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1 Introduction
The Taylor expansion of ordinary λ-terms has been introduced in [ER08]
as a syntactic counterpart of the quantitative semantics of linear logic in
a λ-calculus setting. The aim of this work is to characterize three funda-
mental normalization properties in λ-calculus trough the Taylor expansion.
The general proof strategy consists in stating the dependence of ordinary
reduction strategies on their resource counterparts and in finding a conve-
nient resource term in the support of the Taylor expansion that behaves well
under the considered kind of reduction.

The ideas and methods used in this work derive mostly from intuitions
and results presented firstly in [dC07] and [ER08]. A natural continua-
tion of the present work could be considering the quantitative question of
the execution time in λ -calculus in the sense of [dC07] from a Taylor ex-
pansion perspective. The characterization of head-normalization that we
shall present has been folklore for some time. An important ispiration is
[CG14], where solvability via Taylor expansion is considered from a call-by
value perspective. For what concerns β-normalization, the result derives
directly from Lemma 2.7, that has been proven firstly in [Vau17], and it is
inspired also by [dCPdF11]. The result about strong normalization is new.
The idea of considering non-erasing reduction derives from [dCdF16]. Our
most important contribution is our approach: we give a general method to
state these characterization via Taylor expansion that can be also extended
to prove typability results for (intersection) type systems, without passing
trough Girard’s candidates of reducibility.

2 Results
We introduce a resource sensitive calculus following [ER08]. In this calculus
the number of copies of the argument that a term uses under reduction is
made explicit via multisets.
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We define the set of resource terms ∆ and the set of resource monomials
∆! by mutual induction as follows:

∆ 3 s ::= x | λx.s | 〈s〉t̄ ∆! 3 t̄ ::= [] | [s] · t̄

If A is a set, A! denotes the set of multisets over A. Monomials are considered
up to permutations and resource terms up to renaming of bound variables.
Monomials are then multisets of resource terms and s̄ · t̄ denotes the multiset
union. We write [s1, . . . , sn] for [s1] · . . . · [sn] · []. A term of the form 〈s〉t̄
is called a linear application. We call resource expressions the elements of
∆(!) = ∆∪∆!. For any resource expression e, we write nx(e) for the number
of occurrences of variable x in e.

Definition 2.1. Let e ∈ ∆(!), ū = [u1, ..., un] ∈ ∆! and x ∈ V. We define
the n-linear substitution of ū for x in e as the following finite set of resource
terms ∂xe · ū ∈ Pfin(∆):

∂xe · ū =
{
{e[uσ(1)/x1, ..., uσ(n)/xn] | σ ∈ Sn} if nx(e) = n

∅ otherwise

Where x1, . . . , xnx(e) enumerate the occurrences of x in e and Sn denotes
the symmetry group.

The intuition is that the substitution is performed only when the number
of resources in the bag is exactly the same as the number of copies of the
argument called by e. For this reason the substitution is called linear.

We shall denote with →∂⊆ ∆ ×Pfin(∆) the reduction relation defined
contextually from the following base case: 〈λx.s〉t̄→∂ ∂xs · t̄. We extend→∂

to finite sets of terms by: {s} ∪ τ →∂ σ ∪ τ as soon as s →∂ σ. Then each
σ ∈ Pfin(∆) reduces to exacly one (possibly empty) set of normal terms,
which we write NF (σ).

Example 2.2. The resource version of Ω reduces to ∅:

〈λx.〈x〉[x]〉[λx.〈x〉[x]]→∂ ∅

This happens because the number of times that x is called differs from the
number of arguments available.

Let M be a λ-term. We inductively define T (M) ⊆ ∆, the Taylor ex-
pansion of M , as follows:

• if M = x then T (M) = {x};

• if M = λx.M ′ then T (M) = {λx.s | s ∈ T (M ′)};

• if M = PQ then T (M) = {〈s〉t̄ | s ∈ T (P ) and t̄ ∈ T (Q)!}.
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2.1 Head-normalization

The first characterization that we shall give concerns head-normalization.
This result is folklore but we give a novel presentation of it following our
general approach.

We denote with H(M) the one-step head-reduct of M . We can extend
the notion of head-reduction to resource calculus in the natural way. We
shall denote as H∂(s) the one-step head-reduct of s that is a set of resource
terms.

We set H∂(T (M)) =
⋃
s∈T (M)H∂(s). Then we state the following com-

mutation lemma:

Lemma 2.3. Let M be a λ-term. Then H∂(T (M)) = T (H(M)).

Lemma 2.4. Let M be a λ-term. If there exists a resource term s in head-
normal form such that s ∈ T (M), then M is a head-normal form.

Proposition 2.5. Let M be a λ-term. If there exists s ∈ T (M) such that
NF (s) 6= ∅ then M is head-normalizable.

Proof. We recall that HNF (s) denotes the principal head-normal form of s.
Since s is normalizable it is moreover head-normalizable. By definition there
exist σ1, ..., σn such that s = σ0 →∂h ... →∂h σn = HNF (s). By Lemma
2.3, σi ⊆ T (H i(M)), with T (H0(M)) = T (M), for i ∈ {0, ..., n}. Then by
Lemma 2.4, Hn(M) is a head-normal form of M (precisely the principal
head-normal form of M).

Theorem 2.6. LetM be a λ-term. The following statements are equivalent:
(i) there exists a resource term s ∈ T (M) such that NF (s) 6= ∅;
(ii) M is head-normalizable.

2.2 β-normalization

In this section we shall present a characterization of β-normalization via
Taylor expansion. The result is essentially an application fo Lemma 2.7,
that has been proved in [Vau17].

We introduce the following notion of left-parallel reduction:

L(λx1 . . . λxl.xQ1 · · ·Qk) = λx1 . . . λxl.xL(Q1) · · ·L(Qk)
L(λx1 . . . λxl.(λx.P )QQ1 · · ·Qk) = λx1 . . . λxl.(P [Q/x])Q1 · · ·Qk

We can extend the notion of left-parallel reduction to resource calculus
in the natural way. If s ∈ ∆ we shall write L∂(s) the one-step left-parallel
reduct of s that is a set of terms.

We set L∂(T (M)) =
⋃
s∈T (M) L∂(s). We state now a result that extends

Lemma 2.3:
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Lemma 2.7. Let M be a λ-term. Then L∂(T (M)) = T (L(M)).

We denote with ∆+ the set of resource terms where the empty multiset
does not appear as argument of a linear application.

Lemma 2.8. LetM be a λ-term. If there exists s ∈ T (M) such that s ∈ ∆+

and s is a resource normal form then M is a β-normal form.

Proposition 2.9. Let M be a λ-term. If there exists s ∈ T (M) such that
NF (s) ∩∆+ 6= ∅ then M is β-normalizable.

Proof. Let s ∈ T (M) such that there exists u ∈ NF (s) with u ∈ ∆+.
Then there exists n ∈ N such that Ln∂ = NF (s). By Lemma 2.8 Ln∂(s) ⊆
T (Ln(M)). Then Ln(M) is the β-normal form of M .

Theorem 2.10. Let M be a λ-term. The following statements are equiva-
lent:
(i) there exists s ∈ T (M) such that there exists NF (s) ∩∆+ 6= ∅;
(ii) M is β-normalizable.

2.3 Strong normalization

Inspired by [dCdF16] we want to characterize strong normalization of ordi-
nary λ-terms via non-erasing reduction. The non erasing reduction is defined
contextually from the following base case:

(λx.M)N →¬e M [N/x] if x ∈ FV (M)

However this notion of reduction it is not enough as shown by the fol-
lowing example.

Example 2.11. let M = ((λy.λx.xx)z)λx.xx. Then M is by definition a
non-erasing normal form, but it is not even β-normalizable1.

Our solution is to consider a notion of non-erasing reduction that allows
action at distance and prove that normalization for this kind of reduction is
equivalent to standard strong normalization trough Taylor expansion. The
reduction that we need is defined contextually from the following base case:

(λx1...λxn.P )Q1....Qn →ε (λx1...λxn−1.P [Qn/xn])Q1....Qn−1

We denote→¬eε the non-erasing ε-reduction. The only difference with→ε

is that in the base case we operate the substitution only when the variable
is in the body of the function. We can extend the notion of ε−reduction to
resource calculus in the natural way. We shall denote it with →∂ε.

1Interestingly, for what concerns MELL proof-nets the standard notion of non-erasing
reduction is enough [dC07].
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Lemma 2.12. Let M,N be any two λ-terms. If M →¬eε N then for all
t0 ∈ T (N) ∩ ∆+ there exist t1, ..., tn ∈ T (N) and a s ∈ T (M) such that
s→¬e∂ε {t1, .., tn}.

Lemma 2.13. M is normalizable through non-erasing ε-reduction iff there
exists s ∈ T (M) ∩∆+ such that NF (s)¬e∂ε 6= ∅.

Proof. (⇒) SinceM is non-erasing ε-normalizable then there exists a λ-term
N that is its ε-normal form. If we consider a reduction chain starting from
M and ending in N , by Lemma 2.12 for t0 ∈ T (N) we can find an element
s ∈ T (M) such that s�¬e∂ε σ with t0 ∈ σ. Then there exists s ∈ T (M) such
that NF (s)¬e∂ε 6= ∅. If we choose t positive, then s is a positive term, because
we do not loose any information through reduction.

Lemma 2.14. Let s ∈ ∆ and σ, τ ∈ Pfin(∆). If s →∂ε σ and σ →¬e∂ε τ
then there exists σ′ ∈ Pfin(∆) such that s→¬e∂ε σ′ and σ′ →

+
∂ε τ .

Theorem 2.15. Let M ∈ Λ. The following statements are equivalent:
(i) There exists s ∈ T (M) ∩∆+ such that NF¬eε (s) 6= ∅;
(ii) M is strongly normalizable.

Corollary 2.16. M is strongly normalizable iffM is non-erasing ε-normalizable.
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