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 Introduction 

Similar to the expandability of natural biological 

systems, that of synthetic biological systems is derived 

from the huge combinatorial search space of biological 

components, such as protein coding sequences and 

regulatory sequences [1]. Due to this huge space, 

adequate design strategies are required for the 

implementation of synthetic genetic circuits in cells.  

One design strategy for genetic circuits is a 

combination of sub-circuits. Recent progress in 

automated computational design has achieved multi-

layered logic gates [2, 3]. Another direction of 

computational design can be reliance on expert 

knowledge. Indeed, even manual combinations of sub-

circuits have allowed the implementation of prescribed 

cellular behavior [4, 5].  

To develop a support tool for genetic-circuit design by 

biologists, here, we sought to combine inference 

machine and deep learning to generate and screen 

candidates of synthetic genetic circuits, respectively. 

Once an adequate rulebase is prepared, a logic 

programming language such as Prolog allows the 

designed cellular behavior to be broken down into 

combinations of rules, each understandable by a 

biologist. Simultaneously, each combination can 

indicate a genetic network topology from which 

published tools can estimate adequate parameters and 

suggest genetic parts [6, 7]. Although inference engines 

can potentially cause combinatorial explosions, using 

machine learning for candidate screening before the 

numerical simulation can circumvent this problem. 

 

Results and Discussion 

1. Combinations of rules provide multiple strategies 

for a prescribed cellular behavior  

 

Logic programs can design prescribed cellular 

behaviors appearing from a certain combination of 

rules. In this work for circuit design, we will prepare a 

rulebase on general biological knowledge that is 

Figure 1: Multiple strategies for genetic reprogramming can be generated by a combination of rules for the 
Inference Engine. (A) Genetic toggle switch structure and ODEs for each repressor of the toggle switch. (B) A process 
for genetic reprogramming. (C) Phase space and nullclines for the toggle switch system.
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independent of specific circuits. A user can then 

provide a specification as the goal for the logic program. 

After successive dissections into smaller subgoals, 

these subgoals indicate the usage of small general 

genetic circuits, such as a toggle switch for bistability 

(Figure 1A) or a gene overexpression system. 

In the case of our genetic reprogramming of a toggle 

switch (Figure 1) [5], one of the internal subgoals is 

setting an inner state of cells on a separatrix of the 

potential landscape (Figure 1B). In our study, this 

setting was achieved by gene overexpression, which 

increased I1 and I2 in the equations in Figure 1. These 

increases make a parallel shift of nullclines to decrease 

the number of nullcline intersections (Figure 1C). 

Another way to achieve this setting was the inhibition 

of the expression of both repressors. From a logic 

programming viewpoint, variations of the circuits for 

the same prescribed behavior were generated because 

two rules shared the same head: “setting an inner state 

of cells on a separatrix”. A strong point of the inference 

engine is that any user can easily add new rules to the 

rulebase, because the logical inference engine 

substantially includes consistency checks among rules. 

 

 

2. Generation of genetic networks by Inference engine 

and Screening of the generated network 

 

Although combinatorial explosion is a known weak 

point for generation by an inference machine, we think 

that recent developments in machine learning will 

allow appropriate screening of the genetic circuits 

generated as candidates.  

Figure 2 shows our design process. Step 1: Generation 

of candidates. As described in the previous section, an 

inference engine generates network candidates by 

combinations of rules. Step 2: Screening by 

comparison of features between a designed circuit and 

each of the circuits in a database. By using ML, we will 

evaluate the similarity to a known genetic network, and 

decide the searching priority by reinforced learning. 

Step 3: Numerical calculations for various sets of 

parameters for the topology of a circuit. This step 

requires the highest computational cost in the whole 

process. Thus, pruning or ranking of candidates at Step 

2 is important. Step 4: Corresponding to the parameters 

of the screened candidate, appropriate biological 

components are selected from the database. At Steps 3 

and 4, we can use published design tools if they can be 

integrated with a Prolog compiler. 

 

 

3. Semi-automated collection of articles for synthetic 

genetic circuits 

 

 Towards the construction of the genetic circuit 

database, we started a collection of network topology 

figures in synthetic biology articles.  For the semi-

automated collection of articles, we used machine 

learning of network topology figures of related studies.  

By manual classification, we provided positive 

example papers, each with at least one figure for the 

topology of the synthetic gene network. Papers that 

lacked any network topology figure were also manually 

classified as negative example papers.  As positive 

examples, we chose 361 figures from 70 positive 

example papers in ACS Synthetic Biology.  To avoid 

bias, we must use similar numbers of negative and 

positive papers. As negative examples, we thus used 

505 figures from 85 ACS Synthetic Biology papers not 

related to genetic circuits.  After training, 46 genetic 

circuit articles from other journals, as well as 185 

negative example papers, were evaluated (Table 1).  

Further developments will allow more accurate 

classification. 
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Figure 2: Generation and screening process of candidate circuits for a cellular behavior. 
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Collected literature will be used not only for screening 

the candidate circuits generated by the inference engine, 

but also for providing information to researchers who 

will expand the rulebase of the inference engine. 

 

 

 

 

 

 

 

 

 
Table 1: Classification of genetic circuit papers 

 

 

Future Directions 

Using Prolog, we started a description of the rules to 

generate circuit topologies and parameters for cellular 

behavior, as shown in Figure 1.  The accumulation of 

such rules will allow researchers with biology 

backgrounds to write new rules for the rule base and to 

implement new circuits showing what life could 

potentially be. 
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