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ABSTRACT 
Many existing studies analyzing log data from online learning 
platforms model events such as accessing a webpage or problem 
solving as simple binary states. In this study, we combine quality 
information inferred from the duration of each event with the 
conventional binary states, distinguishing abnormally brief events 
from normal or extra-long events. The new event records, obtained 
from students’ interaction with 10 online learning modules, can be 
seen as a special form of language, with each “word” describing a 
student’s state of interaction with one learning module, and each 
“sentence” capturing the interaction with the entire sequence. We 
used second order Markov chains to learn the patterns of this new 
“language,” with each chain using the interaction states on two 
given modules to indicate the interaction states on the following 
two modules. By visualizing the Markov chains that lead to 
interaction states associated with either disengagement or high 
levels of engagement, we observed that: 1) disengagement occurs 
more frequently towards the end of the module sequence; 2) 
interaction states associated with the highest level of learning effort 
rarely leads to disengaged states; and 3) states containing brief 
learning events frequently lead to disengaged states. One advantage 
of the current approach is that it can be applied to log data with 
relatively small numbers of events, which is common for many 
online learning systems in college level STEM disciplines. 
Combining quality information with event logs is a simple attempt 
at incorporating students’ internal condition into learning analytics.  
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1. INTRODUCTION 
Understanding and predicting students’ learning behavior by 
mining the log files of online and computerized learning systems 
has been the focus of a significant body of research in educational 
data mining. For example, many studies have modeled student 
learning as a chain of ordered events such as opening a page, 
viewing a video, or solving a problem [8, 10]. Oftentimes, each 
event is represented by a binary variable, i.e. whether the student 
accessed a webpage or answered a problem correctly [8, 12, 17]. 

While describing events using binary variables can significantly 
reduce the complexity of the data, doing so also risks eliminating 
important information from the event logs. For example, a page 
visit lasting 10 seconds is most likely a qualitatively different event 
than a page visit of 10 minutes. 

Can we include information about the “quality” of learning events 
into our data analysis approach to gain new insights into students’ 
online learning behavior? 

One readily available indicator of the quality of an event is its 
duration. For example, abnormally short problem-solving attempts 
have been associated with either random guessing due to low test-
taking effort [6, 23] or answer copying [2, 15]. In two earlier studies 
[authors3, authors4], we demonstrated that students’ learning 
events can be separated into “Brief” (B) and “Normal” (N) 
categories by applying a mixture model clustering algorithm using 
the time-on-task data alone, since most other measurements such as 
the number of practice problems answered are highly correlated 
with time-on-task.  

In this study, we combine duration based categorical quality labels 
such as “Brief” or “Normal” with conventional binary event states, 
such as “Pass” or “Fail,” to analyze the log data obtained from 
students’ interaction with 10 Online Learning Modules (OLMs). 
Explained in detail in multiple previous papers [authors1-4], OLM 
is a new form of online instructional design in which students 
progress through a sequence of learning modules in a pre-
determined order. Students are required to attempt the assessment 
problems at least once before accessing the accompanying learning 
resources. The restrictive structure of OLMs has two major 
advantages for data analysis. First, it provides more accurate 
estimations of duration information, since the start and end of each 
attempt or learning event is clearly marked by navigation events. 
More importantly, because these assessments and learning events 
are closely coupled on each module, the OLM structure improves 
the interpretability of log data events. For example, a single “Brief” 
learning event may result from either low levels of engagement 
with learning or high levels of incoming knowledge (and thus a 
student would not need to engage with instructional material). Yet 
if it is preceded by a failed brief attempt and followed by another 
failed brief attempt on the same module, it is much more likely that 
the student is not fully engaged with learning. 
As will be explained in detail in the next section, the event logs 
combined with categorical quality labels can be interpreted as a 
simple artificial language. Each event, such as “Brief Pass” or 
“Normal Learning,” becomes part of a “word” that captures 
students’ interaction with either the assessments or the learning 
components of a module. Four such “words” form a “phrase” that 
describes a student’s state of interaction with one section of the 

 

 



OLM, and each 10 word “sentence” corresponds to a student’s 
interaction with the entire OLM sequence. Can we gain insight into 
the patterns in students’ learning behavior by understanding the 
underlying “grammar” of this artificial language? In particular, are 
there certain combinations of words in these phrases that are 
frequently followed by other words which indicate that the student 
is either disengaged or highly engaged with the learning from the 
OLM sequence? 

We will answer this question by utilizing a second order Markov 
chain, a common technique used in natural language processing. 
First order Markov chains can be thought of as weighted random 
walks in some state space 𝑥  over discrete timestep 𝑖  where the 
current state is dependent only on the state occupied at time 𝑖 − 1. 
The probabilities of the state-to-state transitions are predetermined 
using some known information about the state space. For Markov 
chains of second order, the probability of being in some state 𝑆 at 
time 𝑖 > 2 is dependent on the previous two states, 

𝑃(𝑆 = 𝑥௜|𝑥௜ିଵ, 𝑥௜ିଶ, … , 𝑥଴) = 𝑃(𝑆 = 𝑥௜|𝑥௜ିଵ, 𝑥௜ିଶ). 

Markov chains have been utilized in the analysis of large text 
corpuses such as the complete works of William Shakespeare or 
Arthur Conan Doyle [19]. In doing so, the data corpus is converted 
into a probabilistic representation, where words have a chance of 
following some given word or words depending on the original text 
and the depth (order) of the model. When unsupervised, this 
process almost always results in preposterous dialogue between 
characters from completely different plays or books, such as Friar 
Laurence (from Romeo and Juliet) discussing Fulvia’s death with 
Cleopatra (both from Antony and Cleopatra), while the generated 
exchange is about a common theme (the death of crucial characters 
in both stories). When restricted to generating short phrases, 
predictive smartphone keyboards can use Markov chains of various 
order to suggest words based on the current input in a text field [1]. 
Given the input “I want,” my phone suggested that I continue to 
type “a refund.”  

One advantage of our approach is that the Markov model can be 
trained using a relatively small number of events from a student 
population of approximately 250, owing to the increased 
information by introducing the quality labels. This advantage is 
critical for modeling student learning behavior for many STEM 
disciplines such as college level physics, where solving one 
problem can take 5 to 10 minutes. A typical weekly online 
homework assignment of 10 problems may only generate around 
30 to 50 major events (excluding minor log events such as scrolling 
or navigating between pages).  

In this paper, we will first demonstrate that it is possible to construct 
the Markov model using log data from two weeks’ worth of 
homework assignments for a college physics class of 
approximately 250 students. Second, the resulting Markov chains 
can be visualized to reveal combinations of “words” that will lead 
to states associated with either disengagement from or high levels 
of engagement in subsequent modules. 

It must be pointed out that “engagement” is a highly complex 
concept that has different definition depending on the context and 
the measurement method [3]. For this study we will adopt a very 
narrow and pragmatic definition of engagement to indicate that 
students spent a normal or extended amount of time (and likely also 
cognitive resources) in consecutive events on consecutive modules. 
Such a definition emphasizes the cognitive and behavioral aspect 
of engagement, which bears some similarity to the definition 
proposed by Miller [14].   

2. METHODS 

2.1 Structure of OLM and OLM Data 

Data analyzed in this study were collected from student interaction 
with 10 OLMs assigned as homework to be completed over a period 
of two weeks in a calculus-based college physics class. Students are 
not required to finish the entire sequence in one session and are free 
to leave and return to the modules during the two weeks. However, 
the modules must be completed in the order given. As described in 
detail in several earlier papers [authors1-4], each OLM consists of 
an assessment component (AC) and an instructional component 
(IC). Students are required to attempt the AC at least once before 
being able to learn from the IC and can make additional attempts 
after interacting with the IC. Therefore, the majority of students’ 
interactions with each OLM can be divided into three stages: Pre-
Learning: attempting the AC once or twice before accessing the 
IC, Learning: interacting with the IC after one or two initial failed 
AC attempts, and Post-Learning: making additional attempts on 
the AC after learning from the IC. If a student passes the AC during 
the Pre-Learning stage, they will not have the following two stages 
as the student will immediately proceed to the next OLM, as 
illustrated in Figure 1. 
 

 

Figure 1: Schematic illustration of the structure of OLMs. 

2.2 Combining Quality Labels with Event 
Logs 
For each Pre-Learning and Post-Learning stage, students’ 
interaction with the AC is captured by the attempt outcomes: 
“Passing” (P) or “Failing” (F). In addition, the quality of each 
attempt is estimated from the duration of the attempt, 𝑡, which is 
classified into three categories: “Brief” (B:  𝑡 < 40 s) “Normal” 
(N:  40 s ≤ 𝑡 < 180 s), or “Extensive” (E:  𝑡 ≥ 180 s). The cutoffs 
are determined based on mixture-model clustering method applied 
to log-transformed attempt duration data. Combining the three 
quality categories with the two attempt outcomes resulted in six 
different states: BF, BP, NF, NP, EF, and EP. The EF and EP states 
are only assigned to the Post-Learning stages, since there were 
significantly fewer attempts with 𝑡 ≥ 180 s  in the Pre-Learning 
stages, and it was less clear whether those longer attempts resulted 
from longer problem-solving time or students leaving the system. 
For a detailed explanation of those categories and cutoffs, please 
see [authors4]. 

For the Learning stage, students’ interaction with the IC was 
modeled as a single learning event described by a binary variable.  
The duration of the learning event is classified as “Brief” (B) or 
“Normal” (N) according to cutoffs determined for each module by 
a mixture-model clustering analysis of learning time distribution 
[authors4]. Note that an isolated “Brief” category does not 
necessarily imply that the event is of lower quality. For example, 
brief learning can result from a student having a high level of 
incoming knowledge and only needed to quickly view the learning 
resources to answer the problem.  



In the majority of cases, a student’s interaction state in one module 
can be classified by a triplet of combined quality and event labels 
in the three stages. For example, a student could have made a very 
brief and failed initial attempt on the AC, spent a normal amount of 
time learning from the IC, then spent a normal amount of time 
attempting and passing the AC. This student's interaction with the 
OLM is classified as BF-N-NP. There are 26 possible triplet states, 
including BP- - and NP- - states which indicate that a student passed 
a module on their initial attempt.  

Finally, in a small number of cases, students made 3 or more failed 
attempts on the AC before accessing the IC or kept attempting the 
AC until all attempts were used up without accessing the IC. Those 
cases are classified as “Other.” In even fewer cases, due to either a 
corrupted log file or other system glitches, some students were able 
to proceed to the next module without finishing the current module. 
Those cases were classified as “NAOther,” making a total of 28 
possible states, listed in Table 1.  

2.3 Defining States Associated with Either 
Disengagement or High Level of Engagement 
For most of the interaction states, it is impossible to estimate the 
level of engagement associated with the state, and probably the 
same state can be observed from students with different levels of 
engagement. However, there are several states that are clearly more 
likely to be associated students with either a very low or a very high 
level of engagement with the learning process.  

For example, since “Brief” problem solving occurs in under 40 s, 
it has a high probability of resulting from a guessing attempt, or 
answer copying event which will result in a BP- - state. 
Additionally, “Brief” learning events are more likely than 
“Normal” learning events to come from students who skimmed 
through the content. When a student displays consecutive “Brief” 
events on the same module, such as in state BF-B-BF, they are 
highly likely to be not fully engaged with the learning process.  

Similarly, consecutive “Normal” or “Extensive” events, such as 
NF-N-EF, are more likely to come from students who are highly 
engaged with the learning process, as they devoted adequate or 
extensive amount of time to every stage of the learning process. 
While individual “Extensive” events may be caused by a student 
leaving the computer without exiting from the module, it is much 
less likely that three such events occur on the same module.  

Table 1: List of all possible interaction states. D: Disengaged. 
E: Highly Engaged 

State Rank Indication State Rank Indication 
NAOther 0 D BF-N-EP 14 E 

Other 1 D NP- - 15 E 
BP- -  2 D NF-B-BF 16  

BF-B-BF 3 D NF-B-BP 17  
BF-B-BP 4 D NF-B-NF 18  
BF-B-NF 5  NF-B-NP 19  
BF-B-NP 6  NF-B-EF 20  
BF-B-EF 7  NF-B-EP 21  
BF-B-EP 8  NF-N-BF 22  
BF-N-BF 9  NF-N-BP 23  
BF-N-BP 10  NF-N-NF 24 E 
BF-N-NF 11  NF-N-NP 25 E 
BF-N-NP 12  NF-N-EF 26 E 
BF-N-EF 13 E NF-N-EP 27 E 

 

As listed in Table 1, in this study we assumed that states with three 
consecutive “B” labels, or BP- - are more likely associated with 
disengagement. Similarly, states with three consecutive “N” or “E” 
labels or NP- - are likely associated with higher levels of 
engagement. Note that we did not distinguish between productive 
and unproductive engagement, as failed attempts are also included 
in high engagement states. 

There are two exceptions to these rules: First, the “Other” state is 
classified as “Disengaged,” since most engaged students should at 
least look at the instructional resources after 2 failed attempts. 
Second, the BF-N-EF and BF-N-EP states are classified as highly 
engaged, since it is possible that the student quickly decided that 
the assessment problem was too difficult and immediately engaged 
in the learning process.  

2.4 Training of the Markov Model 
Initial construction of the text corpus required asserting that each 
state occurs in temporal order; the ordering of states coincides with 
each student’s trajectory through the modules. This assures that 
eventual training of a model using the module data will give 
temporally possible results. The construction was accomplished by 
appending the module number to each state: a state for a student in 
module 7 could look like BF-N-NP7.  

We define four sequential states to be a “phrase.” These phrases 
can be analyzed in the context of the specific modules in which they 
occurred. Modules 1-4 of the OLM sequence were, on average, less 
difficult than the final four modules of the sequence. As such, the 
phrases created by students in modules 1-4 and 7-10 are 
qualitatively different, on average, as student behavior adjusts to 
the module content. Ten sequential states are defined as a 
“sentence.” Each student contributed a complete ten state sentence 
to the text corpus. 

After the module information was appropriately formatted, the 
Markovify python library [13], described as a “simple, extensible 
Markov chain generator,” was used to parse the text corpus. 
Markovify constructs Markov chains from text data and has been 
previously used for many purposes, such as the construction of 
titles and abstracts of hypothetical papers from the 18,000 most 
cited science articles according to the Web of Science [21], the 
analysis of debates in the United States 2016 presidential election 
[22], for creating twitter bots to simulate a social media attack [7], 
and in the creation of synthetic data to supplement a smaller data 
set [20]. These examples display the utility of Markovify for 
mimicking language expressed in an input text corpus and as a 
result it was deemed appropriate for the current study.  

We utilized second order Markov chains in this study due to the 
consideration that students’ interaction record on a single module 
(as would be modeled with a single order Markov chain) is unlikely 
to adequately account for the complexity of their subsequent 
behavior. The Markov model created with Markovify was used to 
build second order Markov chains for every possible combination 
of initial state in three starting positions: modules 1 and 2, modules 
6 and 7, and modules 7 and 8. Many of the initial state combinations 
were not present in the original text corpus. For example, while 
most students start their module sequence with the combination of 
NP- -1 and NP- -2 states, there were no students who followed the 
pattern of NP- -1 and NF-N-BP2. The second order Markov chains 
were used to investigate the behavior of students as they progressed 
through the modules and to infer how changes in behavior can be 
related to student engagement levels. 



3. RESULTS 

3.1 Outcomes of Second Order Markov Chain 
For a given pair of states on the two input modules, we use the 
Markov model to return the probability of observing different 
interaction states on each of the two following modules. An 
example case is visualized as a Sankey diagram [18] shown in 
Figure 2. The diagram shows that for the pair of input NP- -7 and 
NF-N-EP8 states, the Markov model showed two possible states on 
module 9 and 6 possible states on module 10.  

 

 
Figure 2: Sankey diagram of an example of resulting Markov 
chains given two input states on Modules 7 and 8. The yellow 

line indicates a probable chain. 

For each Markov chain consisting of four states, we consider the 
chain as “probable” if the possibility of the last two states adds up 
to more than 100%. The only probable chain in Figure 2 is 
highlighted with a yellow curve. On average, 0.2% of all chains 
generated are considered probable.  

The three cases for which we chose to run the Markov model are 
listed in Table 2. Those three cases are of particular interest because 
a previous analysis of the data [authors4] revealed that more 
students have lower levels of engagement in modules 3, 8, 9, and 
10. The number of probable chains for each case is also listed in 
Table 2. 

Table 2: Combinations of input states which were analyzed in 
this study. 

Case Input Predict 
All 

chains 
Probable 

chains 
Disengaged 

chains 

Highly 
Engaged 
chains 

I M1+M2 M3+M4 55664 169 3 66 
II M6+M7 M8+M9 45472 65 18 15 
III M7+M8 M9+M10 72912 108 31 16 

3.2 Markov Chains Leading to Consecutive 
Disengaged or Highly Engaged States 
For this study, we are interested in chains that could indicate 
whether a student is either disengaged or highly engaged with the 
learning process. We only consider a student likely to be 
disengaged from the learning process if their interaction states are 
indicative of disengagement on both of the last two modules in the 
chain. Similarly, if a student’s interaction states are associated with 
high levels of engagement on the last two modules, the student is 
considered as “highly engaged.” The number of chains that lead to 
consecutive disengaged or highly engaged states on the last two 
modules are also listed in Table 2. The rest of the chains are not 
included in this analysis because the relation between students’ 
level of engagement and the states on the last two modules weren’t 
as clear as the chains included. 

We plot all the chains indicating disengagement or high 
engagement for each of the three cases in Figure 3. In each case, 
the 28 interaction states are arranged on the y-axis according to the 
order listed in Table 1. 

This ordering groups similar states according to their similarities in 
Pre-learning, Learning, and Post-learning stages, and listed from 
low to high following the order of “B,” “N,” and “E” in quality 
labels. States with passing events are assumed to be of higher 
engagement than those with failing events. States associated with 
disengagement are placed at the bottom and states associated with 
high engagement are placed at the top, with the exception of states 
13-15 in Table 1. Note that for states near the middle of the pack, 
the ranking does not reflect the learning effort required for each 
state, as it is difficult to estimate whether 11: BF-N-NP requires 
more or less effort than 19: NF-B-NP.  

 
Figure 3: Probable chains that lead to consecutive disengaged states (red) or highly engaged states (blue) on the following two 

modules. Darker lines indicate where multiple chains overlap; blue and red zones highlight states associated with disengagement or 
high engagement, respectively. 

 
For Case I (M1-M4), significantly more chains lead to highly 
engaged states on M3-M4 than disengaged states.  On M1, those 
chains started from either a variety of states above NP- -, or from 

Other and NAOther. On M2, most of the chains concentrated on 
three states: 25: NF-N-NP, 15: NP- -, and 1: Other. While 25 and 
15 were highly populated states in the original text corpus, state 1 



was scarcely populated for M2. The results reflected that very few 
students were consistently disengaged on both M3 and M4, which 
appear early in the learning sequence and cover less difficult 
concepts.  

For Case II (M6-M9), there were almost an equal number of chains 
leading to either highly engaged or disengaged states on M7 and 
M8. Notably, most of the chains leading to disengagement passed 
through one of the states between 15 and 24 on M7. More than half 
of those chains started in states 2 and 3 on M6. In contrast, several 
chains leading to high engagement started with high effort states on 
M6 and passed through Other or NAOther on M7. Finally, all of 
the chains (except one) starting from or passing through one of the 
top three states (25-27) lead to high engagement, and all of the 
chains starting with disengaged states led to disengagement on M8 
and M9. 

Finally, for Case III (M7-M10), there were more chains leading to 
disengaged states than highly engaged states on M9 and M10. The 
chains leading to disengagement started at a variety of states on M7, 
and forms two clusters on M8. The first cluster passes through 
disengagement between states 0 and 4, and the second cluster 
passes through states between 15-21. On the other hand, nearly all 
of the high engagement chains either started from state 26 on M7 
or passed through state 27 on M8. 

4. DISCUSSION 
By inspecting and comparing the three graphs in Figure 3, we can 
identify four common patterns. 

Disengagement happens late: chains leading to disengagement 
occur much more frequently on later modules in the sequence. This 
type of behavior is expected since the difficulty of the modules 
increase towards the end, yet each module is worth the same 
amount of course credit. Therefore, students have less incentive to 
devote effort on the harder modules. 
Disengagement-free states: three states requiring the highest level 
of learning effort, 25-28, are seemingly “immune” to chains leading 
to disengagement. In all three cases, only two of those chains pass 
through these states, while most of the chains leading to high 
engagement involve those states on at least one input module. This 
shows that students who are observed to spend an extensive amount 
of effort on one module are more likely to be more persistent, 
especially on difficult modules towards the end.  

Disengagement “hot zone”: states 15-24 (white area between two 
blue bands in Figure 3) seem to be a “hot zone” for chains leading 
to disengagement in all three cases, especially when the state 
appeared on the second module in the sequence. Those states have 
a “Brief” label on either the learning stage or the post-learning 
stage, such as NF-B-NF. This could be evidence that a brief event 
in the learning and post learning stages is more indicative of 
subsequent disengagement behavior than a brief event in the pre-
learning stage. 

V-shaped high engagement chains: several chains leading to high 
engagement states started with states beyond 15 and passed through 
either 1: Other or 0: NAOther on the second module, forming a V-
shape on Figure 3C. This may suggest that even highly engaged 
students may occasionally display disengaged states on certain 
modules. It also may suggest that the two “other” states are not 
always associated with disengagement as previously thought.  

These patterns can be valuable for future developments of an 
intelligent and personalized learning system that recommends 
different learning resources appropriately to the correct student 

populations [12, 15]. For example, for students in the 
disengagement “hot zone” on key modules such as M7, the system 
could present encouraging messages or recommend supplementary 
learning resources to facilitate learning.  On the other hand, for 
students in the “disengagement immune” zone, the system could 
recommend more advanced content by adding M11 and M12 to the 
sequence. The patterns can also help instructors in prioritizing 
future efforts in improving the OLMs, focusing more on modules 
such as M7 and M8 that are critical in students' decision to either 
persist or disengage from the process. 

More importantly, we demonstrated that the Markov model can be 
trained using a small number of events collected from 
approximately 250 students over the period of two weeks. Adding 
duration-based quality labels is crucial for our approach, otherwise 
the model would only have 5 possible states, and would have 
treated distinct states such as NF-N-EP and BF-B-BP as identical. 
Moreover, since the majority of students attempted all the problems 
assigned for course credit, and accessed all the learning materials, 
only 3 of the 5 states would be heavily populated. Such a model, 
even if functional, would likely produce trivial or non-informative 
outcomes. The addition of duration-based quality labels to log 
events can be considered as a (very simple) attempt to consider the 
“effects of students’ internal condition” in learning analytics, 
proposed by Gasevic et.al. [9]. In addition, the ability to train the 
model using data from students in the same class completing 
assignments on a single topic significantly reduces the effect of 
difference in instructional conditions on the results, which was also 
suggested by Gasevic et.al. in the same work.  

On the other hand, as an exploratory first attempt, the current study 
has several notable caveats that needs to be investigated and 
addressed in more detailed future studies.  

First, due to the limitation of computational capacity, only three 
pairs of modules were analyzed. Whether the patterns observed 
such as the “safe” and “hot” zones are general to all modules or 
specific to the selected cases can be answered by future studies 
analyzing all 7 pairs of input modules. 

Second, as previously mentioned, we adopted a very narrow 
definition of “engagement,” which simply means that students are 
spending an expected or extended amount of time on completing 
each component in a single module. While this crude definition is 
sufficient for the purpose of the current study, future work is needed 
to investigate the relation between time-on-task and engagement, 
and in finding new categorical labels that can better reflect students’ 
levels of engagement. 

Third, the current Markov model “predicts” student behavior based 
solely on their interaction states on preceding modules. In reality, 
students’ decisions to engage or disengage from learning involves 
highly complex metacognitive processes influenced by a number of 
external factors including incoming knowledge, instructional 
condition, metacognitive skills, and emotional states [4, 5]. Just as 
more sophisticated predictive keyboards consider external 
conditions such as the currently open application and specific text 
field, future predictive models can achieve more accurate outcomes 
by including more factors that influence students’ metacognitive 
processes. 

Fourth, the current study utilizes a simple set of qualitative labels 
obtained from clustering algorithms on time-on-task data. More 
elaborate future studies are needed to investigate the validities of 
those labels, as well as find new and better-quality indicators for 



both the existing events and new events in other learning systems 
such as discussion forum posts.  

Finally, the approach in the current paper relies on the restrictive 
structure of OLMs, which provides a regular and simple data 
structure, and allows for straightforward interpretation of some 
interaction states. However, the log file events and quality labels 
used to generate the artificial language can be obtained from 
essentially any online learning platform, and more sophisticated 
Markov models are capable of learning languages with many more 
irregularities. A valuable future research direction is to investigate 
to what extent the current method can be modified and applied to 
other more common learning systems that are more accessible to 
the average instructor.   
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