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A technique to optimize reactive power using gbest Guided Artificial
Bee Colony Algorithm

Abstract — Reactive power play an important role in voltage stability and economic
activities of power system. To maintain power quality and security, voltage at each
bus should be within its acceptable limit. Reactive power is one of the important
aspects of active power loss minimization. Optimizing reactive power is a process of
minimizing total active power loss by handling all the parameters of generation and
transmission network without violating any specified constraints. The complex non
linear optimization problem can be solved by classical optimization technique and
experimental based technique. For handling wide complex network the experiment
based techniques gives good results over numerical technique in most of the cases.
This paper presents an application of gbest ABC algorithm to solve reactive power
optimization problem. Gbest guided ABC algorithm uses swarm intelligence
techniques. To check the effectiveness and robustness of gbest- guided ABC
algorithm it is applied on IEEE 30, IEEE57 and IEEE 118 standard test bus system.
To validate results of gbest — guided ABC algorithm for the application of reactive
power optimization problem it is compared with existing available literature data. The
statistical analysis of gbest guided ABC algorithm is also carried out for IEEE 30,
IEEE57 and IEEE 118 standard test bus system.

Key words — Reactive Power Optimization (ROP), gbest —guided ABC algorithm
(GABC).



1. Introduction

Today’s power network is very complex and dynamic in nature. To analyze this highly
complex power system, power flow study is important. The power flow study is essential for
power system economics, stability, security, and reliability [1] point of view. In restructured
power system market economic dispatch has great importance. The Carpentier introduced the
constrained classical economic dispatch problem [2]. This problem is then called as optimal
power flow (OPF) [3]. This is multi objective optimization problem such as minimizing fuel
cost, minimizing active power loss, enhancing voltage stability, maintaining reliability etc.
Since reactive power is an important factor in achieving voltage stability enhancement
problem, active power loss minimization hence the study of optimal reactive power flow is
essential. The reactive power optimization is nothing but minimizing real power loss but not
at cost of operating and security constraints.

Normally, any optimization problem can be solved by using numerical technique or
heuristic techniques. Numerical techniques such as linear, nonlinear, quadratic and mixed
integer programming are used to solve complex optimization problem. Recently, heuristic
methods such as Particle Swarm Optimization algorithm, Genetic algorithm, Artificial Bee
Colony algorithm etc. are mostly used to solve any optimization problem. The reactive power
optimization problem is also solved by numerical technique such as Newton method [4],
linear programming [5], mixed integer programming [6], interior point method [7], quadratic
interior point method [8], quadratic programming [9], and improved interior point method
[10]. These methods are dependent on some initial guesses. Depending on this the solution
may convergence or divergence. So, probability of getting solution is very less. Hence, the

experiment based technique i.e. heuristic techniques are now becoming popular for the



solving optimization problem. Optimization of reactive power problem is also solved by
heuristic technique such as Genetic algorithm [11], Adaptive Genetic algorithm [12], Particle
Swarm optimization [13], GA/SA/TS combined algorithms [14], Cauchy-based evolution
strategy [15], Improved Hybrid Evolutionary programming [16] and Artificial Bee Colony
algorithm [17] etc. In this paper an application of gbest - Guided Artificial Bee Colony
(guided ABC) algorithm used to solve reactive power optimization problem.

In gbest - Guided ABC algorithm is swarm intelligence based algorithm. The agent of this
algorithm is natural honey bee. Likewise, GABC, marriage in honeybees [18], bee
system [19], beehive [20], virtual bee algorithm [21], bee adhoc [22], the bee’s algorithm
[23], bee colony optimization [24], and ABC [25] are some well known swarm intelligence
techniques. Between these swarm intelligence based algorithms, ABC algorithm is most
commonly used. The gbest - Guided ABC algorithm is the modification of ABC algorithm.
Since ABC algorithm is having problem in finding either local best or global best solutions,
so this algorithm is modified to GABC algorithm. Same as other nature inspired algorithm,
food foraging task in GABC is collective effort by each agent. Here GABC is used to solve

RPO problem.

2. Mathematical formulation for reactive power optimization problem
The optimization is a process of achieving the formulated objective function without
violating boundary conditions for defined problem. In general the mathematical model of any

optimization problem is formulated as below:

Maximize / Minimize  f(x,u)
With constraint h(x,u) = 0 1)

lower!Mit < g(x,u) > upper!imit


http://www.sciencedirect.com/science/article/pii/S0142061515004469#b0280

here, f is formulated objective function of the defined problem, h is the equation or equality
constraint of the defined problem, g is the inequality constraint of the defined problem, x is
the state variable of the defined problem, u is the control variable of the defined problem,
lower'™it js the lower limit of inequality constraint and upper!™t is the upper limit of

inequality constraint.

2.1 Optimization of reactive power problem

Optimization of reactive power problem is defined as minimize the active power loss without
violating security constraint of grid. The mathematical formulation of the objective function
for optimization of reactive power problem is given below:

Ny

Minimize F(x,u) = Minimize P, = Z Transmission Lossy (2)
k=1

where, P;¢s IS the objective function for optimization of reactive power problem,Ny, is total
number of branches or line in network and Transmission Lossy is active power loss in kth

branch or line.

The active power loss:

Np
PLoss = Z G(k) (Vm(FB(k))2 + Vm(TB(k))2
k=1 (3)

- 2Vm(FB (k))Vm(TB (k))cos (Vaa(FB (k)) - Vaa(TB (k))))

where,G(k) is conductance of k™ line, Vm is the voltage magnitude of respective bus, Vaa is
the voltage angle of respective bus voltage, Fg(k) is the notation for from bus and Tg (k) is

the notation for to bus. Fg(k) and Ty (k) specifies the connection between buses.

2.2 Constraint for optimization of reactive power problem



Here two types of constraints one is equality and second is inequality constraints. The

equality constraint for reactive power optimization is stated as below:

Npus
Py = Paic— IVidl ) [VillYacl cos(Byic+ 8 — 819 = 0 @
i=1
Npus
Qi — Qaic = Vil ) IVillYael sin(Bysc + 8 = 89 = 0 ©)
i=1
where, k=1,2,3,....... , Npus

where, Pgis the active power fed at k™ bus by thermal generator, Py is active power load at
k™ bus, Qgiis the reactive power fed at k™ bus by thermal generator, Qg is the reactive

power load at k™ bus, Vi is the k™ bus voltage, Y is the admittance of line connected
between it to k™ bus, 85, is admittance angle of line connected between it" to k™ bus and

8iis the k™ bus voltage angle and Ny, depicts the total number of buses in network.

The inequality constraint for reactive power optimization is stated as below:

VAPPEr NG > Vg > Viowerdimit e — 1 N, ()
Vlllllfper_limit > VLk > VLIE)(wer_limit’ K=1,...... ’ Nl (7)
PPt > oy > oMt =1, L Ny (8)
Qgiper_limit > ng > Qigokwer_limit’k =1, ' Ng (9)
lelﬁger_limit > Qshk > le%VlZer_limit'k =1, ’ Nq (10)
SyPPertimit 5 g k=1, e Ny (11)

Tlilpper_limit > Ty = Tlowerdimit y — 9 N, (12)



where, V;lfper-hm‘trepresent maximum limit or upper limit of voltage of k™ generator bus,

is the minimum limit or lower limit of voltage of k'™ generator bus,

lower_limit
Vex IS

limit.
Vupper_
Lk

the maximum limit or upper limit of voltage of k™ load/PQ bus, V;2"*™™itis the minimum

limit of voltage of k' load/PQ bus, Pglﬁwer-“mit is the minimum limit or lower limit of active

power of k™!'thermal generator,Pgulfper-llmlt is the maximum limit or upper limit of active

power of k™ thermal generator,Q‘glllzper-llmlt is the maximum limit or upper limit of reactive

power of k™ thermal generator, ng‘{f"er-“mit is the minimum limit or lower limit of reactive

power of k™ thermal generator, Q‘S‘El‘zer-hm‘t is the maximum limit or upper limit of reactive

power fed by k'™ reactive power compensator,Q'9%e™!"™its the minimum limit or lower limit

of reactive power fed by k™ reactive power compensator, S;PPe*""™" is the maximum limit

or upper limit MVA loading of k™ transmission line, T,*"*™"™%js the minimum limit or

lower limit of tap ratio of k™transformer tap, T,"?P*~"™"is the maximum limit or upper limit
of tap ratio of k™ transformer tap, N is the total number of generators in the power system

network, N is the total number of load or PQ buses,N is the total number of reactive power

compensators in the power system network and N; is the total number of tap changing

transformers in the power system network.

2.3 Independent and dependent variables for optimization of reactive power problem
Independent (control) variables for optimization of reactive power problem are stated as

below in independent variable vector:

uTz[pgi, ...... Py Vs o wees Viigs Qsints o oo Qg T e o ,TNt] (13)



where, P, represents active power fed by thermal generator,V, stand for terminal voltage of

generator bus or PV bus,Qg;, represent reactive power fed by reactive power compensator and

T stand for tap ratio of transformer.

Dependent (state) variables for optimization of reactive power problem are stated as below in

independent variable vector:

X" = [Pyi, Qg1 - s Quugs Vit o Vi B e e Sy (14)
where, i = sclack bus

k=123,.... , Npbut k # sclack bus

where, Pg;represents active power fed by slack or reference bus generator, Qg represents
reactive power fed by thermal generator, V;, stand for terminal voltage of load or PQ bus, Npq

represents total number of PQ or load buses in power system network and & stand for voltage

angle.

2.4 Final Mathematical model of reactive power optimization problem

Minimize
Np
Ploss = Transmission Lossy
k=1

Subject to constraint

Npus

Pox — Paic — [ Vil Z [VilYik| cos(Bik + & — 6k) = 0

1=1

Npus

Qgk — Qax — Vi Z [VillYik| sin(0y + &; — &) =0

i=1

upper_limit lower_limit 1, _
Vgeneratork = ng = ng k=1,...... , Ng



yppertimit 5 > yjowerdimit o — 4 .. N
PuPPerImt > oy > powertimite =1, .. N,
QuePe ™ 2 Qg = QY™ k =1, . N
Qgﬁﬁer'limit > Qshk > letilv]zer_limit'k =1, ’ Nq
SyPPertimit 5 o k=1, . Ny
ToPPertimit 5 > plowerimit ) — .. ,N¢

2.5 Modified fitness function

The modified fitness function for optimization of reactive power problem is stated below:

Minimize Modified objective function (MOF) = P, s + constraints

MOF = PLoss + Al(pg_reference éli‘rtlaference) + }\2 Z(le th

(15)
NPQ
+ A3 Z (Vi — 1‘m) + A, Z(SLI — glim)?
i=1
where, é‘rrr;ference represent the lower or upper limits of the active power fed by reference

bus generator, Q“mrepresent the lower or upper limits of the reactive power fed by i"thermal

generator, V}i™represent the lower or upper limits for voltages of i™® load bus, SI™™ represent
MVA loading limit of i*" transmission line, and A, A,, A5 and A, are penalty weights applied
to dependent variables such as reference bus power, reactive power of generator, load bus
voltage and MVA loading of transmission line respectively.

The constraint has great importance in optimization. There are different ways to handle

constraints. Here penalty weight method is used to handle the constraints. Depending upon



penalties, optimized solution may diverge or converge. So penalties should be selected

precisely.

3. Overview of g-best guided ABC algorithm

Recently the heuristic methods are mostly used to solve complex scientific and engineering
problems. There are different types of heuristic technique but swarm intelligence based
techniques are now widely used to solve complex optimization problem.

ABC algorithm has great exploration and exploitation ability. That’s why ABC algorithm
is now widely used in solving complex power system optimization problem like unit
commitment problem [26], economic dispatch problem [27], optimal power flow [28],
allocating capacitor banks [29], PMU’s [30] and filter design [31], and optimization of
reactive power problem [32] etc.

ABC algorithm mimics the behavior of food foraging by natural honey bees. The ABC
algorithm is proposed by Karaboga in 2005. A home of bees is called as hives. In bee colony,
separate special group of bees are formed. These groups performed different tasks and
collective efforts of these groups’ results in finding good quality and quantity of food. There
are mainly two types of bees in a home of natural honey bees i.e. employed and unemployed
bees. ABC algorithm consist of four main phases such as initialization phase, employed bee
phase, unemployed or onlooker bee phase and scout bee phase. Decision criteria for deciding
quality of food source are the quantity, position and easiness in extracting food source. The

main four phases of artificial bee colony algorithm are as follows:

3.1 Initialization phase
The initial food source set is generated randomly in the initialization phase. If we relate bee’s
behaviour and its application for reactive power optimization, then food source is nothing but

one solution. This initial food source or solution vector is represented as bellow:



X] = {le, X]'Z, vy X]'ND} (16)

where, j = 1,2, .....Ng

Here, Ny, represent total number of decision or control variables, X; is the ji" food or solution,
and Ng represents the total number of foods or solutions.X; is the food or solution consisting

of total Np number of control or decision variables. Each decision or control variable is

generated randomly in between their upper and lower limit and it generated as below:

X;; = x1°"e" + rand(0,1) * (x;'PPe" — xjower) 17)

J1

where,j = 1,2, .....Ngandi = 1,2, .....Np

where,x;"PP*"is the upper limit of it control or decision variable,x;°V*"isthe lower limit ofi®
control or decision variable, x;;is the i control or decision variable of i*" solution set.The
function value or quality of food source is then calculated by putting set of control variables
into the objective function i.e. f(X;). Apply greedy selection and memorize the best value.

Then after find the fitness values of each solution and it is calculated as below:

(18)

1
iff, >0
fit,={ A+6) )

1+ abs(f;) iff; < 0

where, fit; represent fitness value of jt objective function value, f; for function value of

jthsolution set. In this phase number of employed bees and onlooker bees are also decided.
The maximum trail counter number is initialized in this phase and the trail counter of each

solution is also initialized to zero.

3.2 Role of employed bees
Bees which exploit initial food source in a vicinity of the food source are called as employed

bees. Generally number of employed bees is half to total population of hive. The initial food



source is exploited by making changes in some control variables. The control variables are

exploited as below:

Vii = Xji + rand(—l,l)(xji - Xli) (19)

where,j#land1=1,2,3,..... , Ng

where, x;; is the it" control variable of j™ initial food source or solution set, vj; is the change

in x;; control variable of j™ initial food source or solution set and 1 should be selected
randomly. Then after function value and fitness value is calculated. Increase the trail counter

if the fitness value is not improved else vice versa. Memorize best solution.

3.3 Role of Unemployed or Onlooker bees

In a hive, employed bees share information about exploited solution of the food source after
coming back to hive and unemployed or onlooker bee phase start. The availability of food
source decides the number of onlooker bees to be sent to exploit available food source. The

availability of food source is calculated as below:

fit;

P =
J Ns ¢
st flt]

(20)

Where, P, is the availability of jthfood source. The onlooker bees again exploit the food
source by making some changes in the parameter of employed bee’s food source or solution
set. The food source is exploited by eg. (19). Once again function value and fitness value is
calculated. Increase the trail counter if the fitness value is not improved else vice versa.

Memorize best solution.

3.4 Role of Scout bees
Initial food source is exploited first by employed bees and then unemployed or onlooker bees.

Someway the exploited food source or solution may not improve continuously. This reflects



amount of food source in particular trajectory is not of good quality i.e. solution is diverged.
So to avoid this condition, the employed are converted to scout bees and again generate the
solution randomly in the search trajectory. Trail counter is decision criteria to start scout bee
mode. If the trail counter of food source reaches its maximum limit, respective solution is
then rejected and scout bees generate new solution randomly to replace rejected one. The
scout bees generate solution by equation (17).

3.5 Proposed gbest GABC algorithm

The ABC algorithm has problem in either exploration or exploitation of solution. To improve
exploration or exploitation capability of ABC algorithm, likewise particle swarm
optimization more wattage is given to current best solutions parameter. The control parameter

in gbest guided ABC algorithm is modified by equation stated below:

vji = xji + rand(—1,1) (xji — X;) + rand(0, 2) = (local_best; — x;) (21)
Where,j=1,2,3,...... , Ng

i=1,23..Np, k#j,k=1,23,.....,Ng

Where, local_best; is the i®best control variable of j* solution set. The gbest guided ABC
algorithm use equation (21) in exploiting food source or solution in employed bee mode and

onlooker bee mode.

4. Application of g-best guided ABC algorithm for optimization of reactive power
problem:

a) Initialization phase
Initialize population of hive. Select half the population as employed bees and half

onlooker bees. Initialize maximum trail counter and maximum number of cycles.

Initialize upper and lower limits for control variable vectors i.e. P;lfper-hmlt >P

ng

lower _limit upper_limit lower_limit upper_limit lower_limit
ng J Vgeneratork = Vg 2 ng o Ty = T 2 Ty and



QUPPET-IMIE > Qepi = QUoWer-Mit Randomly generate initial food source or solutions by

generating control variables in between upper and lower limit by equation (17) i.e.u” =
[Pgl, ...... , PNg,Vgl, ...... ,VNg, Qshy vee oo ,QNq,Tl, ...... ,TNt] but  except generator
connected at slack bus. Use control variables and run newton Raphson power flow. Check
whether constraints satisfies there upper and lower limit or not i.e.V\ PP > v\ >
Vllj)(wer_limit’ Qléllzper_limit > Qi = ngokwer_limit and S:}[{)per_limit > S, . Apply penalty
weight method to differentiate violated and unviolated solutions. Memorize the least

power loss solution from set of solutions.
Cycle = 1;
While (Cycle >= maximum number of cycle)
For employed bee = 1: number of employed bees

b) Employed bee phase
Exploit initial food source by equation (21) by randomly selecting any control variable
from particular initial solution. Use control variables and run newton Raphson power

flow. Check whether constraints satisfies there upper and lower limit or not

. upper_limit lower limit ~upper_limit lower_limit upper_limit
e Vi, > Vi = Vip » Qg 2 Qgk = Qgi and Sy =

Sikx- Apply penalty weight method to differentiate violated and unviolated solutions.

Memorize the least power loss solution from set of solutions.
End
For onlooker bee = 1: number of onlooker bees

¢) Unemployed or onlooker bee phase



Exploit initial food source or solution again by equation (21) by randomly selecting any
control variable from particular initial solution. Use control variables and run newton

Raphson power flow. Check whether constraints satisfies there upper and lower limit or

i upper_limit 1 limit ~upper_limit lower limit
not 1.e. VLk = Vi = VL(l)(wer i , ng = ng = Qg(i(wer mi and
S&fper‘hmlt > S, . Apply penalty weight method to differentiate violated and unviolated

solutions. Memorize the least power loss solution from set of solutions.

End

d) Scout bee phase
Check incremental trail counter. If trail counter reached the predefined maximum number
of trail counter then reject the particular initial solution and replace the solution set by

generating control variables of solution set randomly in between upper and lower limits.

Cycle = Cycle + 1;

e) Termination criteria

If cycle number is equal to the maximum number of cycles then stop the exploitation.

End

5. Result and discussion
This paper presents an application of gbest guided ABC algorithm to solve problem for
optimization of reactive power. This algorithm is applied on three test system i.e. on IEEE
30, 57, and 118 bus system to solve optimization of reactive power problem. The
comparative analysis of results obtained for respective test system reflects the advantage of

using GABC algorithm. The results are tested in MATLAB 20142 environment.



5.1 IEEE 30 bus test system

In IEEE 30 bus test system data is taken from MATPOWER [26]. Here six thermal
generators, nine reactive power compensators, four transformer taps. The overall active
power load is 283.4 MW and reactive power load 126.2 MVAr. Six generators are connected
to bus 1, 2, 5, 8, 11 and 13 respectively. The bus 1 is considered as reference bus. The
compensators are connected at bus 10, 12, 15, 17, 20, 21, 23, 24, and 29 respectively. The
transformer branches are (6-9), (6-10), (4-12), and (28-27) respectively. The test system has
41 transmission lines. The upper and lower limits of the variables are stated below in Table I.

The base MV A selected is 100 MVA.

The convergence characteristic for IEEE 30 bus test is shown in Fig. 1. This figure clearly
shows; the guided ABC algorithm converges at 28" iteration. The results obtained are given
in Table 2. The control variables for the obtained solution are also stated in Table 2. The
comparison with the available literature is given in Table 3. The result reported is best in
compare to all available literature. To check the robustness of guided ABC, 100 trial runs are
taken. The result of 100 trial runs is plotted and it is shown in Fig. 2. With reference to
average of 100 trials, the numbers of results obtained below the mean line are more as
compared to results obtained above of mean line. This proves GABC is good in tracking

global best solution. The standard deviation for this 100 trial run is given in Table 4.
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Figure 1: Convergence characteristics of IEEE 30 bus system

Table 1: Limits of the variables for IEEE 30 bus system

Variable  Upper limit Lower limit ~ Variable Upper limit  Lower limit

Pe; p) 050 200 T, 1 (o) 0.90 1.10
Pgy (po1t) 0.20 080 T,y (pow) 0.90 1.10
Pes (p.1t.) 0.15 050  Tyepr (pw)  0.90 1.10
Pos (p.1t.) 0.10 035  Qco (MVAR)  0.00 0.05
Peyy (pw) 010 030  Qcp (MVAR)  0.00 0.05
Pz (pw) 0.2 040 Qg5 (MVAR)  0.00 0.05
Ver (pow) 1.00 110 Qgy (MVAR)  0.00 0.05
Vs (powt) 1.00 110 Qo (MVAR)  0.00 0.05
Ves (pow.) 1.00 110 Qgq (MVAR)  0.00 0.05
Ves (p-w.) 1.00 110 Qs (MVAR)  0.00 0.05
Vo pw) 100 110 Qg (MVAR)  0.00 0.05
Veis pw) 100 110 Qo (MVAR)  0.00 0.05

Te_o (p.u.) 0.90 1.10




Table 2: Control variables for IEEE 30 bus system

Control Variables GABC Control Variables GABC
Pgz (MW) 80 Qc12 (MVAR) 5
Pgs (M) 50 Qc15 (MVAR) 4.858283
Pgg (MW) 35 Qc17 (MVAR) 5
Pgi1 (MW) 30 Qc20 (MVAR) 4.153956
Pgq3 (MW) 31.98754 Qc21 (MVAR) 5
V1 (p-u) 1.097944 Qc23 (MVAR) 2.604547
Vs (p-u.) 1.0900352 Qc24 (MVAR) 5
Ves (p.-u.) 1.071557 Qc20 (MVAR) 2.067431
Ves (p-u.) 1.076513 Te—g (p-u.) 1.03117
Vi1 (p-u) 1.1 To—_10 (p-u.) 0.918068
Veis (p-u.) 1.1 Ty_12 (p-u.) 0.980552
Qc10 (MVAR) 5 Tyg_27 (p-u.) 0.965991
Power loss (MW) 3.019246043

Table 3: Comparison table for IEEE 30 bus system

Algorithm Power loss (MW)
GABC 3.019246043
ABC [17] 3.09
SARGA [28] 4.57401
GS [28] 5.10120
CLPSO [29] 4.5615



PSO [29] 4.6282

EGA-DQLF [30] 3.2008

Reactive power optimization for IEEE 30 bus
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Figure 2: Results of reactive power optimization for hundred trial runs

Table 4: Statistical data for IEEE 30 bus system

Fuel cost ($/h)
Standard

. Minimum Average Maximum
Algorithm .
gorit Median Deviation

Value Value Value

GABC  3.019246043 3.046138854 3.090193904 3.041918205 0.0199488

5.2 IEEE 57 test bus system

In IEEE 57 test bus system data is taken from MATPOWER [26]. Here six thermal
generating units, seventeen transformer taps and three reactive power compensators. Six

generators are at connected to bus 2, 3, 6, 8, 9, and 12 respectively. The bus 1 is selected as



reference bus. The compensators are connected at bus 18, 25, and 53 respectively. The
transformer branches are Ty_1g5, To1-20, Tosa—25+ T24—25, Toa—26s T7-29, T34_32, T11-41
Ti5-45, T14-46: T10-51, T13-49, T11-43, Ta0-56: T39-57, and To_ss5 respectively. This T stands

for Transmission line. The base MVA selected is 100 MVA.

The convergence characteristic for the IEEE 57 test bus system is shown in Fig. 3. This figure
clearly shows, the GABC algorithm converges at 22" iteration. The results obtained are given
in Table 5. The control variables for the obtained solution are also stated in Table 5. To check
the robustness of GABC, 100 trial runs are taken. The result of 100 trial runs is plotted and it
is shown in Fig. 4. With reference to average of 100 trials, the numbers of results obtained
below the mean line are more as compared to results obtained above of mean line. This
proves GABC is good in tracking global best solution. The standard deviation for this 100

trial run is given in Table 6.
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Figure 3: Convergence characteristics of IEEE 57 bus system
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Table 5: Control variables for IEEE 57 bus system

Control Variables GABC  Control Variables GABC
Pg, (MW) 41.23706  T,4_os(p.u.) 1.1
Pgs(MW) 140 Tyase(p.u.)  1.01378
Peo(MW) 7856121 T, ,o(p.u.)  0.984111
P (MW) 316.445 Ts4_3,(p.u.)  0.970969
Pso(MW) 100 Ty1s(p.u.)  1.037281
Pgyy (MW) 410 Tys_ss(p.u.)  0.971975
Ver (p.u.) 1.071492 Ty, 4e(p.u.)  0.971236
Ve (pou) 1.062637  Tyo_s1(p-u.) 0.98247
Ves (pou) 1.046926  Tys_so(p.u.)  0.934971
Vs (p.1.) 1.028456 Ty, 43(p.u.)  0.936066
Vs (p-w.) 1.03151  T,o_se(p-u.)  1.008966
Vo (p-u.) 1.02084 Ts9-57(p.u.)  1.076901




Voiz (p-w.) 1034725 T, ..(p.u.) 1018203
T, 1s(p.u.)  1.051845  Qc;s(MVAR)  11.92766
T,1s(p.u.)  1.018632  Qc,s(MVAR)  14.81389
Ty so(p-w)  1.051936  Qces(MVAR)  11.59247

Tz4—25(p.u.) 0.980744

Power losses (MW) 11.4883822

Table 6: Statistical data for IEEE 57 bus system

Fuel cost ($/h)
Standard

Algorithm  Minimum Average Maximum
Median Deviation
Value Value Value

GABC 11.4883822  13.3848426  15.8265669  13.2570702 1.2936065

5.3 IEEE 118 bus test system

In IEEE 118 test bus system data is taken from MATPOWER [26]. Here fifty four thermal
units, and nine transformer taps. The overall active power load is 4242 MW and reactive
power load 126.2 MVAr. The test system has 186 transmission lines. The base MV A selected

is 100 MVA.

The results obtained are given in Table 7. The control variables for the obtained solution are
also stated in Table 7. The comparison with the available literature is given in Table 8. The
result reported is best in compare to all available literature. To check the robustness of
GABC, 100 trial runs are taken. The result of 100 trial runs is plotted and it is shown in Fig.

5. With reference to average of 100 trials, the numbers of results obtained below the mean



line are more as compared to results obtained above of mean line. This proves GABC is good
in tracking global best solution. The standard deviation for this 100 trial run is given in Table

6.

Reactive power optimization for IEEE 118 bus
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Figure 5: Results of reactive power optimization for hundred trial runs

Table 7: Control variables for IEEE 118 bus system

Control Variables GABC Control Variables GABC Control Variables GABC

Py (MW) 59.1457  Pgog(MW) 526602 Vg, (p.w.)  0.9661

Pey(MW) 98.6697  Pgoy(MW) 596203 Vg, (pu.)  0.9605

Pge(MW) 375293 P, (MW)  13.1194 Vg (p.w.)  0.9809
Peg(MW) 0.4668 Pooo(MW) 105497  Vgeo (p.w.)  0.9957
Pg1o(MW) 165 Pg100(MW) 105.6 Veeo (p.u.)  0.999
Peip(MW) 1504258  Pgyos(MW) 42 Vero (pow.)  0.9715
Pg1s(MW) 0 Poios(MW) 94014 Ve, (pow.)  1.0219

Poig(MW) 345684  Pgos(MW) 842377 Vs (pow.)  0.9655

Pg1o(MW) 42.6539  Pgip,(MW) 331901 Vg, (p.w.)  0.9515




PGZ4- (MW)
Peas(MW)
PGZ6 (MW)
P27 (MW)
P31 (MW)
PG32 (MW)
PG34- (MW)
P36 (MW)
Pgao(MW)
Pz (MW)
Pag(MW)
Pgao(MW)
Pgsa(MW)
Pgss(MW)
Pse(MW)
Pgso(MW)
Pge1(MW)
P2 (MW)
Pes(MW)
Pges (MW)
Pg70(MW)
Pg72(MW)
Pg73(MW)

P74 (MW)

12.9529

214.1414

203.6137

21.9194

65.0973

58.9487

90.8114

91.3301

100

96.1177

116.5559

192.5998

80.7583

0

0

76.5

78

0.3851

316.7806

147.6

7.9261

100

59.9424

87.7513

PGllO(MW)
PGlll(MW)
PGllZ (MW)
PG113 (MW)

PGllG(MW)

Ver (p.u.)
Ves (p.1.)
Vee (p.1.)
Ves (p.1.)
Vero (p-1t.)
Verz (p.1t.)
Vers (p.u.)
Vers (p.11.)
Vero (p.1.)
Veza (p.11.)
Vezs (p.u.)
Veze (p-11.)
Vezr (p.u.)
Ves1 (p.u.)
Vesz (p.u.)
Vesa (p.1t.)
Vese (p.1t.)
Veao (p-u.)

Veaz (p-u.)

42.3264

40.9881

15.221

0

42.2212

0.9807

1.0132

0.9996

0.9793

0.9928

0.988

0.9976

0.9922

0.9937

1.0241

1.06

1.0093

1.0074

1.0403

1.0201

1.0311

1.0303

0.9644

0.9567

V76 (p-u.)
V77 (p-u.)
Vo (p-u.)
Vies (p-u.)
Vg7 (p-u.)
Vigo (p-u.)
Vioo (p-u.)
Vgor (p-u.)
Voo (p.u.)
Voo (p-u.)
V100 (p-u.)
Ve10s (p-u.)
V104 (p- 1)
V1os (p-u.)
V107 (p-u.)
V110 (p-u.)
V111 (p-u.)
Vo112 (p-u.)
Vo113 (p-u.)
Vo116 (p-u.)
Tg_s(p-u.)
T26-25(p-u.)
T30-17(p.u.)

Tz5_37(p-u.)

0.94

0.982

1.0244

0.9886

1.0155

1.0055

0.9936

0.9857

0.9877

0.9981

0.9851

0.9831

0.9936

0.9956

1.0291

0.9754

0.9424

0.9954

1.06

0.9695

0.9626

0.9391

1.0178

0.9




Pgre(MW) 56.7542  Vgye (o)  1.0071  Tes co(p.u)  1.0566
Pgry (MW) 5.3969 Veso (p.10.)  1.0008 Ty gy(p.u)  1.0362
Pogo(MW) 2084631 Vg, (p.w.) 10105  Tee_g(p.u.)  0.9678
Pggs(MW) 99.0974 Vs (p.u.) 0994 T eo(p.w.)  0.9876
Pggr (MW) 31.2 Vese (p-w.) 09982 Ty go(p.u.)  0.9316

Pogo(MW) 2155064  Veso (p.w.)  0.9548

Power losses (MW) 73.4556

Table 8: Comparison table for IEEE 118 bus system

Algorithm Power loss (MW)
GABC 73.4556
ABC [17] 119.6923
PSO [31] 131.908
IPM [31] 132.110
DE [32] 128.318
QEA [33] 122.2227

Table 9: Statistical data for IEEE 118 bus system

Fuel cost ($/h)

. _ i Standard
Algorithm  Minimum Average Maximum e
Median Deviation
Value Value Value
GABC 73.4556 99.9808 129.319 99.58649 16.717

5.4 Statistical analysis

To validate results of gbest guided ABC algorithm student t-test and Wilcoxon rank sum test

[34] is carried out. Since other researcher does not report the result for hypothetical tests,



these tests are carried out on only gbest guided ABC algorithm. The statistical analysis is
useful tool in deciding the results are to be retained or reject. This test is carried out
at a=0.05significance level. In case of Wilcoxon rank sum test, if the statistical value is
greater than significance level i.e. o, hypothesis will be retained by or vice versa.
The results for Wilcoxon rank sum test are provided in Table 10. In case of student t-test, if
statistical value is greater than t.,;;;cq:, result will be accepted else vice versa. The t . iticar

calculated for this analysis is 1.983971519.

Table 3: Statistical analysis for RPO problem

Standard Paired t-test Wilcoxon rank
Standard IEEE systems
deviation | toriticar = 1983971519 sum test
IEEE 30 Bus System | 0.0199488 35.46778 0.850216995
IEEE 57 Bus System | 1.2936065 30.92146 0.850359749
IEEE 118 Bus System 16.717 27.65849 0.986315668

6. Conclusion

In this paper an application of gbest guided artificial bee colony algorithm to solve
optimization of reactive power problem is discussed. The systems taken for study are IEEE
30, IEEE 57 and IEEE 118 test bus system. The results for these case studies reflect the
ability of GABC algorithm to track optimal solution for optimization of reactive power
problem.

Apart from reactive power optimization problem, the guided gbest ABC algorithm can be

important tool for nonlinear complex engineering optimization problem.

Reference

[1] Hadi Saadat, “Power system Analysis” McGraw-Hill Companies.



[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

J. Carpentier, “Contribution al’etude du dispatching economique” Bull Soc Franc
Electric, 8:431-447, 1962.

H.W. Dommel, and W.F. Tinney, “Optimal power flow solutions” IEEE Transaction on
Power Apparatus System, 87:1866—1876, 1968.

D.I. Sun, B. Ashley, B. Brewer, A. Hughes, and W.F. Tinmey, “Optimal power flow by
Newton approach,” IEEE Transaction on Power System PAS—-10(3):2864-2880, 1984
D.S. Kirschen, and H.P. Van Meeteren, “MW/voltage control in linear programming
based optimal power flow,” IEEE Transaction on Power System 3(2):481-489, 1988.

K. Aoki, M. Fan, and A. Nishikori, “Optimal VAR planning by approximation method
for recursive mixed integer linear programming,” IEEE Transaction on Power System
3(4):1741-1747, 1988

S. Granville, “Optimal reactive dispatch through interior point methods,” IEEE
Transaction on Power System 9(1):136-146, 1994

J.A. Momoh, S.X. Guo, E.C. Ogbuobiri, and R. Adapa, “The quadratic interior point
method solving power system optimization problems,” IEEE Transaction on Power
System 9(3):1327-1336, 1994.

N. Grudinin, “Reactive power optimization using successive quadratic programming
method,” IEEE Transaction on Power System 13(4):1219-1225, 1998

J.A. Momoh, and J.Z. Zhu, “Improved interior point method for OPF problems,” IEEE
Transaction on Power System 14(3):1114-1120, 1999.

K. Iba, “Reactive power optimization by genetic algorithm,” IEEE Transaction on
Power System 9(2)685-692, 1994.

Q.H. Wu, Y.J. Cao, and J.Y. Wen, “Optimal reactive power dispatch using an adaptive
genetic algorithm,” International Journal of Electrical Power Energy System

20(8):563-569, 1998.



[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

H. Yoshida, K. Kawata, Y. Fukuyama, S. Takayama, and Y. Nakanishi, “A particle
swarm optimization for reactive power and voltage control considering voltage security
assessment,” IEEE Transaction on Power System 15(4):1232—-1239, 2000.

Y.T. Liu, L. Ma, and J.J. Zhang, “Reactive power optimization by GA/SA/TS combined
algorithms,” International Journal of Electrical Power Energy System 24(9):765-769,
2002.

J.R. Gomes, and O.R. Saavedra, “A Cauchy-based evolution strategy for solving the
reactive power dispatch problem,” International Journal of Electrical Power Energy
System 24(4):277-283, 2002.

W. Yan, S. Lu, and D.C. Yu, “A novel optimal reactive power dispatch method based
on an improved hybrid evolutionary programming technique,” IEEE Transaction on
Power System 19(2):913-918, 2004.

Kursat Ayan, and UlaS Kilic, “Artificial bee colony algorithm solution for optimal
reactive power flow” Applied Soft Computing, 12:1477-1482, 2012.

Abbass HA., “Marriage in honey bees optimisation: a haplometrosis polygynous
swarming approach.” IEEE congress on evolutionary computation, 1: 207-14, 2001.
Lucic P, Teodorovic D., “Bee system: modeling combinatorial optimization
transportation engineering problems by swarm intelligence” Triennial symposium on
transportation analysis, Sao Miguel, Azores Islands (Portugal), 441-445, 2001.

H.R. Wedde, M. Farooq, Y. Zhang, “Beechive: an efficient fault-tolerant routing
algorithm inspired by honey bee behavior” ANTS workshop, Lecture notes in computer
science, Springer, Berlin, 3172:83-94, 2004

X.S. Yang,”Engineering optimizations via nature-inspired virtual bee algorithms”
Artificial intelligence and knowledge engineering applications: a bioinspired approach,

Lecture notes in computer science, Springer, Berlin, Heidelberg, 3562:317-323, 2005



[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

Wedde HR, and Farooq M., “The wisdom of the hive applied to mobile ad-
hocnetworks.” Swarm intelligence symposium IEEE proceedings, 341-348, 2005.

D.T. Pham, A. Ghanbarzadeh, E. Koc, S. Otri, S. Rahim, and M. Zaidi, “The bees
algorithm” Manufacturing Engineering Centre, Cardiff University (UK), 2005
Teodorovic D, and Dell’orco M., “Bee colony optimization — a cooperative learning
approach to complex transportation problems” Proceedings of the 16th mini EURO
conference on advanced OR and Al methods in transportation, 51-60 2005.

Karaboga D., “An idea based on honey bee swarm for numerical optimization, technical
report” Erciyes University; 2005.

MATPOWER, Available on link: http://www.pserc.cornell.edu/matpower

Power System Test Case Archive, 2006 December. Available on link:

http://www.ee.washington.edu/research/pstca/pf118/pg tcall8bus.htm.

P. Subbaraj, P.N. Rajnarayanan, Optimal reactive power dispatch using self adaptive
real coded genetic algorithm, International journal on Electric Power Systems Research
79 (2):374-381, 2009.

K. Mahadevan, P.S. Kannan, Comprehensive learning particle swarm optimization for
reactive power dispatch, Applied Soft Computing 10 (2):641-652, 2010.

M.S. Kumari, S. Maheswarapu, Enhanced genetic algorithm based computation
technique for multi-objective optimal power flow solution, International Journal of
Electrical Power Energy System 32 (6):736-742, 2010.

J.G. Vlachogiannis, K.Y. Lee, A comparative study of particle swarm optimization for
optimal steady state performance of power systems, IEEE Transaction on Power
System 21 (4):1718-1728, 2006.

M. Varadarajan, K.S. Swarup, Differential evolution approach for optimal reactive

power dispatch, Applied Soft Computing 8 (4):1549-1561, 2008


http://www.pserc.cornell.edu/matpower
http://www.ee.washington.edu/research/pstca/pf118/pg%20tca118bus.htm

[33] J.G. Vlachogiannis, K.Y. Lee, Quantum-inspired evolutionary algorithm for real and
reactive power dispatch, IEEE Transaction on Power System 23 (4):1627-1636, 2008.

[34] Salvador Garcia, Daniel Molina, Manuel Lozano, Francisco Herrera, “A study on the
use of non-parametric tests for analysing the evolutionary algorithms’ behaviour: a case

study on the CEC’2005 special session on real parameter optimization” J Heurist,

15:617-644, 20009.



