 Creating menu prototype

In order to automatically create menu prototypes in VR

or AR applications, we need to implement a hierarchi-

cal menu prototype creator that does not require user

programming. The Creator is implemented as a plug-in

in Unity. The Creator reads the XML file output by the

Generator, creates a tree structure based on the data

in the file, saves the normal packing layout and focused

packing layout of each node, and binds click events for

each non-leaf node.

The initial menu shows the normal packing layout

of the root node, see Figure 8(d).

Figure 12(a) shows the initial interface. When the

user clicks the “Cat” button, the Creator first renders

the actual focused packing layout of the parent node

“Root” of “Cat” (see Figure 12(b)) and then render

the actual normal packing layout of the “Cat” node

(see Figure 12(c)).

6 User study

We performed a user study to evaluate the perceived us-

ability and user experience using our developed toolkit

to create a hierarchical menu prototype for the AR sys-

tem.

6.1 Participants

In this study, we take people with programming expe-

rience or design experience as participants to get their

professional opinion and feedback on our toolkit. A to-

tal of 35 participants (10 women and 25 men) voluntar-

ily participated in this study and were assigned to one

of two levels of expertise in Unity programming (expert

versus novice). Participants were students and profes-

sionals aged 14-42 (M=25.16, SD=6.94) with computer

science, mechatronics and information engineering, dig-

ital media, and art backgrounds.

6.2 Apparatus and Setup

Our prototype AR system used the second version of

Microsoft’s HoloLens (development edition) and a Dell

Alienware Area-51m laptop (1920×1080 17’3 screen)

running Windows 11 with a wired HHKB HYBRID

TYPE-S keyboard and a wired Logitech G502 mouse.

We connected a LECOO M2411 display (1920×1080

screen 23’8 screen) to the laptop via SaiKang HDMI

to DVI adapter cable, and we connected the laptop to

a local TP-Link AD1550 router via Ethernet, to which

the HoloLens connected via WiFi.



A Toolkit for Automatically Generating and Modifying VR Hierarchy Tile Menus 9

(a) (b) (c)

Fig. 12: Generation process of a hierarchical interface with cat’s head boundary shape and regular hexagon button

shape.

6.3 Study design and procedure

Before participants started the task, they completed a

questionnaire containing demographic information and

questions about their knowledge and experience related

to designing, programming, and HoloLens 2. Partic-

ipants then experienced a hierarchical tile menu de-

signed by professional UI designers using our tool. They

had 15 minutes to explore the menu and afterwards

completed a PSSUQ questionnaire. A discussion about

the hierarchical tile menu followed.

Next, participants were divided into two groups based

on their Unity programming experience. Group A con-

sisted of participants with Unity programming experi-

ence, who were given 30 minutes to design the required

UI using the toolkit. Participants in both groups rated

items about heuristics, creativity, system functioning,

and usability on a seven-point Likert scale ((Figure

13)). The study concluded with a discussion about the

tool and its usage in the two working environments. The

entire test lasted about 90 minutes for each participant.

Results of the PSSUQ questionnaire showed that

the scores of PSSUQ and its sub-scales were all higher

than the upper limit of reference score [27] (see Table

1), which suggested hierarchical tile menu had a high

usability.

The discussion about the hierarchical tile menu showed

that most participants were interested in hierarchical

menus. The participants said: “I think the hierarchical

information is clear” (P1) and “I like the tree structure,

and the hierarchy is clear” (P17).

The final questionnaire (Figure 13) and the final dis-

cussion showed that the participants were overall sat-

isfied with the usability and functionality of the tool.

One participant without program experience said: “It

is straightforward to (use the toolkit to) complete the

task” (P2), and another said: “The operation is effort-

Fig. 13: Means of the rating for the final question-

naire’s items (7-point Likert scales; 1=strongly disagree

to 7=strongly agree).

less and easy to learn” (P3). An experienced program-

mer from another group validated this. He admitted,

“There is no obstacle to operate (this tool)” (P4). In

general, the final questionnaire (Figure 13) and the dis-

cussion revealed that the significant benefit of the tool

was practical since it supported the “easy” (P2, P5,

P9, P14, P18, P20, P24, P30, P33, P34), “convenient”

(P4, P5, P6, P8, P9, P10, P21, P22, P25, P27) and

“comfortable” (P5, P13, P21, P28) operation. One par-

ticipant outlined this advantage: “I prefer the neatly

arranged menu in the tool when it is automatically gen-

erated” (P5). Nevertheless, guidance for users is crucial,

as one participant pointed out. He said: “the dissatis-

faction is that I sometimes get confused about the left

and right (mouse) button operations (in the design pro-

cess)” (P4). It should “give some operation tips” (P2)

and “give some guidance” (P22).

Figure 14 presents the means of the ratings for the

statements concerning heuristics, creativity, and usabil-

ity. We aggregated the data by these dimensions. The

data showed that programmers (M = 5.579, SD = .205)

outperforms non-programmers (M = 5.424, SD = .159)

for heuristic. A t-test revealed that the difference is not



10 Xiyu Bao et al.

TABLE 1 PSSUQ questionnaire results

Our work Lower limit Normal limit Upper limit
Overall quality 5.52 2.62 2.82 3.02
System quality 6.02 2.57 2.80 3.02

Information quality 5.24 2.79 3.02 3.24
Interface quality 5.10 2.28 2.49 2.71

statistically significant, t = 1.459, p = .175. While the

rating of creativity was rather similar for programmers

(M = 5.736, SD = .320) and non-programmers (M =

5.733, SD = .320), t = .013, p = .990, the usability was

rated higher for non-programmers (M = 6.045, SD =

.273) than for programmers (M = 5.934, SD = .105),

and the difference was not statistically significant, t =

.750, p =.482.

Fig. 14: Mean values of the rating for the programmers

and non-programmers. The items are rated on 7-point

Likert scales (1=strongly disagree to 7=strongly agree).

Participants had different points of view in the dis-

cussion due to their different levels of familiarity with

Unity programming. According to the usability rating,

programmers rated the tool higher for design patterns

and functional modules. (“If I need to change the hi-

erarchical structure of the menu frequently, including

adding, deleting, etc., I prefer this tool” (P23), “No

need to write code yourself, function integration is more

effective for specific tasks. It is easy to use for non-

professionals, and the threshold is low” (P33)). The

most recurring argument for non-programmers is “con-

venience”. When discussing the comparison with their

usual design menu, the participants with design experi-

ence said: “I think the hierarchical information is clear”

(P1) and “I like the tree structure, and the hierarchy is

clear” (P17). This finding echoes our observations and

rating trends during the study period.

7 Discussion

7.1 Comparison with previous toolkits in related work

The previous toolkit mainly focused on auto-generate

menus or interfaces in the virtual environment, and

they did not support packing non-rectangular UI el-

ements in non-rec tangular display space [16,8,22,18,

15,36]. There are works on packing rectangles in non-

rectangular space, but they are either geometric algo-

rithms [19,23] or interfaces that do not support user’s

input and realignment of layout [26]. Using the Unity

engine to develop hierarchical menus of non-rectangular-

shaped buttons in non-rectangular display spaces is com-

plex and time-consuming. To our knowledge, no previ-

ous approach simultaneously tackles the challenge of

automatically generating hierarchical menus with non-

rectangular shaped buttons and supporting users to in-

teractively re-adjust the tiles (e.g., location, size, shape)

and flexibly design various layouts by combining tiles

with their preferences or needs.

7.2 User experience of using our toolkit

User studies on our customizable hierarchy tile menu

toolkit yielded valuable insights. Participants, includ-

ing programmers and UI designers, expressed interest

in hierarchical menus, finding them clearer and more

straightforward. Programmers scored higher on heuris-

tics but lower on usability compared to UI designers.

However, no significant differences were found in ratings

for heuristic, creativity, and usability. The discussions

with programmers revealed their better understanding

of design nuances but also highlighted the need to con-

sider features available in the Unity editor. Taking both

programming and UI design perspectives into account

is crucial for enhancing the toolkit’s functionality and

usability.

7.3 Running time

This method needs to call the circle packing algorithm

n times when generating the interface (n is the number

of non-leaf nodes in the tree structure) during initial-

ization. These calculated layouts will be stored for user



A Toolkit for Automatically Generating and Modifying VR Hierarchy Tile Menus 11

interaction. The circle packing algorithm - the space

partition algorithm adopted by circular treemap - has

linear time complexity and only takes 0.005s for 115

sites (CPU speed of 2.41 GHz,512 MB RAM) [7]. The

biological taxonomic dataset from the Encyclopedia of

Life (EOL) [2] has at most 713 non-leaf nodes, and mod-

ified circular treemap costs at most 3.565 seconds to

generate the treemap layout of EOL, which is a typical

tree structure used for visualization. However, the tree

structure of the hierarchical menu we are working on

is usually simple. Therefore, in practice, the generation

time will be lower than this upper limit.

To check whether the user adjusts the menu in real

time, we add nodes one by one within a cardioid bound-

ary and invite users to judge whether there is a sense

of delay, which will be clear when the number of nodes

is more significant than 83. In practical applications,

menu items usually will not exceed this upper limit.

According to the 7 ± 2 principles [40], there are gener-

ally no more than 9 menu items in the navigation menu.

Within this range, our tools can support users to make

real-time adjustments.

7.4 Application diversity

Currently, the most comprehensive VR/AR solution

(such as HTC Vive and HoloLens 2) is based on controller-

based or hand gesture-based ray-casting interaction [22].

Therefore, our tool’s regular polygon-shaped buttons

are more suitable for ray-casting interaction in virtual

environments. Although we use HoloLens 2 as a repre-

sentative of VR/AR devices in a user study, in practi-

cal applications, our menu can be extended to various

VR/AR devices and even some other devices and has

been used to develop some other application systems

for different fields, see Figure 15. The menu generated

in this article serves as a prototype for the programmer

to develop a specific system. Developers can choose the

tree structure to generate the menu prototype and bind

the click event of the leaf button to a specific task.

7.5 Limitation

Since our purpose is not to replace commercial software,

we have yet to implement all potential functions, such

as modifying text formats, modifying button textures,

and other functions. Some participants also suggested

“adding the function of modifying the background and

button color” and “adding animation effect when click-

ing”. Although these features can be implemented in

future work, they are not the focus of this study. Cur-

rently, in our prototype, UI designers only participate in

our tool’s generation and export of hierarchical menus.

In contrast, binding click events of menu items in hier-

archical menus with scenes or objects in AR programs

still require programmers.

8 Conclusions

This paper proposes a toolkit for generating customiz-

able layered tile menus for VR/AR systems. The toolkit

utilizes a modified circular treemap algorithm to auto-

matically create hierarchical menu layouts on various-

shaped canvases. Users can adjust tile properties in

real time and design menu layouts according to their

preferences. A prototype implementation of the toolkit

demonstrates its convenience and efficiency in creating

customizable hierarchy tile menus, enhancing the us-

ability of VR/AR systems. Notably, user programming

is not required for generating the hierarchical menu lay-

outs. Future work includes refining the tool’s function-

ality, integrating it into VR/AR system development

studios, and incorporating features like using HoloLens

2 to scan physical surfaces as canvases. This research

aims to enable common users to develop their Meta-

verse application systems.

9 Acknowledgement

This work is supported by National Key R&D Program

of China (2022ZD0118002), and the National Natural

Science Foundation of China under Grant (61972233,

62007021, 62277035).

References

1. live-tiles-anywhere. https://apps.microsoft.com/store/detail/live-
tiles-anywhere/9NR7QQK712PL (Access from July 3,
2022)

2. Encyclopedia of life. http://www.eol.org (Access from
June,13, 2022)

3. Akkersdijk, S.M., Brandon, M., Jochmann-Mannak, H.,
Hiemstra, D., Huibers, T.: Imagepile: an alternative for
vertical results lists of ir-systems (2011)

4. Auber, D., Huet, C., Lambert, A., Renoust, B., Sal-
laberry, A., Saulnier, A.: Gospermap: Using a gosper
curve for laying out hierarchical data. IEEE transactions
on visualization and computer graphics 19(11), 1820–
1832 (2013)

5. Belkacem, I., Pecci, I., Martin, B.: Smart glasses: A se-
mantic fisheye view on tiled user interfaces. In: 2016 Fed-
erated Conference on Computer Science and Information
Systems (FedCSIS), pp. 1405–1408. IEEE (2016)

6. Bly, S.A., Rosenberg, J.K.: A comparison of tiled and
overlapping windows. pp. 101–106. ACM New York, NY,
USA (1986)



12 Xiyu Bao et al.

(a) (b) (c) (d)

Fig. 15: Interface menu created for different devices: (a) HMD, (b)CAVE, (c) smart phone, (d) Guide-control

platform.

7. Bowman, D., Wingrave, C., Campbell, J., Ly, V.: Using
pinch gloves (tm) for both natural and abstract interac-
tion techniques in virtual environments (2001)

8. Bowman, D.A., Wingrave, C.A.: Design and evaluation
of menu systems for immersive virtual environments. In:
Proceedings IEEE Virtual Reality 2001, pp. 149–156.
IEEE (2001)

9. Bryson, S.: The virtual windtunnel: A high-performance
virtual reality application. In: Proceedings of IEEE Vir-
tual Reality Annual International Symposium, pp. 20–26.
IEEE (1993)

10. Butz, A., Groß, M., Krüger, A.: Tuister: a tangible ui
for hierarchical structures. In: Proceedings of the 9th
international conference on Intelligent user interfaces, pp.
223–225 (2004)

11. Cohen, E.S., Smith, E.T., Iverson, L.A.: Constraint-
based tiled windows. IEEE computer graphics and ap-
plications 6(5), 35–45 (1986)

12. Dachselt, R., Ebert, J.: Collapsible cylindrical trees: A
fast hierarchical navigation technique. In: Information
Visualization, IEEE Symposium on, pp. 79–79. IEEE
Computer Society (2001)

13. Dachselt, R., Hübner, A.: Three-dimensional
menus: A survey and taxonomy. Comput-
ers & Graphics 31(1), 53–65 (2007). DOI
https://doi.org/10.1016/j.cag.2006.09.006

14. Dayama, N.R., Todi, K., Saarelainen, T., Oulasvirta, A.:
Grids: Interactive layout design with integer program-
ming. In: Proceedings of the 2020 CHI Conference on
Human Factors in Computing Systems, pp. 1–13 (2020)

15. Deering, M.F.: Holosketch: a virtual reality sketch-
ing/animation tool. ACM Transactions on Computer-
Human Interaction (TOCHI) 2(3), 220–238 (1995)

16. Dunk, A., Haffegee, A.: The gmenu user interface for
virtual reality systems and environments. pp. 746–753.
Springer (2009)

17. Fekete, J.D.: The infovis toolkit. In: IEEE Symposium
on Information Visualization, pp. 167–174. IEEE (2004)

18. Gerber, D., Bechmann, D.: The spin menu: A menu sys-
tem for virtual environments. In: IEEE Virtual Reality
2005, pp. 271–272. IEEE Computer Society (2005)

19. Hart, S.M., Yi-Hsin, L.: The application of integer linear
programming to the implementation of a graphical user
interface: a new rectangular packing problem. Applied
Mathematical Modelling 19(4), 244–254 (1995). DOI
https://doi.org/10.1016/0307-904X(94)00033-3

20. Heer, J., Card, S.K., Landay, J.A.: Prefuse: a toolkit for
interactive information visualization. In: Proceedings of
the SIGCHI conference on Human factors in computing
systems, pp. 421–430 (2005)

21. Horn, M.S., Tobiasz, M., Shen, C.: Visualizing biodiver-
sity with voronoi treemaps. In: 2009 Sixth International

Symposium on Voronoi Diagrams, pp. 265–270. IEEE
(2009)

22. Hou, S., Thomas, B.H., Lu, X.: Vrmenudesigner: A
toolkit for automatically generating and modifying vr
menus. In: 2021 IEEE International Conference on Arti-
ficial Intelligence and Virtual Reality (AIVR), pp. 154–
159. IEEE (2021)

23. Kacem, I., Kadri, I., Martin, B., Pecci, I.: Algorithms on
a variable-size rectangular interface. In: 2021 IEEE Inter-
national Conference on Networking, Sensing and Control
(ICNSC), vol. 1, pp. 1–6. IEEE (2021)

24. LaViola Jr, J.J., Kruijff, E., McMahan, R.P., Bowman,
D., Poupyrev, I.P.: 3D user interfaces: theory and prac-
tice. Addison-Wesley Professional (2017)

25. Mario, G., Georg, F.: circlepacker.
https://github.com/snorpey/circlepacker (accessed
13 June 2022)

26. Niyazov, A., Mellado, N., Barthe, L., Serrano, M.: Dy-
namic decals: Pervasive freeform interfaces using con-
strained deformable graphical elements. Proceedings of
the ACM on Human-Computer Interaction 5(ISS), 1–27
(2021)

27. Piekarski, W., Thomas, B.H.: Interactive augmented re-
ality techniques for construction at a distance of 3d ge-
ometry. In: Proceedings of the workshop on Virtual en-
vironments 2003, pp. 19–28 (2003)

28. Riemann, J., Schmitz, M., Hendrich, A., Mühlhäuser, M.:
Flowput: Environment-aware interactivity for tangible 3d
objects. Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies 2(1), 1–23 (2018)

29. Rios-Berrios, M., Sharma, P., Lee, T.Y., Schwartz, R.,
Shneiderman, B.: Treecovery: Coordinated dual treemap
visualization for exploring the recovery act. Govern-
ment Information Quarterly 29(2), 212–222 (2012). DOI
https://doi.org/10.1016/j.giq.2011.07.004

30. Robertson, G.G., Mackinlay, J.D.: The document lens.
In: Proceedings of the 6th annual ACM symposium
on User interface software and technology, pp. 101–108
(1993)

31. Robertson, G.G., Mackinlay, J.D., Card, S.K.: Cone
trees: animated 3d visualizations of hierarchical informa-
tion. In: Proceedings of the SIGCHI conference on Hu-
man factors in computing systems, pp. 189–194 (1991)

32. Scheibel, W., Limberger, D., Döllner, J.: Survey of
treemap layout algorithms. In: Proceedings of the 13th
international symposium on visual information commu-
nication and interaction, pp. 1–9 (2020)

33. Scheibel, W., Trapp, M., Limberger, D., Döllner, J.: A
taxonomy of treemap visualization techniques. In: VISI-
GRAPP (3: IVAPP), pp. 273–280 (2020)



A Toolkit for Automatically Generating and Modifying VR Hierarchy Tile Menus 13

34. Scheibel, W., Weyand, C., Döllner, J.: Evocells-a treemap
layout algorithm for evolving tree data. In: VISIGRAPP
(3: IVAPP), pp. 273–280 (2018)

35. Shneiderman, B., Plaisant, C., Cohen, M.S., Jacobs, S.,
Elmqvist, N., Diakopoulos, N.: Designing the user inter-
face: strategies for effective human-computer interaction.
Pearson (2016)

36. Wang, C.Y., Chu, W.C., Chiu, P.T., Hsiu, M.C., Chiang,
Y.H., Chen, M.Y.: Palmtype: Using palms as keyboards
for smart glasses. In: Proceedings of the 17th Interna-
tional Conference on Human-Computer Interaction with
Mobile Devices and Services, pp. 153–160 (2015)

37. Wattenberg, M.: A note on space-filling visualizations
and space-filling curves. In: IEEE Symposium on Infor-
mation Visualization, 2005. INFOVIS 2005., pp. 181–186.
IEEE (2005)

38. Wettel, R., Lanza, M.: Visualizing software systems as
cities. In: 2007 4th IEEE International Workshop on Vi-
sualizing Software for Understanding and Analysis, pp.
92–99. IEEE (2007)

39. Xiao, S., Bian, Y., Yang, C., Meng, X., Liu, S., Li, M.,
Sun, Q., Qi, G., Liu, J., Zhou, N., Wei, Y.: Optimal
device choice and media display: A novel multimedia
exhibition system based on multi-terminal display plat-
form. Procedia Computer Science 129, 103–109 (2018).
DOI https://doi.org/10.1016/j.procs.2018.03.056. 2017
INTERNATIONAL CONFERENCE ON IDENTIFICA-
TION,INFORMATION AND KNOWLEDGEIN THE
INTERNET OF THINGS

40. Zhao, H., Lu, L.: Variational circular treemaps for inter-
active visualization of hierarchical data. In: 2015 IEEE
Pacific Visualization Symposium (PacificVis), pp. 81–85.
IEEE (2015)


