
EasyChair Preprint

№ 1516

A type-theoretical reduction of morphological,

syntactic and semantic compositionality to a

single level of description

Erkki Luuk

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

September 25, 2019

A Type-Theoretical Reduction of Morphological, Syntactic and Semantic
Compositionality to a Single Level of Description∗

Erkki Luuk
Institute of Computer Science, University of Tartu, J. Liivi 2, Tartu 50409, Estonia

erkkil@gmail.com

Abstract

The paper presents NLC, a new formal-
ism for modeling natural language (NL)
compositionality. NLC is a functional type
system (i.e. one based on mathematical
functions and their types). Its main fea-
tures include a close correspondence with
NL and an integrated modeling of mor-
phological, syntactic and semantic compo-
sitionality. The paper also presents an im-
plementation of NLC in Coq. The imple-
mentation formalizes a diverse fragment
of NL, with NLC expressions type check-
ing and failing to type check in exactly
the same ways that NL expressions pass
and fail their acceptability tests. Among
other things, this demonstrates the possi-
bility of reducing morphological, syntac-
tic and semantic compositionality to a sin-
gle level of description. The level is ten-
tatively identified with semantic compo-
sitionality — an interpretation which, be-
sides being supported by results from lan-
guage processing, has interesting implica-
tions on NL structure and modeling.

1 Introduction

As shown by Asher (2014), Luo (2010, 2014) and
Ranta (1994), in a logical approach (i.e. in one
with simpler alternatives such as zeroth, first, sec-
ond and higher order logic), complex type theo-
ries outshine simpler ones in accounting for nat-
ural language (NL) phenomena like anaphora, se-
lectional restrictions, etc. The basic judgement in
type theory, a : A, is read “term a has type A”,
where

(i) type := a category of semantic value.
∗Accepted to RANLP 2019 (http://lml.bas.bg/ranlp2019).

Since the notion of type is inherently semantic, it
is by definition suited for analyzing universal phe-
nomena in NL, as NL semantics is largely univer-
sal (as witnessed by the possibility of translation
from any human language to another).

2 Interpreting Natural Language

NL functions and function applications have a dis-
tinctive form. Specifically, any morphosyntac-
tically admissible concatenation c(a, e1, ..., em),
which is parsed as a(e1, ..., em), is a function or
function application term (FFAT) in NL (e1, ..., em
may be null). For example, red, red book, livre
rouge, etc., are FFATs in idiosyncratic notations
(viz. English, French, etc.). As linguistic expres-
sions are FFATs, they are naturally parsed as func-
tions or function applications.

How to decide whether a particular application
a(e1, ..., em) holds? Usually, one has a basic intu-
ition about what modifies what (modification is a
subcase of function). The main sources for the in-
tuition are morpheme or word classes and seman-
tic contribution tests. For example, -s modifies
(i.e. is a relation over) work in works rather than
vice versa, as (1) affixes modify stems not vice
versa, (2) person/tense and plural markers modify
flexibles1 rather than vice versa, and (3) -s con-
tributes to the meaning of work in works rather
than vice versa. By a similar argument, heavy
modifies rain in heavy rain rather than vice versa,
sleeps modifies john in john sleeps rather than vice
versa, etc. In each case, there’s a clear asymmetry
between functions of the components, as conveyed
by (1)–(2) the functions of word and morpheme
classes and (3) semantic contribution tests.

While the above methods may seem sufficient
by normal standards, for type-driven theories an
even more rigorous way of testing NL relations

1See Luuk (2010).

is available. We can model a (reasonably large)
fragment of NL in a suitable type system to make
it (fail to) type check in exactly the same ways
as (hypothetical) NL expressions pass (and fail)
acceptability tests. Call this principle “the cor-
respondence criterion”. Arguably, this possibil-
ity, the ultimate test for any type-driven linguistic
theory, has not been fully explored, while several
significant steps in this direction have been taken.
Chatzikyriakidis and Luo (2014b, 2016) describe
(among other things) a use of proof assistants for
testing the logical soundness of linguistic theo-
ries, while Grammatical Framework (GF, Ranta
(2004)), a statically typed programming language
for writing NL grammars, gets closest to a type-
theoretical implementation of NL. However, GF
is a high level tool, mathematically opaque to
the end user, and quite specialized. Because it
is geared towards writing NL grammars, it does
not offer a selection of different mathematical for-
malisms to work with, being thus unsuitable for
a general (low level) modeling of NL and theo-
ries thereof. In addition, it does not concern itself
with modeling compositional semantics, although
a FrameNet API for GF has been proposed and
partly implemented (Gruzitis et al., 2012; Gruzitis
and Dannélls, 2017).

A powerful feature of typed theories (especially
of the richly typed2 ones — Chatzikyriakidis and
Luo (2014b)) is that they allow to capture not
only grammatical but also semantic acceptabil-
ity. The paper shows that a combination of func-
tions and rich typing makes it possible to use a
single type system for modeling the core of NL
morphology, syntax and compositional semantics,
thus questioning the soundness of the theoretical
distinction between these different NL “layers”
(and partly eradicating their even more theoreti-
cal “connections” such as the syntax-semantics in-
terface). Because of a wide selection of mathe-
matical formalisms in a richly typed setting, com-
bined with a relatively “instant” compile time type
checking, proof assistants (e.g. Coq, Agda, Lean)
are suitable tools for such work (cf. Chatzikyr-
iakidis and Luo (2016)). As shown below, im-
plementing polymorphic functions with a subclass
of compound types (called lump types) allows to
partly collapse different “levels” of NL (morphol-
ogy, syntax, and compositional semantics).

2Rich typing coincides mainly (although perhaps not ex-
clusively) with dependent and/or polymorphic types.

3 A Note on Selectional Restrictions

More or less overlooked in Montagovian (Mon-
tague, 2002) and categorial (Lambek, 1958) tra-
ditions, selectional restrictions have recently be-
come a focus of intense research in modern type
theories (Asher, 2014; Luo, 2010; Bekki and
Asher, 2013). The essence of the semantic (and
perhaps even more logical than linguistic) phe-
nomenon of selectional restrictions is prescribing
types for a relation’s arguments.

There is an important difference between (1) ar-
guments belonging to types and (2) relations im-
posing types on their arguments. While an argu-
ment can clearly belong to different types3, a re-
lation should not impose different types on its kth
argument, for a fixed k. Modeling selectional re-
strictions along with grammar is an important mo-
tivation for lump types, described below (in sec-
tion 5.1.1).

4 Introducing NLC

Call the formalism we are considering NLC. It is a
type system for modeling NL syntax, morphology
and compositional semantics — briefly, composi-
tionality in NL. The basic unit of NLC is a func-
tion of a small (usually≤ 3) arity. The expressions
of NLC are functions, function applications, func-
tion types (Π-types), lump types, terms of lump
types, and universes (types of types). Elementary
terms of NLC are functions. This is possible if
we interpret “proper arguments” as nullary func-
tions (functions that take no arguments). So func-
tions are divided into proper arguments and proper
functions (the latter being functions that take argu-
ments). For a fixed NL k, let T k be a proper type
variable of NLC, where “proper type” refers to a
type that is not a universe, andMk the set of mor-
phemes4. Then we have the rule:

a ∈Mk

a : T k
ATV-Intro,

for generating atomic terms of NLC and introduc-
ing type variables for them. The rule ATV-Intro
says that all morphemes have types in NLC (tech-
nically: “if a is a morpheme of language k then a
has type T k”).

Some morphemes (e.g. stems) occur only in
an argument position (i.e. are proper arguments),

3E.g. a book is a physical and informational object.
4Morphemes are smallest signs (form-meaning corre-

spondences) in language.

while others (e.g. plural markers) are proper func-
tions. More generally, a function or function ap-
plication is a parsimonious interpretation of mor-
phemes, words, phrases and sentences in NL. Sen-
tences, multimorphemic words and phrases are
function applications. This amounts to a rigor-
ous interpretation of the more general “principle
of compositionality”, as it is known at least since
Frege5. Broadly speaking, there are only two ways
to explain the emergence of compositional mean-
ing: by specifying a relation together with its (a)
arguments or (b) type. The first corresponds to
e.g. function application and the second to func-
tion declaration.

In a functional type system, generating complex
terms and introducing type variables for them is
straightforward (rule CTV-Intro, with T k

i ranging
over proper types):

e1 : T k
1 , ..., em : T k

m a : T k
1 → ...→ T k

m → T k
m+1

a(e1, ..., em) : T k
m+1

where a(e1, ..., em) is an application and T k
1 →

... → T k
m+1 the usual (right-associative) function

type. Since CTV-Intro is the standard function
type elimination rule, the function type introduc-
tion rule is derivable from CTV-Intro.

5 NLC: The Types

Since grammatical (and semantic) categories have
a limited, finite number of members, we need
some atomic types with limited membership. Let
U denote the top-level universe of NLC. We use
axioms of the form S : U and T : S, where S may
be a universe, for introducing atomic type con-
stants corresponding to linguistic categories like
stem, case, nominative, noun, verb, etc. For proper
functions, we need function types (Π-types). Be-
sides this, we need only polymorphism and lump
types, both of which can be (in various ways) im-
plemented with function types.

Since a term of type A may contain another
term of type A (or in case of a function type,
take another term of the type as an argument), we
have sufficient complexity without recursion (self-
reference, which we do not need). For example,
a sentence A containing another sentence B does
not imply recursion unless A = B or B references

5The principle is more general because it holds also for
interpretations of formal languages.

A. Thus, we have same-type-reference without
self-reference.

5.1 Polymorphism and Lump Types

The complexity of NLC goes well beyond regu-
lar function types. In considering a NL expression
type-theoretically, one is frequently inclined to as-
sign it to more than one type. Confining our anal-
ysis to only the linguistically relevant features, we
may want to type e.g. stone as a flexible, physi-
cal object, word in nominative case, etc. A way
— corresponding to polymorphism — to go about
this is to define coercions to (i.e. coercive subtyp-
ing for) all the types we need. In fact, we have
three possibilities: either we (1) lose some type
information, type stone (2) polymorphically or (3)
with a lump type.

As the nominal and verbal readings of stone pre-
clude each other, a polymorphism is required if
we want to encode them both (cf. footnote 7).
In many other cases, however, a lump type may
be preferred. Thus, NLC features types for mor-
phemes, function types, lump types and polymor-
phism.

5.1.1 Lump Types
While possibility (3) is new, the superclass of
lump types, compound types have been used for
NL modeling in the form of multi-field record
types (Cooper, 2005; Ranta, 2004; Luo, 2011;
Chatzikyriakidis and Luo, 2014a). Also, some
kind of polymorphism (e.g. by subtyping —
Luo (2010)) is frequently thought to be necessary.
However, the use of compound types has been so
far confined to record types only, i.e. not properly
generalized6. A compound type is a type which
is a syntactic compound of multiple types or their
terms. Normally, the compounded types are differ-
ent; in the degenerate case, they are the same. Ex-
amples (or implementations) of compound types
include Σ-, Π-, Cartesian product and multi-field
record types.

We defined types as “categories of semantic
value” but, as the example of stone shows, for NL
expressions the value covers not only linguistic
semantics but also the meanings of syntactic and

6In many (most?) programming languages that support
them, the notion of “compound type” (or “compound data
type”) is synonymous with a multi-field record type. This is
not the way it is used here. While a record type can be defined
as a (mathematically more fundamental) Σ-, Π- or Cartesian
product type (Constable, 2003), I have never seen it defined
as a function application.

morphological categories (we will return to this
point in section 9). As compared to (1) and (2),
packing an expression’s meaning into a lump type
allows to do away with both the loss of informa-
tion and typing complexity. Of course, the lump
type itself will be complex but this will, hopefully,
present less problems than alternatives (1) and (2).
As a bonus, the underlying linguistic model will
simplify on account of reducing compositional se-
mantics and parts of morphology and syntax to a
single level of description. Below is the rule for
lump type introduction (LT-Intro):

B : T k c0 : Ck
0 , ..., cn+1 : Ck

n+1 B 7→ c0, ..., B 7→ cn+1

B : Ck
0 ..C

k
n+1

where T k is a proper type variable, B a term
constant and Ck

0 , ..., C
k
n+1 type constants in NLC,

x 7→ y a function interpreting x as y7, and
Ck
0 ..C

k
n+1 the notation for a lump type (compris-

ing types Ck
0 through Ck

n+1, i.e. there must be at
least two). LT-Intro is formalism-agnostic — the
exact mathematical structure used for lumping is
irrelevant. In particular, as shown in Supplement
A8, we can implement lump types for NL as 1)
record types, 2) function applications, 3) Cartesian
product types, or 4) Π-types. In languages that
have them (e.g. TypeScript, Flow...), it is natural
to encode lump types as intersection types. Lump
types are defined as compound types that satisfy
LT-Intro (i.e. we are not interested in empty lump
types).

Supplement B9 proceeds to formalize a diverse
fragment of NL with function applications. The
fragment comprises stems, nouns, verbs, flexi-
bles, proper names, pronouns, XPs10, adjectives,
sentential, adjectival and generic adverbs, deter-
miners, demonstratives, quantifiers, tense-aspect-
mood, gender, number and nonfinite markers,
cases, adpositions, sentences (both simple and
complex), connectives, connective phrases (for
substantives, adjectives, adverbs and sentences),
complementizers, copulas, and selectional restric-
tions (for physical, informational, limbed, biolog-
ical, animate and sentient entities).

7The interpretations must not preclude each other; if they
do (as e.g. the interpretations of run as a noun and verb), they
are dealt with polymorphism instead.

8https://gitlab.com/jaam00/nlc/blob/master/
compound.v

9https://gitlab.com/jaam00/nlc
10Frequently (and theory-dependently) alternatively re-

ferred to as NPs or DPs.

The linguistic categories not formalized in
Supplement B are gerunds, participles, auxiliary
verbs, interrogatives, numerals, negation, mass/-
count distinction and unspecified selectional re-
strictions (and possibly others). These are omit-
ted not because of a special difficulty formalizing
them would pose but because the formalized frag-
ment is sufficiently expressive (and representative
of NL) to make the points of utility and feasibility
of NL formalization with the combination of com-
pound and polymorphic types. The formalization
has been done in the proof assistant Coq (ver. 8.9),
making use of its features like Ltac programming,
custom notations, etc. Besides showing the use
of lump (viz. application) types in NL modeling,
Supplement B should fulfill the abovementioned
“correspondence criterion”.

5.1.2 Polymorphism
Besides lump types, there is some use for poly-
morphism as well — if not for any other reason,
then because NL expressions may be underspeci-
fied. E.g. sleep and stone are flexible stems that
can function both as nouns and verbs. As a verb,
sleep selects for a specific argument, say, a sen-
tient entity (only higher animals can sleep — for
trees, stones and bacteria it is not an option). As
a noun, it is quite similar to many others: a stem,
a flexible in singular, an event, etc. Since verbs
are functions, sleep’s type must be a function type,
but since it also functions as a noun, a polymor-
phism is desirable. The alternative, defining two
distinct sleeps, one noun and one verb, would be
redundant and inelegant — esp. in a program-
ming language, where (differently from NL) they
would have to be formally distinct (e.g. sleep and
sleep0) even in the absence of any discriminating
context (markers and/or arguments).

There are several ways to implement polymor-
phism, but dependent and/or polymorphic types
and subtyping are the most common. For ex-
ample, Coq supports polymorphic types (e.g.
∀∀∀x:Type, x), but an additional formalization
layer is sometimes desirable to improve type in-
ference. One of the main obstacles for formaliz-
ing NL in Coq (and likely also in other proof as-
sistants) is that NL type inference is much more
powerful than that of the (terms of) relatively sim-
ple types like sorts, sensu stricto variables (e.g.
those defined with Parameter and Variable in
Coq) and function types over them. The reason
is that the simple types have an unbounded num-

https://gitlab.com/jaam00/nlc/blob/master/compound.v
https://gitlab.com/jaam00/nlc/blob/master/compound.v
https://gitlab.com/jaam00/nlc
https://coq.inria.fr/distrib/current/refman/proof-engine/ltac.html

ber of terms, while in NL the number is fixed, very
limited, and usually known in advance11. The only
counterexamples to this rule are phrases, clauses
and complex words. So the additional layer of
formalization is used for downgrading the over-
powerful simple types to something on which type
inference would work. In Coq, the main devices
for such downgrading are inductive types, “canon-
ical structures”, and type classes. Our formaliza-
tion uses them all, relying most heavily on canon-
ical structures (essentially, canonical records of a
record type).

6 Truth-Functionality

So far, the semantics developed here is not truth-
functional, i.e. it is type- but not model-theoretic.
As type theory is ‘semantic’ by definition, it is
clearly sufficient for a semantical cast of seman-
tics without a recourse to model theory. This is ev-
ident in programming language semantics, where
the role of model theory is marginal as compared
to that of type theory. Traditionally, in natural lan-
guage semantics the opposite is true, as sentential
semantics is usually construed as model-theoretic
even in a type-theoretical setting (e.g. Chatzikyr-
iakidis and Luo (2015, 2016)). The obvious rea-
son for this is that the (prevailing, i.e. Montago-
vian) tradition is model-theoretic. For this reason,
an optional truth-functionality module has been
added to the implementation. Degenerate models
(where all NLC sentences (S) are uniformly true,
false or undecidable) can be specified trivially by
subtyping, e.g.
Parameter s_prop:> S -> Prop.
(* all S-s undecidable *)

and with only a little effort non-trivial models can
be specified, too (with subtyping and a special no-
tation matching NLC constructions with appropri-
ate values). Below is an example from Supplement
B:
Check $(PRES walk john): Prop. (*False*)
Fail Check $(PAST walk stone). (*type mismatch*)
Check $(PRES sleep john). (*True*)
Check $(PRES sleep (PL boy)). (*False*)
Check $(PAST sleep (-s boy)). (*True*)
Fail Check $sleep. (*type inference fail*)

(*a trivial proof that "boys
don’t sleep" and "john sleeps"*)
Theorem pres: (∼ ($ (PRES sleep (-s boy)))) /\
($ (PRES sleep john)). Proof. firstorder. Qed.

11The latter will depend on your linguistic theory, as differ-
ent theories posit different categories and members for them.

7 Comparisons

In section 2 we compared NLC with related typed
approaches. This section takes a broader (al-
beit still related) perspective, comparing NLC
with Combinatory Categorial Grammar and Head-
Driven Phrase Structure Grammar.

7.1 Combinatory Categorial Grammar

A feature of NLC, Combinatory Categorial Gram-
mar (CCG) (Steedman, 2000) and some other cat-
egorial formalisms is that they tend to do away
with syntax: “...syntactic structure is merely the
characterization of the process of constructing a
logical form, rather than a representational level...”
— Steedman (2000), p. xi12. The main differ-
ences are as follows. CCG is a categorial formal-
ism, NLC not. CCG has complex (combinatorial)
syntactic types of the form X\Y and X/Y in-
stead of lump types with (what is conventionally
viewed as) morphological, syntactic and semantic
information. Another difference is CCG’s (by de-
fault limited) support for word order. (In particu-
lar, CCG does not handle concatenations (of terms
of types) c(X/Z, Y, Z) and c(Z, Y,X\Z), where
Y is nonempty13.) Also, in CCG, NL construc-
tions of sentence level and below can have multi-
ple structures independently of (what is tradition-
ally called) interpretational ambiguity.

7.2 Head-Driven Phrase Structure Grammar

It is also useful to compare NLC with a more ded-
icated syntactic formalism such as Head-Driven
Phrase Structure Grammar (HPSG). As a mature
formalism that has been implemented for several
languages (Pollard and Sag, 1994; DELPH-IN,
2019), HPSG is currently implementation-wise
much superior to NLC (which has been imple-
mented only for a fragment of English14), so it
is appropriate to compare only formalisms. We
start with similarities. Both formalisms model
parts of semantics, syntax and morphology, but
HPSG’s scope is much wider, as it covers also

12However, as described below, CCG still features syntac-
tic types.

13I am not sure whether such concatenations exist in NLs
with fixed word order, but a decision to rule them out by de-
fault is arbitrary. However, perhaps it would be feasible to
introduce a special rule for accommodating Y in this case.

14Structurally, the fragment is quite universal. In fact, with
a slightly more general notation one can approximate a Uni-
versal Grammar (a statement that will make more sense after
reading section 9 and recalling that NL semantics is univer-
sal).

lexicon and word and morpheme orders. Both
formalisms are compositional in that the mean-
ing of a sentence is given by its constituent struc-
ture (Carnie, 2012), but the ways of achieving this
are very different: HPSG uses attributes (features)
and attribute value matrices while NLC uses types
and functions. With this the similarities seem to
end. HPSG and NLC are fundamentally different
kinds of formalisms — the former features an ex-
tensive set of attributes, rules and attribute com-
plexes, while the latter has only three rules (in-
troducing atomic, function application and lump
types), leaving the specification of types to the im-
plementor. In a sense, there is little to compare,
as HPSG is a full-blown NL grammar formalism
(that has been extended to cover also selectional
restrictions) while NLC is a generic type system
for modeling NL compositionality. Thus, NLC is a
much simpler and more general system, and its im-
plementor has significantly more freedom in NL
modeling than an implementor of HPSG.

8 Implementing NLC

My experience of implementing NLC is quite lim-
ited, as I have so far tried to implement it only in
one programming language and have implemented
at best a half of NL in terms of its general (or ty-
pological) category structure. Below is a test of
an implementation of NLC. The test is by type-
checking possible NL(C) expressions. The code
(from Supplement B) is generously commented
and should be self-explanatory.
Check PAST throw john. (* "John threw"
type checks -- but not as a sentence: *)
Fail Check PAST throw john: S. (* "At the hut"
can be the 3rd argument of "throw": *)
Check PAST throw john (-s stone)
(at (the hut)). (*..but not the 2nd one:*)
Fail Check PAST throw john (at (the hut)).
(* "In a hut" cannot be
an argument of "throw": *)
Fail Check PAST throw john
(-s stone) (in (a hut)).
(* ..but can be a sentence modifier: *)
Check in (a hut) (PAST throw john (-s stone)).
(* ..and so can "at every hut" and
sentential adverbs like "however": *)
Check at (every hut) (PAST throw john
(-s stone)): S.
Check however (PAST throw john (-s stone)): S.
(* Connectives cannot range over a
sentential and nominal argument: *)
Fail Check and (PAST throw john (a stone))
john. (* ..but can range over nominal: *)
Check and (every john) (all (the (-s boy))).
(* ..or sentential arguments: *)
Check and (PAST walk (-s boy)
(to (all (-s hut)))) (PAST sleep john).

(* ..(also w/ optional arguments omitted): *)
Check and (PAST walk john) (PAST sleep john).

(* Examples of lump types *)
(* "John" is an XP, proper name, male, in
nominative, singular, a physical entity: *)
Check john: XP0 Phy NOM SG (Pn Ml).
(* ..and a limbed entity: *)
Check john: XP0 Lim NOM SG (Pn Ml).
(* "The entire hut and all Johns" is an XP
and physical entity in nominative: *)
Check and (the (entire hut))
(all (-s john)): XP2 Phy NOM _ _. (* ..or
pseudo-accusative (by zero-derivation): *)
Check and (the (entire hut))
(all (-s john)): XP2 Phy ACC’ _ _.
(* ..and can be made into a sentient
entity in Lax mode only: *)
Check [and (the (entire hut))
(all (-s john))]: XP2 Sen ACC’ _ _.

(* "John threw madly blue stones at the hut
and red limbed boys." has 2 parses: *)
Check madly (PAST throw) john
(blue (-s stone)) (at (and (the hut)
(red [limbed (-s boy)]))): S.
Check PAST throw john
(madly blue (-s stone)) (at (and (the hut)
(red [limbed (-s boy)]))): S.
(* Here we used "[...]" to make a
limbed entity into a physical one. *)

(* We can stack adverbs and adjectives, and
use adjectival and adverbial connectives: *)
Check all ((and madly madly) red (red
[and blue limbed [-s john]])). (* All madly
and madly red, red, blue and limbed Johns *)

In Coq, _ is a placeholder for any admissible term
or type. A switch in the file the code is taken from
allows to choose between Strict and Lax modes,
respecting and ignoring selectional restrictions, re-
spectively. The notation [...] interfaces with the
current mode. The example omits all technical de-
tails like type definitions, etc. These are not instru-
mental to NLC, as the type system — i.e. one cap-
turing the morphological, syntantic and semantic
compositionality of NL with lump types as faith-
fully as possible — can be implemented in sev-
eral ways (cf. Supplement A) and different pro-
gramming languages. The implementation uses
only a tiny subset of Coq’s features, and its main
functionality, theorem proving, is entirely optional
here. As I am not at all convinced that Coq is
the best language for implementing NLC, I en-
courage the interested reader to experiment with a
programming language of their choice. That being
said, statically typed programming languages with
a sufficiently complex type system and advanced
type inference have some advantages for this kind
of work (e.g. in terms of rigor and the similarity
of implemented formulas to NL expressions).

9 Implications

The driving force behind NLC has been to corre-
spond to NL as closely as possible. Since ontology
(or world knowledge) interfaces with the compo-
sitional semantics of NL, it is desirable to formal-
ize some of it in the form of selectional restric-
tions. We have collapsed syntactic, morphological
and semantic compositionality to a single level —
to that of the type system. In effect, some types
have become syntactic, but the syntax has only two
rules: functionality (CTV-Intro) and lumping (LT-
Intro). In sum, the paper (and the underlying for-
malization) have shown that:

(†) A feature of natural language — viz. morpho-
logical, syntactic and semantic compositional-
ity — can be reduced to a single level of de-
scription.

It is not clear what (†) means, so let us try to ex-
plore it further, by (temporarily) assuming that (†)
posits a new level of description — call it compo-
sitionality — which, moreover, would have to in-
terface with lexical semantics and (what is left of)
morphology and syntax. This would be not only
theoretically unheard-of (which would be only a
mild objection) but would have the undesirable
consequence of complicating the general frame-
work of linguistic theory. However, it would have
some positive outcomes as well, namely “elimi-
nating” compositional semantics and simplifying
morphology and syntax proper. The general the-
ory of natural language would become more com-
plex while three subtheories (morphology, syntax
and semantics) would simplify.

Depending on one’s outlook on the general the-
ory of natural language, this might seem like a
path worth pursuing. However, below I will argue
that it is not the only one. The alternative would
be to assume that:

(‡) There’s nothing “morphological” or “syntac-
tic” about morphological and syntactic com-
positionality — it is all just semantic compo-
sitionality.

Clearly, (†) and (‡) are not mutually exclusive
— in fact, (‡) is just a more radical version of
(†) (and incidentally, also subsumes (†)). (‡) just
conflates the hypothetical new level of descrip-
tion of (†) with compositional semantics. Word
and (subword) morpheme order pertain to syntax

and morphology, respectively; the compositional-
ity of words, phrases, morphemes and clauses per-
tains to semantics. As a desirable consequence,
we could continue using the existing general the-
ory of natural language with only a few termino-
logical changes. But (how) would (‡) be viable?

A possible justification would make at least two
arguments. First, from the theoretical side, mor-
phological, syntactic and semantic composition-
ality all refer to certain (parts of) knowledge —
namely, about morphology, syntax and world, re-
spectively. The only way to have knowledge is
by way of meaning, which, given the above, is
clearly linguistic. This consideration roots our
enterprise in linguistic semantics. Second, from
the formalization side, we are using type theory,
which is a theory of semantics (broadly defined15

— cf. (i)). This argument formally corroborates
the claim that NLC models only natural language
semantics.

Of course, the fact that NL can be modeled this
way does not entail that this is the way it works in
the brain16. So far, our argument has been solely
about modeling: It is more parsimonious to model
compositionality in a functional type system than
e.g. with syntax trees or phrase structure rewrite
rules, since the latter cannot, neither separately
nor when combined, account for all composition-
ality. The only advantage of the rewrite rules and
syntax trees over the type-theoretical modeling is
that they allow, in principle, to capture word order.
However, not all syntactic theories support linear
order preserving trees (the Chomskian transforma-
tional grammar being a case in point — Chom-
sky (1965, 1981)). Secondly, a word order rule
is, differently from compositionality, not a linguis-
tic universal (there are many languages with flex-
ible word order — Dryer (2013)). Incidentally,
this also means that not all natural languages have
syntax.

One thing that seems to emerge from the liter-
ature on language processing is the role of syntax
as guiding semantic interpretation, or (more figu-
ratively) serving semantics (Kempson et al., 2001;
Morrill, 2010; Christiansen and Chater, 2016).
Some authors have explicitly argued against syn-

15Historically, the semantics of mathematics, more re-
cently also the semantics of programming languages.

16Incidentally, there is little sense in trying to make a case
of “how language works in the brain”, as there is no con-
sensus on this among psycho- and neurolinguists (Chater and
Christiansen, 2016).

tax as a separate representational level of linguis-
tic structure (Pulman, 1985; Steedman, 2000). To-
pographical patterns of brain activation to nouns
and verbs are driven not by lexical (grammatical)
class but by semantics and word meaning (Mose-
ley and Pulvermüller, 2014). A cognitive architec-
ture with a multi-level (syntactic, semantic, mor-
phological, etc.) NL processing usually requires
positing at least as many memory buffers for it
(Levinson, 2016), while our short-term memory
(obviously recruited in e.g. dialogues) is very lim-
ited (Cowan, 2001). These pieces of evidence
from language studies also corroborate (‡).

In sum, we hypothesize that combinatorial
(im)possibilities in syntax and morphology are
better analyzed as belonging to the domain of
compositional semantics. Moreover, the conjec-
ture that the traditional boundaries between the
levels of description reflect more of a sociologi-
cal (a division of labor among linguists) than a lin-
guistic fact is not too bold.

If the hypothesis is correct, nothing remains in
syntax except word order17. Since word order
can label (now already semantic) constituents, as
in JohnSUB loves MaryOBJ, a limited form of
syntax-semantics interface is also expected. This
accords with the view of the function of syntax
as serving semantics, viz. in interpretation dis-
ambiguation, which is the primary function of
word order constraints (as witnessed in the exam-
ple above). Syntax-semantics interface is also an
appropriate level for phenomena like anaphora and
ellipsis. Likewise, morphology proper retains only
(subword) morpheme order and fusion, while mor-
phophonological (i.e. morphology-phonology in-
terface) phenomena like e.g. sandhi must also be
accounted for. As a result, syntax and morphology
emerge as by-products of a contingent conforma-
tion to the serial channel over which language is
processed.

10 Conclusion

If we interpret proper arguments as nullary func-
tions, all NL expressions up to the sentence level
(i.e. morphemes, words, phrases, clauses and sen-
tences) can be interpreted as functions and func-
tion applications. The paper presents NLC, a
generic functional type system (i.e. one consist-
ing primarily of functions and their applications).

17If we do not posit lexicon as a separate level, lexical cat-
egories also pertain to morphology or syntax.

NLC is generic in at least two respects: 1. It is
applicable to all NLs, and 2. It allows for generic
modeling of morphological, syntactic and seman-
tic compositionality. Besides functions, applica-
tions and their types, NLC features polymorphic
and lump types. The latter are compound types
satisfying LT-Intro. Compound types are types
which are syntactic compounds of multiple types
or their terms (Σ-, Π- and Cartesian product types
are examples of compound types). At its core,
NLC is a simple system for an integrated model-
ing of the morphological, syntactic and semantic
compositionality of NL with lump types.

The paper also presents an implementation of
NLC in Coq (which, unfortunately, is not quite
as simple, which may be Coq’s fault). The main
goal of the implementation was to formalize a rea-
sonably diverse fragment of NL in NLC, with for-
malized NLC expressions type checking and fail-
ing to type check in exactly the same ways that
NL expressions pass and fail their acceptability
tests. Aside from this goal’s feasibility, the im-
plementation shows several things: (1) the via-
bility and simplicity of NLC for modeling NL
compositionality, (2) the utility of lump and poly-
morphic types in NL modeling, and most impor-
tantly, (3) the possibility of reducing morpholog-
ical, syntactic and semantic compositionality to a
single level of description. In discussion we have
tried to identify this level as semantic composi-
tionality — an interpretation which, besides be-
ing supported by results from language process-
ing (Pulman, 1985; Steedman, 2000; Moseley and
Pulvermüller, 2014), has interesting implications
on NL structure and modeling. In particular, it
may reduce syntax and morphology to word and
morpheme orders, respectively (with the syntax-
semantics and phonology-morphology interfaces
reducing correspondingly), with NL architecture
taking on a rather different look. This has also im-
plications on linguistic typology, as syntax would,
much like morphology before it (Muansuwan,
2002; Grandi and Montermini, 2005; Klamer,
2005), cease to be a logically necessary compo-
nent of NL.

Acknowledgments

I thank Jason Gross, Hendrik Luuk, Erik Palmgren
and Enrico Tassi for their advice. This work has
been supported by IUT20-56 and European Re-
gional Development Fund through CEES.

References
Nicholas Asher. 2014. Selectional restrictions, types

and categories. Journal of Applied Logic 12(1):75–
87. https://doi.org/10.1016/j.jal.2013.08.002.

Daisuke Bekki and Nicholas Asher. 2013. Logical pol-
ysemy and subtyping. In Yoichi Motomura, Alastair
Butler, and Daisuke Bekki, editors, New Frontiers in
Artificial Intelligence, Springer, Berlin, Heidelberg,
pages 17–24.

Andrew Carnie. 2012. Syntax: A Genera-
tive Introduction. Wiley-Blackwell, Malden,
MA, 3rd edition. https://www.wiley.com/en-
ee/Syntax:+A+Generative+Introduction,+3rd+Edition-
p-9780470655313.

Nick Chater and Morten H. Christiansen.
2016. Squeezing through the Now-or-
Never bottleneck: reconnecting language
processing, acquisition, change, and struc-
ture. Behavioral and Brain Sciences 39:e91.
https://doi.org/10.1017/S0140525X15001235.

Stergios Chatzikyriakidis and Zhaohui Luo. 2014a.
Natural language inference in Coq. Journal of
Logic, Language and Information 23(4):441–480.
https://doi.org/10.1007/s10849-014-9208-x.

Stergios Chatzikyriakidis and Zhaohui Luo. 2014b.
Natural language reasoning using proof-assistant
technology: Rich typing and beyond. In
Proceedings of the EACL 2014 Workshop on
Type Theory and Natural Language Semantics
(TTNLS). Association for Computational Lin-
guistics, Gothenburg, Sweden, pages 37–45.
http://www.aclweb.org/anthology/W14-1405.

Stergios Chatzikyriakidis and Zhaohui Luo. 2015.
Individuation criteria, dot-types and copredica-
tion: A view from modern type theories. In
Proceedings of the 14th Meeting on the Math-
ematics of Language (MoL 2015). Association
for Computational Linguistics, pages 39–50.
https://doi.org/10.3115/v1/W15-2304.

Stergios Chatzikyriakidis and Zhaohui Luo. 2016.
Proof assistants for natural language seman-
tics. In Maxime Amblard, Philippe de Groote,
Sylvain Pogodalla, and Christian Retoré, ed-
itors, Logical Aspects of Computational Lin-
guistics. Celebrating 20 Years of LACL (1996–
2016). Springer, Berlin, Heidelberg, pages 85–98.
http://www.cs.rhul.ac.uk/ zhaohui/LACL16PA.pdf.

Noam Chomsky. 1965. Aspects of the The-
ory of Syntax. The MIT Press, Cambridge.
http://www.amazon.com/Aspects-Theory-Syntax-
Noam-Chomsky/dp/0262530074.

Noam Chomsky. 1981. Lectures on Government and
Binding. Foris, Dordrecht.

Morten H. Christiansen and Nick Chater. 2016. The
Now-or-Never bottleneck: a fundamental constraint

on language. Behavioral and Brain Sciences 39:e62.
https://doi.org/10.1017/S0140525X1500031X.

Robert L. Constable. 2003. Recent results in type
theory and their relationship to Automath. In
Fairouz D. Kamareddine, editor, Thirty Five Years
of Automating Mathematics, Springer Netherlands,
Dordrecht, pages 37–48.

Robin Cooper. 2005. Records and record
types in semantic theory. Journal of
Logic and Computation 15(2):99–112.
https://doi.org/10.1093/logcom/exi004.

Nelson Cowan. 2001. The magical number
4 in short-term memory: a reconsideration
of mental storage capacity. Behavioral and
Brain Sciences 24(1):87–114; discussion 114–85.
https://doi.org/10.1017/S0140525X01003922.

DELPH-IN. 2019. The DELPH-IN collaboration. Ac-
cessed 18.03.2019. http://www.delph-in.net.

Matthew S. Dryer. 2013. Order of Subject, Object and
Verb. In Matthew S. Dryer and Martin Haspelmath,
editors, The World Atlas of Language Structures On-
line, Max Planck Institute for Evolutionary Anthro-
pology, Leipzig. http://wals.info/chapter/81.

Nicola Grandi and Fabio Montermini. 2005. Prefix-
suffix neutrality in evaluative morphology. In Geert
Booij, Emiliano Guevara, Angela Ralli, Salvatore
Sgroi, and Sergio Scalise, editors, On-line Pro-
ceedings of the Fourth Mediterranean Morphol-
ogy Meeting (MMM4), Catania, 21-23 Septem-
ber 2003. Università degli Studi di Bologna.
https://geertbooij.files.wordpress.com/2014/02/
mmm4-proceedings.pdf.

N. Gruzitis and D. Dannélls. 2017. A multilingual
FrameNet-based grammar and lexicon for controlled
natural language. Lang Resources & Evaluation
51(1):37–66. https://doi.org/10.1007/s10579-015-
9321-8.

Normunds Gruzitis, Peteris Paikens, and Guntis
Barzdins. 2012. FrameNet resource grammar li-
brary for GF. In Tobias Kuhn and Norbert E. Fuchs,
editors, Controlled Natural Language, Springer,
Berlin, Heidelberg, pages 121–137.

Ruth Kempson, Wilfried Meyer-Viol, and Dov Gabbay.
2001. Dynamic Syntax: The Flow of Language Un-
derstanding. Blackwell, Oxford.

Marian Klamer. 2005. Explaining structural and se-
mantic asymmetries in morphological typology. In
Geert Booij, Emiliano Guevara, Angela Ralli, Sal-
vatore Sgroi, and Sergio Scalise, editors, On-line
Proceedings of the Fourth Mediterranean Morphol-
ogy Meeting (MMM4), Catania, 21-23 Septem-
ber 2003. Università degli Studi di Bologna.
https://geertbooij.files.wordpress.com/2014/02/
mmm4-proceedings.pdf.

https://doi.org/10.1016/j.jal.2013.08.002
https://doi.org/10.1016/j.jal.2013.08.002
https://doi.org/10.1016/j.jal.2013.08.002
https://www.wiley.com/en-ee/Syntax:+A+Generative+Introduction,+3rd+Edition-p-9780470655313
https://www.wiley.com/en-ee/Syntax:+A+Generative+Introduction,+3rd+Edition-p-9780470655313
https://www.wiley.com/en-ee/Syntax:+A+Generative+Introduction,+3rd+Edition-p-9780470655313
https://doi.org/10.1017/S0140525X15001235
https://doi.org/10.1017/S0140525X15001235
https://doi.org/10.1017/S0140525X15001235
https://doi.org/10.1017/S0140525X15001235
https://doi.org/10.1017/S0140525X15001235
https://doi.org/10.1007/s10849-014-9208-x
https://doi.org/10.1007/s10849-014-9208-x
http://www.aclweb.org/anthology/W14-1405
http://www.aclweb.org/anthology/W14-1405
http://www.aclweb.org/anthology/W14-1405
https://doi.org/10.3115/v1/W15-2304
https://doi.org/10.3115/v1/W15-2304
https://doi.org/10.3115/v1/W15-2304
http://www.cs.rhul.ac.uk/~zhaohui/LACL16PA.pdf
http://www.cs.rhul.ac.uk/~zhaohui/LACL16PA.pdf
http://www.cs.rhul.ac.uk/~zhaohui/LACL16PA.pdf
http://www.amazon.com/Aspects-Theory-Syntax-Noam-Chomsky/dp/0262530074
http://www.amazon.com/Aspects-Theory-Syntax-Noam-Chomsky/dp/0262530074
https://doi.org/10.1017/S0140525X1500031X
https://doi.org/10.1017/S0140525X1500031X
https://doi.org/10.1017/S0140525X1500031X
https://doi.org/10.1017/S0140525X1500031X
https://doi.org/10.1093/logcom/exi004
https://doi.org/10.1093/logcom/exi004
https://doi.org/10.1093/logcom/exi004
https://doi.org/10.1017/S0140525X01003922
https://doi.org/10.1017/S0140525X01003922
https://doi.org/10.1017/S0140525X01003922
https://doi.org/10.1017/S0140525X01003922
http://www.delph-in.net
http://www.delph-in.net
http://wals.info/chapter/81
http://wals.info/chapter/81
http://wals.info/chapter/81
https://geertbooij.files.wordpress.com/2014/02/\mmm4-proceedings.pdf
https://geertbooij.files.wordpress.com/2014/02/\mmm4-proceedings.pdf
https://geertbooij.files.wordpress.com/2014/02/\mmm4-proceedings.pdf
https://geertbooij.files.wordpress.com/2014/02/\mmm4-proceedings.pdf
https://doi.org/10.1007/s10579-015-9321-8
https://doi.org/10.1007/s10579-015-9321-8
https://doi.org/10.1007/s10579-015-9321-8
https://doi.org/10.1007/s10579-015-9321-8
https://doi.org/10.1007/s10579-015-9321-8
https://geertbooij.files.wordpress.com/2014/02/\mmm4-proceedings.pdf
https://geertbooij.files.wordpress.com/2014/02/\mmm4-proceedings.pdf
https://geertbooij.files.wordpress.com/2014/02/\mmm4-proceedings.pdf
https://geertbooij.files.wordpress.com/2014/02/\mmm4-proceedings.pdf

Joachim Lambek. 1958. The mathematics of sentence
structure. The American Mathematical Monthly
65(3):154–170.

Stephen C. Levinson. 2016. “Process and per-
ish” or multiple buffers with push-down
stacks? Behavioral and Brain Sciences 39:e81.
https://doi.org/10.1017/S0140525X15000862.

Zhaohui Luo. 2010. Type-theoretical semantics with
coercive subtyping. In Semantics and Linguistic
Theory. Vancouver, volume 20, pages 38–56.

Zhaohui Luo. 2011. Contextual analysis of word
meanings in type-theoretical semantics. In Sylvain
Pogodalla and Jean-Philippe Prost, editors, Logi-
cal Aspects of Computational Linguistics. Springer
Berlin Heidelberg, Berlin, Heidelberg, pages 159–
174.

Zhaohui Luo. 2014. Formal semantics in modern type
theories: is it model-theoretic, proof-theoretic, or
both? In Nicholas Asher and Sergei Soloviev, ed-
itors, Logical Aspects of Computational Linguistics
2014 (LACL 2014), Springer, Berlin, Heidelberg,
number 8535 in LNCS, pages 177–188.

Erkki Luuk. 2010. Nouns, verbs and flexi-
bles: implications for typologies of word
classes. Language Sciences 32(3):349–365.
https://doi.org/10.1016/j.langsci.2009.02.001.

Richard Montague. 2002. The proper treatment of
quantification in ordinary English. In Paul Portner
and Barbara H. Partee, editors, Formal Semantics:
The Essential Readings, Blackwell, Oxford, pages
17–34.

Glyn Morrill. 2010. Categorial grammar: Logical syn-
tax, semantics, and processing. Oxford University
Press, Oxford.

Rachel L. Moseley and Friedemann Pulvermüller.
2014. Nouns, verbs, objects, actions, and abstrac-
tions: Local fMRI activity indexes semantics, not
lexical categories. Brain and Language 132:28 – 42.
https://doi.org/10.1016/j.bandl.2014.03.001.

Nuttanart Muansuwan. 2002. Verb Complexes
in Thai. Ph.D. thesis, University at Buf-
falo, The State University of New York.
https://arts-sciences.buffalo.edu/content/dam/arts-
sciences/linguistics/AlumniDissertations/Muansuwan
dissertation.pdf.

Carl Pollard and Ivan A. Sag. 1994. Head-Driven
Phrase Structure Grammar. University of Chicago
Press, Chicago.

Stephen G. Pulman. 1985. A parser that doesn’t.
In Proceedings of the 2nd European Meet-
ing of the Association for Computational
Linguistics, Geneva: ACL. pages 128–135.
https://www.aclweb.org/anthology/E85-1019.

Aarne Ranta. 1994. Type-theoretical grammar.
Clarendon Press, Oxford; New York.

Aarne Ranta. 2004. Grammatical Framework: a
type-theoretical grammar formalism. The Jour-
nal of Functional Programming 14(2):145–189.
https://doi.org/10.1017/S0956796803004738.

Mark Steedman. 2000. The Syntactic Process. MIT
Press, Cambridge, MA, USA.

https://doi.org/10.1017/S0140525X15000862
https://doi.org/10.1017/S0140525X15000862
https://doi.org/10.1017/S0140525X15000862
https://doi.org/10.1017/S0140525X15000862
https://doi.org/10.1016/j.langsci.2009.02.001
https://doi.org/10.1016/j.langsci.2009.02.001
https://doi.org/10.1016/j.langsci.2009.02.001
https://doi.org/10.1016/j.langsci.2009.02.001
https://doi.org/10.1016/j.bandl.2014.03.001
https://doi.org/10.1016/j.bandl.2014.03.001
https://doi.org/10.1016/j.bandl.2014.03.001
https://doi.org/10.1016/j.bandl.2014.03.001
https://arts-sciences.buffalo.edu/content/dam/arts-sciences/linguistics/AlumniDissertations/Muansuwan\ dissertation.pdf
https://arts-sciences.buffalo.edu/content/dam/arts-sciences/linguistics/AlumniDissertations/Muansuwan\ dissertation.pdf
https://arts-sciences.buffalo.edu/content/dam/arts-sciences/linguistics/AlumniDissertations/Muansuwan\ dissertation.pdf
https://www.aclweb.org/anthology/E85-1019
https://www.aclweb.org/anthology/E85-1019
https://doi.org/10.1017/S0956796803004738
https://doi.org/10.1017/S0956796803004738
https://doi.org/10.1017/S0956796803004738

