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Abstract

Meta-Interpretive Learning (MIL) learns logic programs from examples by instantiating meta-rules, which
is implemented by the Metagol system based on Prolog. Viewing MIL-problems as combinatorial search
problems, they can alternatively be solved by employing Answer Set Programming (ASP), which may result
in performance gains as a result of efficient conflict propagation. However, a straightforward ASP-encoding
of MIL results in a huge search space due to a lack of procedural bias and the need for grounding. To address
these challenging issues, we encode MIL in the HEX-formalism, which is an extension of ASP that allows
us to outsource the background knowledge, and we restrict the search space to compensate for a procedural
bias in ASP. This way, the import of constants from the background knowledge can for a given type of
meta-rules be limited to relevant ones. Moreover, by abstracting from term manipulations in the encoding
and by exploiting the HEX interface mechanism, the import of such constants can be entirely avoided in
order to mitigate the grounding bottleneck. An experimental evaluation shows promising results.

Note: This paper is under consideration for acceptance in TPLP.

KEYWORDS: Inductive Logic Programming, Meta-Interpretive Learning, Answer Set Programming

1 Introduction

Recently, Meta-Interpretive Learning (MIL) (Muggleton et al. 2015) has attracted a lot of at-
tention in the area of Inductive Logic Programming (ILP). The approach learns definite logic
programs from positive and negative examples given some background knowledge by instanti-
ating so-called meta-rules. The latter can be viewed as templates specifying the shapes of rules
that may be used in the induced program. The formalism is very powerful as it enables predicate
invention, i.e. to use new predicate symbols in the induced program, and supports learning of re-
cursive programs, while the hypothesis space can be constrained effectively by using meta-rules.

MIL has been implemented in the Metagol system (Cropper and Muggleton 2016b), which
is based on a classical Prolog meta-interpreter. The system is very efficient by exploiting the
query-driven procedure of Prolog to guide the instantiation of meta-rules in a specific order. In
contrast (and complementary) to a common declarative bias in ILP which constrains the hypoth-
esis space, this constitutes a procedural bias that may affect efficiency (or even termination).

While traditionally most ILP systems are based on Prolog, the advantages of Answer Set Pro-
gramming (ASP) (Gelfond and Lifschitz 1991) for ILP were recognized and several ASP-based



2 Tobias Kaminski, Thomas Eiter and Katsumi Inoue

systems have been developed, e.g. (Otero 2001; Ray 2009; Law et al. 2014). Some benign fea-
tures of ASP are its pure declarativity, which allows to modularly restrict the search space by
adding rules and constraints to an encoding without risking non-termination, and that enumera-
tion of solutions is easy. Furthermore, the efficiency and optimization techniques of modern ASP
solvers such as CLASP (Gebser et al. 2012), which supports conflict propagation and learning,
can be exploited. Muggleton et al. (2014) already considered an ASP-version of Metagol, which
used only one specific meta-rule and was tailored to inducing grammars. The authors observed
that ASP can have an advantage for MIL over Prolog due to effective pruning, but that it performs
worse when the background knowledge is more extensive or only few constraints are present.

Implementing general MIL by ASP comes with its own challenges; and solving MIL-problems
efficiently by utilizing a straightforward ASP encoding turns out to be infeasible in many cases.
The first challenge is the large search space as a result of an unguided search due to a lack of
procedural bias. Consequently, the search space must be carefully restricted in an encoding in or-
der to avoid many irrelevant instantiations of meta-rules. The second and more severe challenge
concerns the grounding bottleneck of ASP: in contrast to Prolog, where only relevant terms are
taken into account by unification, all terms that possibly occur in a derivation from the back-
ground knowledge must be considered in a grounding step. Finally, a third challenge are recur-
sive manipulations of structured objects, such as strings or lists, that are common for defining
background knowledge in Metagol and easy to realize in Prolog, but are less supported in ASP.

In this paper, we meet the mentioned challenges for a class of MIL-problems that is widely en-
countered in practice, by developing a MIL-encoding in ASP with external sources, specifically
in the HEX-formalism (Eiter et al. 2016). HEX-programs extend ASP with a bidirectional infor-
mation exchange between a program and arbitrary external sources of computation via special
external atoms, which may introduce new constants into a program by so-called value invention.

After introducing the necessary background on MIL and HEX-programs in Section 2, we pro-
ceed to present our contributions as follows:

• We introduce in Section 3 our novel MIL approach based on HEX-programs for general
MIL-problems. In the first encoding, Π(M ), we restrict the search space by interleaving
derivations at the object level and the meta level such that new instantiations of meta-
rules can be generated based on pieces of information that are already derived wrt. partial
hypotheses of rules. Furthermore, we outsource the background knowledge and access it
by means of external atoms, which enables the manipulation of complex objects such as
strings or lists.

• We then define the class of forward-chained MIL-problems, for which the grounding can
be restricted. Informally, in such problems the elements x,y in the binary head p(x,y) of a
rule must be connected via a path p1(x1,x2), p2(x2,x3), . . . , pk(xk,xk+1) in the body, where
x = x1 and xk+1 = y. This allows us to guard the import of new terms from the background
knowledge in a second encoding, Π f (M ), by using already imported terms in an inductive
manner.

• A large number of constants may still be imported from the background knowledge. We
thus develop in Section 4 a technique to abstract from object-level terms in a third encod-
ing, Πsa(M ), by externally computing sequences of background knowledge atoms that
derive all positive examples, and by checking non-derivability of negative examples with
an external constraint.
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• In Section 5, we present results of an empirical evaluation based on known benchmark
problems; they provide evidence for the potential of using a HEX-based approach for MIL.

While our encoding is inspired by the implementation presented in (Muggleton et al. 2014), to
the best of our knowledge, a general implementation of MIL using ASP has not been considered
in the literature so far, and neither strategies to compensate for the missing procedural bias nor
to mitigate grounding issues have been investigated. Despite the use of the HEX formalism, our
results may be applied to other ASP formalisms and approaches as well. Proof sketches and
details on the benchmark encodings used in Section 5 can be found in the appendix.

2 Background

We assume a finite set P of predicate symbols, a finite set C of constant symbols, and disjoint
sets X1 and X2 of first-order and higher-order variables, resp., not overlapping with P and C .
An atom a of the form p(t1, ..., tn), where ti ∈ C ∪X1 for 1 ≤ i ≤ n, is first-order if p ∈P and
higher-order if p ∈X2; its arity is n. A ground atom is a first-order atom where ti ∈ C for all
1 ≤ i ≤ n. We represent interpretations over the Herbrand base by sets of ground atoms, and an
interpretation I models a ground atom a, denoted I |= a, if a ∈ I.

A (disjunctive) logic program P is a set of rules of the form

a1∨·· ·∨ak← b1, ...,bm,not bm+1, . . . ,not bn, (1)

where each ai, 1 ≤ i ≤ k, and each b j, 1 ≤ j ≤ n, is a first-order atom. Given a rule r, we
call H(r) = {a1, ...,ak} the head of r, B+(r) = {b1, ...,bm} the positive body of r, and B−(r) =
{bm+1, ...,bn} the negative body of r. A rule is a fact if n = 0, a constraint if k = 0, and definite
if k = 1 and m = n. A definite program is a logic program that contains only definite rules.

The grounding grd(r) of a rule r is obtained as usual; the grounding of a program P is grd(P)=⋃
r∈P grd(r). An interpretation I models a ground rule r, denoted I |= r, if I |= ai for some ai ∈

H(r), whenever I |= bi for all bi ∈ B+(r) and I 6|= b j for all b j ∈ B−(r). An interpretation I models
a logic program P, denoted I |= P, if I |= r for all r ∈ grd(P); and a definite program P entails a
ground atom a, denoted P |= a, if for every I s.t. I |= P it holds that I |= a.

Meta-Interpretive Learning. The Meta-Interpretive Learning (MIL) approach by Muggleton
et al. (2015) learns definite logic programs from examples by instantiating so-called meta-rules.
Here, we focus on meta-rules of the form

P(x,y)← Q1(x1,y1), ...,Qk(xk,yk),R1(z1), ...,Rn(zn), (2)

where P, Qi, 1≤ i≤ k, and R j, 1≤ j ≤ n, are higher-order variables, and x,y,xi,yi, 1≤ i≤ k, and
z j, 1 ≤ j ≤ n, are first-order variables s.t. x and y also occur in the body. That is, we consider
meta-rules with binary atoms in the head and with binary and/or unary atoms in the body. Meta-
rules with unary head atoms can be simulated by using atoms of the form p(x,x), and we allow
meta-rules of arbitrary (finite) length, such that the program class H2

m is covered (cf. Cropper
and Muggleton, 2014). A meta-substitution of a meta-rule R is an instantiation of R where all
higher-order variables are substituted by predicate symbols.1 Examples of concrete meta-rules
with names as used by Cropper and Muggleton (2016a) are shown in Figure 1.

We are now ready to formally introduce the setting of MIL, adapted to our approach.

1 Even though we do not consider constants in meta-substitutions, they can easily be simulated by using e.g. a dedicated
atom =x (x) in the body, where =x is defined in the background knowledge and binds x to a specific constant.
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Precon: P(x,y)← Q(x),R(x,y) Postcon: P(x,y)← Q(x,y),R(y)
Chain: P(x,y)← Q(x,z),R(z,y) Tailrec: P(x,y)← Q(x,z),P(z,y)

Fig. 1. Examples of Meta-Rules

Definition 1
A Meta-Interpretive Learning (MIL-) problem is a quadruple M = (B,E+,E−,R), where

• B is a definite program, called background knowledge (BK);
• E+ and E− are finite sets of binary ground atoms called positive resp. negative examples;
• R is a finite set of meta-rules.

We say that B is extensional if it contains only ground atoms. A solution for M is a hypothesis
H consisting of a set of meta-substitutions of meta-rules in R s.t. B∪H |= e+ for each e+ ∈ E+

and B∪H 6|= e− for each e− ∈ E−.

In order to obtain solutions that generalize well to new examples, by Occam’s Razor simple
solutions to MIL-problems are desired; thus Metagol computes a minimal solution containing a
minimal number of meta-substitutions (i.e. rules).

Example 1
Consider the MIL-problem M , with B = {m(ann,bob), f ( john,bob), m(sue,ann), f (tim,ann)},
E+= {a(sue,bob),a(tim,bob), a( john,bob)}, E−= {a(bob, tim)}, abbreviating mother, f ather
and ancestor, and meta-rules R = {P(x,y)←Q(x,y); P(x,y)←Q(x,z),R(z,y)}. A minimal so-
lution for M is {p1(x,y)← f (x,y); p1(x,y)← m(x,y); a(x,y)← p1(x,y); a(x,y)← p1(x,z),
a(z,y)}, where p1 is an invented predicate intuitively representing the concept parent.

Muggleton et al. (2015) showed that MIL-problems as in Definition 1 are decidable if no
proper function symbols (i.e., only constants) are used, and P and C are finite, but are undecid-
able in general. Yet, in practice, complex terms such as lists are often used for MIL. Hence, we
assume some suitable restriction, e.g. to consider only a finite set of flat lists, s.t. in slight abuse
of notation, complex ground terms (e.g., [a,b,c]) are technically regarded as constants in C .

HEX-Programs. For solving MIL-problems, we exploit the HEX formalism (Eiter et al. 2016)
in our approach. HEX-programs extend disjunctive logic programs by external atoms, which can
occur in rule bodies. External atoms are of the form &g[X1, ...,Xk](Y1, ...,Yl), where Xi ∈P ∪
C ∪X1, 1≤ i≤ k, are input parameters, and Yj ∈C ∪X1, 1≤ j≤ l, are output parameters. The
semantics of a ground external atom &g[p1, ..., pk](c1, ...,cl) with k input and l output parameters
wrt. an interpretation I is determined by a 1+k+l-ary (Boolean) oracle function f&g such that
I |= &g[p1, ..., pk](c1, ...,cl) iff f&g(I, p1, ..., pk,c1, ...,cl) = 1. In practice, oracle functions are
usually realized as plugins provided to a solver, implemented in C++ or Python code.

HEX-programs Π are interpreted under the answer set semantics (Gelfond and Lifschitz 1991)
based on the FLP-reduct by Faber et al. (2011) (a variant of the well-known GL-reduct), which
for an interpretation I is f ΠI = {r ∈ grd(Π) | I |= bi for all bi ∈B+(r), I 6|= b j for all b j ∈B−(r)}.
An interpretation I is an answer set of a HEX-program Π if I is a subset-minimal model of f ΠI .

Example 2
Consider the HEX-program Π = {l([a,a]); l(y)← &remove[x](y), l(x)}, and suppose that the
oracle function f&remove(I,X ,Y ) evaluates to 1 iff X and Y are ground lists and Y can be obtained
from X by removing the first list element. The single answer set of Π is {l([a,a]), l([a]), l([])}.
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Note that in Example 2, the output of the external atom contains constants not occurring in
Π and are thus introduced by the external source by so-called value invention. By employing
suitable safety conditions, it can be ensured that only finitely many new constants must be con-
sidered. For more details we refer to (Eiter et al. 2016). As HEX allows for predicate input to
external atoms, their semantics may depend on the extension of predicates in an answer set.

Example 3
Consider the HEX-program Π = {p(a)∨ p(b);←&contains[p,b]()}, and suppose that the oracle
function f&contains(I, p,b) evaluates to 1 iff p(b)∈ I. Without the constraint, Π has the two answer
sets {p(a)} and {p(b)}, whereby the constraint eliminates the second one.

3 HEX-Encoding of Meta-Interpretive Learning

In this section, we introduce our main encoding for solving general MIL-problems, where the
BK is stored externally and interfaced by means of external atoms. Subsequently, we present a
modification of the encoding which reduces the number of constants that need to be considered
during grounding in case only a certain type of meta-rules is used.

A major motivation for developing an ASP-based approach to solve MIL-problems is that
constraints given by negative examples can be efficiently propagated by an ASP solver, while
Metagol checks them only at the end. This can be shown by simple synthetic examples; e.g.
consider the BK of facts q j

i (i), q11
i (i) and q j

i (0), for 1≤ i, j≤ 10. For the positive examples p(1),
. . . , p(10) and the negative example p(0), Metagol finds no solution within one hour using meta-
rule P(x)← Q(x). In contrast, the problem can be solved by a simple ASP encoding instantly.
The reason is that e.g. p(1) can only be derived by the rule p(x)← q11

1 (x) given the negative
example p(0), and Metagol explores a huge number of rule combinations before this is detected.

While the issue of negative examples can be tackled by using ordinary ASP, we employ here
HEX-programs as they enable us to outsource the BK from the encoding. This allows us to con-
veniently specify intensional BK using, e.g. string or list manipulations, which are usually not
available in ASP. Another advantage of outsourcing the BK is that the approach becomes para-
metric wrt. the formalization of the BK, as it is in principle possible to plug in arbitrary (mono-
tonic) external theories (e.g. a description logic ontology). Beyond this flexibility provided by
HEX, external atoms are essential to limit the BK that is imported as described in the latter part
of this section, and for realizing our state abstraction technique in Section 4.

As we consider meta-rules using unary and binary atoms, we introduce external atoms for
importing the relevant unary and binary atoms that are entailed by the BK in an encoding.

Definition 2
Given a MIL-problem M , we call the external atom &bkUnary[deduced](X ,Y ) unary BK-atom
and &bkBinary[deduced](X ,Y,Z) binary BK-atom, where the associated oracle functions ful-
fill f&bkUnary(I,deduced,X ,Y ) = 1 iff B∪{p(a,b) | deduced(p,a,b) ∈ I} |= X(Y ), respectively
f&bkBinary(I,deduced,X ,Y,Z) = 1 iff B∪{p(a,b) | deduced(p,a,b) ∈ I} |= X(Y,Z).

The BK-atoms receive as input the extension of the predicate deduced, which represents the
set of all atoms that can be deduced from the program that results from the meta-substitutions
of the current hypothesis. Their output constants represent unary, resp., binary atoms that are
entailed by the BK augmented with the atoms described by deduced.

In theory, MIL can be encoded by applying the well-known guess-and-check methodology,
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i.e. by generating all combinations of meta-substitutions from the given meta-rules and available
predicate symbols, deriving all entailed atoms, and checking compatibility with examples using
constraints. However, this results in a huge search space due to the many possible combina-
tions of meta-substitutions, on top of many meta-substitutions that can be generated by different
combinations of predicate symbols. At the same time, a large fraction of meta-substitutions is
irrelevant for inducing a hypothesis as the resulting rule bodies can never be satisfied based on
atoms that are deduced using other rules from the hypothesis and the BK.

For this reason, we interleave guesses on the meta level and derivations on the object level, i.e.
deductions using meta-substitutions already guessed to be part of the hypothesis, and we model
a procedural bias ensuring that meta-substitutions can only be added if their body is already
satisfied by atoms deducible on the object level. Note that while Metagol’s top-down mecha-
nism effects that only meta-substitutions necessary for deriving a goal atom are generated, our
approach works bottom-up such that the procedural bias is inverted. Guarding the guesses of
meta-substitutions in this way has not been considered by Muggleton et al. (2014); this consti-
tutes the basis for techniques that restrict the size of the grounding discussed later on.

As in the Metagol implementation of MIL (Muggleton et al. 2015), given a MIL-problem
M = (B,E+,E−,R), we associate each meta-rule R ∈R with a unique identifier Rid and a set
of ordering constraints Rord ⊆ {ord(P,Q) | P,Q ∈X2 occur in R}; and we assume a predefined
total ordering �P over the predicate symbols in P . The ordering constraints can be utilized to
constrain the search space, and are necessary in Metagol in order to ensure termination. A meta-
substitution of a meta-rule R with head predicate p instantiated for the higher-order variable P
satisfies the ordering constraints Rord in case p�P q for every binary body predicate q instanti-
ated for a higher-order variable Q s.t. ord(P,Q) ∈ Rord . Here, we apply ordering constraints only
to pairs of head and body predicates, but in general this can be extended to arbitrary pairs of
predicates in a meta-substitution. Moreover, we assume that a set S ⊆P of Skolem predicates
can be used for predicate invention, where no element in S occurs in M .

We are now ready to present our main encoding for solving MIL-problems using HEX.

Definition 3
Given a MIL-problem M = (B,E+,E−,R) and a finite set of Skolem predicates S , let Sig be
the set that contains each p ∈S and each predicate symbol p that occurs either in E+ ∪E− or
in a rule head in B. The HEX-MIL-encoding for M is the HEX-program Π(M ) containing

(1) a fact sig(p)← for each p ∈ Sig, and a fact ord(p,q)← for all p,q ∈ Sig s.t. p�P q
(2) the rules unary(x,y)←&bkUnary[deduced](x,y) and

deduced(x,y,z)←&bkBinary[deduced](x,y,z)
(3) for each meta-rule R = P(x,y)← Q1(x1,y1), ...,Qk(xk,yk),R1(z1), ...,Rn(zn) ∈R

and {ord(P,Qi1), ...,ord(P,Qim)}=
{

ord(P,Qi) ∈ Rord | i ∈ {1, ...,k}
}

,

(a) a rule

meta(Rid ,xP,xQ1 , ...,xQk ,xR1 , ...,xRn)∨n meta(Rid ,xP,xQ1 , ...,xQk ,xR1 , ...,xRn)←
sig(xP),sig(xQ1), ...,sig(xQk),sig(xRq), ...,sig(xRn),ord(xP,xQi1

), ...,ord(xP,xQim
),

deduced(xQ1 ,x1,y1), ...,deduced(xQk ,xk,yk),unary(xR1 ,z1), ...,unary(xRn ,zn)

(b) and a rule

deduced(xP,x,y)← meta(Rid ,xP,xQ1 , ...,xQk ,xR1 , ...,xRn),

deduced(xQ1 ,x1,y1), ...,deduced(xQk ,xk,yk),unary(xR1 ,z1), ...,unary(xRn ,zn)
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(4) a constraint ← notdeduced(p,a,b) for each p(a,b) ∈ E+, and
a constraint ← deduced(p,a,b) for each p(a,b) ∈ E−

In the encoding, the predicate meta contains meta-substitutions added to an induced hypoth-
esis, and deduced captures all atoms that can be deduced from a guessed hypothesis together
with the BK. As we consider examples to be binary atoms and only binary atoms can be derived
from meta-substitutions, those binary atoms entailed by the BK are directly derived to be in the
extension of deduced, while unary atoms can only be derived from the BK s.t. they do not need
to be added to the extension of deduced and are imported via the predicate unary in item (2).

Item (3) constitutes the core of the encoding, which contains the meta-level guessing part (a)
and the object-level deduction part (b). A meta-substitution can be guessed to be part of the
hypothesis only if first-order instantiations of its body atoms can already be deduced, i.e. only
if it is potentially useful for deriving a positive example. At this, predicate names must be from
the signature Sig and the ordering constraints must be satisfied as stated by the facts in item (1).
Finally, item (4) adds the constraints imposed by the positive and negative examples.

For a given MIL-problem, solutions constituted by induced logic programs can directly be
obtained from the answer sets of the respective HEX-MIL-encoding. The induced logic program
represented by the meta-atoms in an interpretation is extracted as follows:

Definition 4
For a set of meta-rules R, the logic program induced by a given interpretation I consists of all
rules obtained from an atom of the form meta(Rid ,xP,xQ1 , ...,xQk ,xR1 , ...,xRn) in I such that the
meta-rule R = P(x,y)←Q1(x1,y1), ...,Qk(xk,yk),R1(z1), ...,Rn(zn) is in R, by substituting P by
xP, Qi by xQi for 1≤ i≤ k, and R j by xR j for 1≤ j ≤ n.

In the following, we assume that R is given by the respective MIL-problem at hand.
Every answer set of a HEX-MIL-encoding encodes a solution for the respective MIL-problem,

and all solutions H that only contain productive rules, i.e. rules such that all atoms in the body
of some ground instance is entailed by B∪H , can be generated in this way.

Theorem 1
Given a MIL-problem M , (i) if S is an answer set of Π(M ), the logic program H induced by
S is a solution for M ; and (ii) if H is a solution for M s.t. all rules in H satisfy Rord and are
productive, then there is an answer set S of Π(M ) s.t. H is the logic program induced by S.

Although the general HEX-MIL-encoding in Definition 3 works well when only a small num-
ber of constants is introduced by the BK-atoms, the grounding can quickly become prohibitively
large when many constants are generated (e.g. due to list operations). This results from the fact
that constants produced by item (2) in Definition 3 are also relevant for instantiating the rules
defined in items (3a) and (3b), which contain many variables, causing a combinatorial explosion.

Example 4
Consider a MIL-problem M , containing BK B = {remove([X |R],R)←}, and the positive exam-
ples E+ = {remove2([a,a,a], [a]),remove2([b,b], [])}. Here, the definition of the BK should be
read as an abbreviation for a set of facts, e.g. containing remove([a,a], [a]), remove([a], []), etc.,
exploiting the list notation of Prolog. Accordingly, the predicate remove drops the first element
from a list, and a corresponding hypothesis intuitively needs to remove the first two elements
from the list in the first argument of an example to yield the second one.

Now, assume that C contains lists with letters from the set {a,b,c} up to some length n. Then,
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the BK contains, e.g., remove([c,c], [c]), remove([c,c,c], [c,c]), etc., up to length n, which are
imported via the BK-atoms. However, lists containing the letter c are irrelevant wrt. M because
they cannot be obtained from lists appearing in the examples using the operations in the BK.

Next, we introduce a class of meta-rules that allows us to restrict the number of constants
imported from the BK, based on the observation from the previous example.

Definition 5
A forward-chained meta-rule is of the form

P(z0,zk)← Q1(z0,z1), . . . ,Qi(zi−1,zi), . . . ,Qk(zk−1,zk),R1(x1), . . . ,Rl(xl),

where 1 ≤ i ≤ k, 0 ≤ l, and x j ∈ {z0, . . . ,zk} for all 1 ≤ j ≤ l. A MIL-problem M is forward-
chained if R only contains forward-chained meta-rules.

Intuitively, all first-order variables in the body of a forward-chained meta-rule are part of a
chain between the first and second argument of the head atom. Viewing binary predicates in the
BK as mappings from their first to their second argument, only atoms from an extensional BK
are relevant that occur in a chain between the first and the second argument of examples. Hence,
atoms from the BK only need to be imported when their first argument occurs in the examples or
in a deduction wrt. BK that has already been imported. However, when the derivable BK depends
on guessed meta-substitutions, additional atoms might be relevant, and thus, we only consider
extensional BK in the following.

For restricting the import of BK, we introduce a modification of the external atoms from
Definition 2, where the output is guarded by an input constant.

Definition 6
Given a forward-chained MIL-problem M where B is extensional, we call the external atoms
&fcUnary[Y ](X) and &fcBinary[Y ](X ,Z) unary and binary forward-chained BK-atom, resp.,
where f& f cUnary(I,Y,X) = 1 iff X(Y ) ∈ B, resp., f& f cBinary(I,Y,X ,Z) = 1 iff X(Y,Z) ∈ B.

As we assume the BK to be extensional, the input parameter deduced is not needed for
forward-chained BK-atoms. Based on the previous definition, we can modify our HEX-MIL-
encoding such that only relevant atoms from the BK are imported, where forward-chained BK-
atoms receive as input all constants that already occur in a deduction or the examples.

Definition 7
Given a forward-chained MIL-problem M where B is extensional, the forward-chained HEX-
MIL-encoding for M is the HEX-program Π f (M ) containing items (1), (3) and (4) from Defini-
tion 3, and the rules

(f1) unary(x,y)←&fcUnary[y](x),s(y) (f3) s(a)← for each p(a,b) ∈ E+∪E−

(f2) deduced(x,y,z)←&fcBinary[y](x,z),s(y) (f4) s(y)← deduced( , ,y)

The main difference between Π f (M ) and Π(M ) is that the import of BK is guarded by
the predicate s in items (f1) and (f2), whose extension contains all constants appearing as first
argument of an example, due to item (f3), and all constants that appear in deductions based on
the already imported BK, due to item (f4).

Every answer set of the forward-chained HEX-MIL-encoding still corresponds to a solution
of the respective MIL-problem, but not all solutions may be obtained. Nonetheless, it is ensured
that a minimal solution (i.e., with fewest meta-substitutions) is encoded by some answer set:
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Theorem 2
Let M be a forward-chained MIL-problem with extensional B. Then, (i) for every answer set S
of Π f (M ), the logic program induced by S is a solution for M ; and (ii) there is an answer set S′

of Π f (M ) s.t. the logic program induced by S′ is a minimal solution for M if one exists.

Since, in practice, we employ iterative deepening search for computing a minimal solution,
any minimal solution encoded by an answer set of Π f (M ) is guaranteed to be found. Thus, we
can obtain minimal solutions while grounding issues are mitigated by steering the import of BK.
An additional search space reduction results from the pruning of the grounding.

4 State Abstraction

Based on the observation that operations represented by binary BK predicates can be applied se-
quentially when only forward-chained meta-rules are used, we introduce in this section a further
technique that eliminates object-level constants from the encoding entirely. While the Π f (M )-
encoding focuses the import of constants to those obtainable from constants that already occur
in deductions, the number of relevant constants can still be large if many binary BK atoms share
the first argument; and all of them must be considered during grounding. However, only one BK
atom is needed for each element in a chain that derives a positive example p(x,y) by connecting x
and y. In fact, the Π f (M )-encoding solves two problems at the same time: (1) finding sequences
of binary BK predicates that derive positive examples; and (2) inducing a (minimal) program that
calls the predicates in the respective sequences, and prevents the derivation of negative examples.

Example 5
Consider the MIL-problem M where B contains the extension of remove from Example 4, and
extensional BK represented by switch([X ,Y |R], [Y,X |R])← and f irstA([a|R])←. Furthermore,
let E+ = {p([c,a,b,a,b], [c])}, E− = {p([c,b,a,b,b], [c])}, and R = {P(x,y)← Q(x,z),R(z,y);
P(x,y)← Q(x,y),R(y); P(x,y)← Q(x,y)}. Intuitively, a solution program needs to memorize c
and delete the rest; this requires to repeatedly switch the first two elements and remove the first
element. For success, the input list must have a at position 2. This is captured by the hypothesis
H = {p(x,y)← p1(x,z), p(z,y); p(x,y) ← remove(x,y); p1(x,y) ← switch(x,y), f irstA(y);
p1(x,y)← remove(x,z), switch(z,y)}, where p1 is an invented predicate; this is in fact a minimal
solution for M . In addition, any program which enables derivations that alternate between calling
switch and remove and prevents to derive the negative example using f irstA as a guard would be
a solution. Notably, the search space of Metagol also contains hypotheses that have no alternation
between switch and remove and thus cannot be solutions.

The previous example illustrates that the derivability of positive examples depends on the se-
quences by which binary BK predicates are called in the induced program. Here, finding a correct
sequence for a given example can be viewed as a planning problem, where object-level constants
represent states, binary BK predicates are viewed as actions, and unary BK predicates constitute
fluents. The state abstraction technique described in the sequel exploits the insight that the tasks
of (1) solving the planning problem and (2) finding a matching hypothesis can be separated,
where the HEX-program encodes task (2), and computations involving states are performed ex-
ternally. The advantage of task separation and state abstraction increases with the number of
actions that are applicable in a state, as usually more actions not occurring in a derivation of a
positive example can be ignored; this reduces the search space and the size of the grounding.
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We represent possible plans to derive positive examples by sequences of binary BK atoms. At
this, cyclic sequences (or plans) have to be excluded by requiring that constants (states) occur
only once because otherwise, we may obtain infinitely many sequences for a positive example:

Definition 8
Given a forward-chained MIL-problem M where B is extensional, the function Seq maps each
positive example p(c1,ck) ∈ E+ to the set Seq(p(c1,ck)) containing all sequences p1(c1,c2), . . . ,

pk−1(ck−1,ck), where pi(ci,ci+1) ∈ B for all 1≤ i < k, and ci 6= c j if i 6= j.

Example 6 (cont’d)
Reconsider M from Example 5. Then Seq(p([c,a,b,a,b], [c])) = {seq}, (s = switch, r = remove),

seq = s([c,a,b,a,b], [a,c,b,a,b]),r([a,c,b,a,b], [c,b,a,b]),s([c,b,a,b], [b,c,a,b]),

r([b,c,a,b], [c,a,b]),s([c,a,b], [a,c,b]),r([a,c,b], [c,b]),s([c,b], [b,c]),r([b,c], [c]).

In order to make information about action sequences that derive positive examples and fluents
that hold in states available to the HEX-encoding, we next introduce two external atoms that
import such information. States are simply represented by integers in the output as their structure
is irrelevant for combining sequences into a hypothesis that generalizes the plans.

Definition 9
For a forward-chained MIL-problem M where B is extensional, let e+id and seqid be unique iden-
tifiers, resp., for each e+ ∈ E+ and seq∈

⋃
e+∈E+ Seq(e+). The external atoms &saUnary[](X ,Y )

and &saBinary[](X ,Y,Z) are called unary and binary state abstraction (sa-)atoms, resp., where

• f&saUnary(I,X ,Y ) = 1 iff X = r, Y = (e+id ,seqid , i), and r(ci) ∈ B; resp.
• f&saBinary(I,X ,Y,Z) = 1 iff X = pi, Y = (e+id ,seqid , i), and Z = (e+id ,seqid , i+1),

with e+ ∈ E+, seq = p1(c1,c2), . . . , pk−1(ck−1,ck) ∈ Seq(e+), and i ∈ {1, . . . ,k−1}.

For instance, for M from Example 5, &saBinary[](switch,(e+id ,seqid ,1),(e+id ,seqid ,2)) is true,
where e+id is the identifier of the positive example, seqid is the identifier of the sequence shown in
Example 6, and the integers 1 and 2 represent the states [c,a,b,a,b] and [a,c,b,a,b], respectively,
where the second state can be reached from the first state by applying the action switch.

In our encoding with state abstractions we also need information about the start and end states
of sequences associated with positive examples, as a hypothesis needs to encode a plan for each
positive example. This information is accessed via an external atom as well.

Definition 10
For a forward-chained MIL-problem M , the external atom &checkPos[](X1,X2,Y,Z) fulfills that
f&checkPos(I,X1,X2,Y,Z) = 1 iff X1 = e+id , X2 = p, Y = (e+id ,seqid ,1), and Z = (e+id , seqid ,k+1)
for some p(a,b) = e+ ∈ E+ and seq = p1(a,c2), . . . , pk(ck,b) ∈ Seq(e+).

Finally, it can only be determined wrt. the BK whether a candidate hypothesis derives a nega-
tive example, s.t. the corresponding check cannot be performed in an encoding without importing
relevant atoms from the BK. As our goal is to abstract from explicit states in the BK, we also
need to outsource the check for non-derivability of negative examples by an external constraint.
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Definition 11
Given a MIL-problem M , the oracle function f& f ailNeg(I,meta) associated with the external
atom &failNeg[meta]() evaluates to 1 iff B∪H |= e− for some e− ∈ E−, where H is the logic
program induced by {meta(Rid ,xP,xQ1 , ...,xQk ,xR1 , ...,xRn) ∈ I}.

In the implementation, the external atom &failNeg[meta]() receives information about meta-
substitutions already guessed by the solver to be in the respective hypothesis. It can be evaluated
to true as soon as a negative example is derivable wrt. its input, as definite logic programs are
monotonic; as this may violate a constraint, backtracking in a solver can be triggered.

Example 7
Consider MIL-problem M with B = {q(a,b),q(a,c),r(a,b)}, E+ = {p(a,b)}, E− = {p(a,c)},
and R = {R=P(x,y)←Q(x,y)}. For I = {meta(Rid , p,q)}, we obtain that f& f ailNeg(I,meta)= 1
as the negative example can be derived from B∪{p(x,y)← q(x,y)}; a solver can exploit the
information that p(x,y)← q(x,y) cannot belong to any solution.

Utilizing the external atoms introduced in this section, we define an encoding which separates
the planning from the generalization problem and contains no object-level constants.

Definition 12
Given a forward-chained MIL-problem M where B is extensional, its state abstraction (sa-)
HEX-MIL-encoding is the HEX-program Πsa(M ) that contains all rules in items (1) and (3) of
Definition 3, where Sig additionally contains e+id for each e+ ∈ E+, and the rules

(s1) unary(x,y)←&saUnary[](x,y) (s5) pos1(xid)← pos(xid , , , )

(s2) deduced(x,y,z)←&saBinary[](x,y,z) (s6) ← not deduced(x,y,z),pos( ,x,y,z)
(s3) ← not pos1(e+id), for each e+ ∈ E+ (s7) ←&failNeg[meta]()
(s4) pos(xid ,x,y,z)∨n pos(xid ,x,y,z)←&checkPos[](xid ,x,y,z)

Items (s1) and (s2) in Πsa(M ) import the fluents for all relevant states and state transitions
wrt. sequences that derive positive examples, where states are abstracted. The external atom
&checkPos[](X1,X2,Y,Z) in item (s4) imports all tuples representing the start and end state of
each sequence for each positive example. The disjunctive head of (s4) enables each tuple repre-
senting a sequence to be guessed to be in the extension of the predicate pos, which represents all
sequences that are modeled by the induced program. While a minimal hypothesis is guaranteed
when the guess is over all possible sequences, in practice, we can preselect sequences returned
by the atom &checkPos[](X1,X2,Y,Z). Moreover, the guess can be omitted if the planning prob-
lem is deterministic, i.e. if for each positive example there is exactly one sequence of binary
atoms from the BK that derives its second argument from its first argument. Items (s3) and (s5)
ensure that at least one sequence for each positive example is selected s.t. the corresponding end
state can be derived from the start state by the induced program. Finally, (s6) and (s7) state the
constraints regarding positive resp. negative examples.

As can be shown, Πsa(M ) only yields correct solutions, and a minimal one if all sequences
that derive positive examples are acyclic. More formally:

Theorem 3
Let M be a forward-chained MIL-problem with extensional BK B. Then, (i) for every answer
set S of Πsa(M ), the logic program induced by S is a solution for M ; and (ii) there is an answer
set S′ of Πsa(M ) s.t. the logic program induced by S′ is a minimal solution for M if one exists
and every sequence of binary BK atoms that derives a positive example in E+ is acyclic.
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Hence, we have an alternative to find solutions for forward-chained MIL-problems where plan-
ning and generalization are separated in a way such that the BK can be outsourced completely.

5 Empirical Evaluation

In this section, we evaluate our approach by comparing it to Metagol in terms of efficiency.

Experimental Setup. For experimentation, we utilized an iterative deepening strategy which
incrementally increases a limit for the maximal number of guessed meta-substitutions imposed
via a constraint to obtain minimal solutions. In addition, we incrementally increased the number
of invented predicates wrt. each limit, which proved to be beneficial for performance.

We computed answer sets of our encodings with hexlite2 0.3.20, which is based on CLINGO

5.1.0. For comparison, we used SWI-Prolog 7.2.3 to run Metagol 2.2.0 (Cropper and Muggleton
2016b). Experiments were run on a Linux machine with 2.5 GHz dual-core Intel Core i5 pro-
cessor and 8 GB RAM; the timeout was 600 seconds per instance. The results wrt. the average
running times in seconds are shown in Figure 2, where error bars indicate the standard error (=
sdvn s/

√
n for n instances) per instance size. In addition, the average running times required for

the grounding step are shown in Figure 3. We compared the encodings Π f (M ) and Πsa(M )

(conditions hexmil and stateab in Figure 2, resp.) to Metagol for the first two benchmarks, and
only used Πsa(M ) for the third benchmark as discussed below.

For each MIL-problem in this section, we used the meta-rules shown in Figure 1, and we
implemented it in Metagol and used our HEX-MIL-encodings. External atoms are realized as
Python-plugins in our implementation. For operations defined by the BK, we utilized custom list
manipulations. The external atoms &checkPos[](X1,X2,Y,Z) and &failNeg[meta]() in Πsa(M )

employ breadth-first search for computing all sequences wrt. positive examples and for checking
the derivability of negative examples, respectively. In the further development of our implementa-
tion, our goal is to employ more sophisticated planning algorithms for computing the sequences,
and to interface a Prolog-interpreter for processing the BK and for checking negative examples.

The encodings for the benchmark problems and all instances used in the experiments are
available at http://www.kr.tuwien.ac.at/research/projects/inthex/hexmil/.

String Transformation (B1). Our first benchmark is based on Example 5, and akin to inducing
regular grammars as considered by Muggleton et al. (2014). Learning grammars is a suitable
use case for MIL as it enables recursive string processing and predicate invention to represent
substrings. In contrast to Muggleton et al. (2014), we also allow switching the first two letters
in a string in addition to removing elements, which increases the search space and makes con-
flict propagation and state abstraction more relevant. For the instances used by Muggleton et al.
(2014), Metagol performs much better due to limited branching in the search space. We used
positive and negative examples of the form p([c|X ], [c]), where X is a random sequence of letters
a and b. The predicates in the BK are remove, switch, firstA, firstB and firstC (cf. Example 5). We
used problems containing one positive and one negative example of the same length, and tested
lengths n ∈ {1, ...,15}. We report average runtimes of 20 randomly generated instances per n.

East-West Trains (B2). The East-West train challenge by Larson and Michalski (1977) is a
popular ILP-benchmark. The task is to learn a theory that classifies trains based on features (e.g.
shapes of cars and types of loads) to be either east- or westbound. In our benchmark, eastbound

2 https://github.com/hexhex/hexlite/
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Fig. 2. Benchmark results for String Transformation, East-West Trains and Robot Strategies (left to right).
Average overall running times in seconds are shown on the y-axis, and instance size is shown on the x-axis.
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Fig. 3. Grounding times. Dashed lines indicate the average running times required for grounding in sec-
onds, the solid line in the rightmost diagram shows the overall running times of benchmark B3 for com-
parison. Overall running times are not shown for benchmarks B1 and B2 as they are much larger than the
grounding times. Grounding in condition hexmil was infeasible for benchmark B3.

trains are positive and westbound trains negative examples, where trains are represented by lists.
The BK defines the operation removeCar which removes the first car from a train; and we declare
50 different unary predicates, e.g. shape rectangle or load 3 triangles, for checking properties
of the remaining part of a train. We used a data set of 10 eastbound and 10 westbound trains pro-
posed by Michie et al. (1994) that was also considered by Muggleton et al. (2015). We generated
instances of size n ∈ {4,6,8,10,12,14,16} by randomly selecting n from the 20 trains, s.t. n/2
were eastbound, and averaged the running times of 10 instances for each problem size.

Robot Waiter Strategies (B3). For our final experiment, we used a problem by Cropper and
Muggleton (2016a) that consists in learning robot strategies: customers sit at a table in a row,
and a waiter robot serves each customer her desired drink, which is either tea or coffee. Initially,
the robot is at the left end of the table and each customer has an empty cup. In the goal state,
each cup contains the desired drink and the robot is at the right end of the table. States are
represented using lists, and positive examples map an initial state to a goal state considering
different numbers of customers and preferences for drinks. The actions are defined by binary
BK predicates move right, pour coffee and pour tea, and the fluents by unary BK predicates
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wants coffee, wants tea and at end.3 A solution constitutes a planning strategy by generalizing
a plan for each positive example.

For this benchmark, solutions are constrained to be functional, i.e. to map an initial state only
to the unique respective goal state and not to any non-goal state. Accordingly, negative examples
are implicitly given by all binary atoms that map an initial state to a non-goal state. In Metagol,
solutions can be restricted to functional theories by means of a property declaration, and we also
integrated a corresponding check in the implementation for the external atom &failNeg[meta]().

We generated random instances similar to Cropper and Muggleton (2016a), where each posi-
tive example has a random number of i ∈ [1,10] customers with random drink preferences, and
the instance size is measured in terms of the number of positive examples ranging from 1 to 8.
For each instance size we averaged the running times of 20 problem instances.

Findings. Regarding (B1) and (B2), we found that instances can be solved significantly faster by
employing Π f (M ) than by Metagol due to conflict propagation in ASP. The encoding Πsa(M )

performed similar to Metagol since only two binary predicates, resp. one, are defined by the
BK s.t. solving the planning problem externally does not yield a significant advantage, and the
advantage of efficient conflict propagation in ASP is outweighed by the overhead that goes along
with outsourcing constraints for negative examples in Πsa(M ). Πsa(M ) performs slightly better
in (B1), where two actions are available instead of only one in (B2).

For (B3), we did not obtain results by using Π f (M ) for many instances as the grounding was
too large due to the imported BK. For instance size 5, the import from the BK already consumed
around 100 MB of memory due to the high number of states, and the grounding of the encoding
exceeded the available memory. However, the grounding problem could effectively be avoided
by using state abstractions with Πsa(M ), which yielded a significant speed-up compared to
Metagol. This is due to the fact that by using Πsa(M ), the planning problem is split from the
generalization problem such that only one precomputed plan per positive example is considered,
which greatly reduced the search space. Overall, the performance could be improved by one of
our encodings wrt. Metagol in all benchmarks, whereby state abstraction was crucial when many
different actions are defined by the BK, but may decrease efficiency otherwise.

With respect to the grounding step, we found that grounding Π f (M ) required significantly
more resources in terms of running time as well as the size of the grounding than grounding
Πsa(M ), both in the case of (B1) and (B2). The reason is that only states need to be considered
which occur in a sequence of binary BK atoms that derives a positive example for grounding
the encoding Πsa(M ), while Π f (M ) also imports all constants that are potentially relevant for
deriving some negative example. However, the advantage of Πsa(M ) wrt. the grounding step is
canceled out for (B1) and (B2) due to the overhead that goes along with outsourcing the check
for negative examples and the small advantage in terms of search space pruning. Moreover, the
grounding time required for (B1) and (B2) in general is negligible compared to the solving time.
In contrast, we observed that the running time required for grounding Πsa(M ) in the case of
(B3) makes up more than half of the overall running time. This is explained by the fact that the
external atoms &checkPos, &saUnary and &saBinary need to be evaluated during grounding
due to value invention, which accounts for the major fraction of the overall grounding time.

We also tested the effect of fixing the number of invented predicates, and obtained timeouts

3 In contrast to Cropper and Muggleton (2016a), we omitted the action turn cup over, as otherwise we obtained timeouts
for the majority of instances and all conditions, as it is also the case for Metagol in (Cropper and Muggleton 2016a).
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for many instances which could be solved otherwise. The reason is that the availability of addi-
tional predicate symbols blows up the search space at the last iteration of the iterative deepening
search. Consequently, the advantage of finding solutions with fewer invented predicates faster
compensates for the time invested in restarting the solver many times during iterative deepening.

6 Discussion

In this section, we first discuss the practical implications of constraining the shapes of meta-
rules that can be employed for learning, and the limitations of our state abstraction technique.
Additionally, we discuss some possible mitigations wrt. these limitations, which are the subject
of future work. Previous work related to our approach is discussed at the end of this section.

Meta-Rules. In this paper, we focused on meta-rules according to Equation 2, and restricted the
form of meta-rules and of the BK for the encodings Π f (M ) and Πsa(M ). At this, the fragment
of dyadic Datalog, i.e. the class of Datalog programs with predicates of arity at most two, is
extremely important in practice as it is suitable whenever input data is given in form of a graph.
Moreover, the seminal paper on MIL mainly focused on the program class H2

2 and shows that
it has Universal Turing Machine expressivity (Muggleton et al. 2015). Accordingly, considering
only hypotheses from the class H2

m does not constitute a severe restriction.
On the other hand, the set of hypotheses that can be learned by the encodings based on forward-

chained meta-rules and extensional BK is restricted compared to the solutions that can be ob-
tained by using the general encoding. In particular, as e.g. the meta-rule P(x,y)← Q(y,x) is not
forward-chained, it is not possible to learn the inverse of binary predicates from the BK. For in-
stance, when a predicate move right is contained in the BK, it is not possible to learn a predicate
move le f t. In this case, the inverses of binary predicates could be added to the BK explicitly.
Furthermore, the restriction to extensional BK prevents dependencies of the BK on the induced
hypothesis, i.e. predicates in the BK cannot be defined in terms of predicates defined by a solu-
tion. However, the majority of MIL-problems considered in the literature are forward-chained,
and they do not employ BK that depends on the respective hypothesis as usually only invented
predicates are used for rule heads in a hypothesis.

Intuitively, forward-chained meta-rules are natural for applications where binary examples
represent a mapping from their first to their second argument, e.g. of an initial state to a goal
state in a planning scenario or a string transformation, and where sequences of operations need
to be applied to obtain the second from the first argument. Many MIL-problems resulting from
practical applications fall into this class. Previous applications of MIL have been mainly con-
sidered in three different areas: Robot Planning, e.g. by Cropper and Muggleton (2014; 2015;
2016a); String/Language Processing, e.g. by Lin et al. (2014) and by Cropper et al. (2015); and
Computer Vision, e.g. by Dai et al. (2017). We found that most of the MIL-problems considered
in the first two areas solely employ forward-chained rules and extensional BK, or in some cases
can easily be transformed to forward-chained rules. However, there are also some applications
of MIL in the literature where a mapping to forward-chained meta-rules is not (easily) possible
(Tamaddoni-Nezhad et al. 2014; Farquhar et al. 2015; Dai et al. 2017).

State Abstraction for Nondeterministic Planning Problems. With respect to the degree of
nondeterminism of the planning problems associated with a forward-chained MIL-problem, we
can distinguish two factors that impact the size of the search space. First, many different (poten-
tially nondeterministic) actions may be applicable in the different states of a planning problem
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while there are only few valid plans. Second, there may also be many different action sequences
constituting solutions to the respective planning problem.

In the first case, the size of the search space can be reduced compared to Metagol by pre-
computing correct plans in the encoding Πsa(M ), which also reduces the size of the grounding.
While Metagol generates meta-substitutions based on all applicable actions, Πsa(M ) only con-
siders actions and states that are part of a correct plan. In the second case, the size of the search
space generated by Πsa(M ) is closer to the size of the search space explored by Metagol because
all possible plans need to be computed and considered during induction. This is necessary since
it cannot be decided beforehand which selection of plans allows for a minimal solution wrt. the
number of rules. Note that, for the same reason, the search space of Metagol also must contain
all possible plans wrt. positive examples.

Accordingly, the effectiveness of the encoding Πsa(M ) depends on a tradeoff between the
number of actions applicable to states and the number of plans that can be generated for positive
examples, and it has an advantage when there are many possible actions but only few plans. Due
to the grounding bottleneck, the encoding Πsa(M ) is likely to be less efficient than Metagol
when there are many possible plans and according states that need to be imported. It is an open
challenge to tackle problems of this type efficiently by using state abstraction.

As noted in Section 4, our approach could be extended by filtering techniques to preselect plans
by the external atom in order to avoid the import of all possible plans for positive examples. At
the same time, this would be difficult to realize in Metagol where planning and generalization
are performed simultaneously. For instance, the number of plans could be restricted by analyzing
them, and filtering those that are redundant for obtaining a minimal solution. Furthermore, only
a limited number of plans could be imported and the impact on the accuracy investigated to find
a good balance between efficiency and compactness of the hypothesis.

State Abstraction and Cyclic Sequences. When computing sequences that derive positive ex-
amples according to Definition 8, cyclic sequences need to be avoided. At the same time, cyclic
sequences potentially allow to induce a smaller hypothesis for a given MIL-problem, such that
part (ii) of Theorem 3 is restricted to acyclic sequences as well. However, note that in general,
a shorter sequence that derives the second argument of a positive examples from its first argu-
ment is obtained by removing cycles. Hence, in practice, the prevention of cyclic plans is often
reasonable as, e.g. considering a robot planning scenario, one does not want the robot to loop
many times between the same states. Furthermore, one is usually interested in learning a strategy
that generalizes minimal (or at least reasonably short) plans. Consequently, there is a tradeoff be-
tween the lengths of plans that are considered for learning a strategy, and the size of a hypothesis
that generalizes them. Potentially more compact hypotheses can be obtained by allowing cyclic
plans, but infinite loops must be prevented.

One way to relax the acyclicity condition would be to allow for a fixed number of cycles in
Definition 8, which may enable the induction of a smaller hypothesis. To empirically investigate
the effect of allowing different numbers of cycles in sequences wrt. the accuracy that can be
achieved is subject of future work. Moreover, the possibility of cyclic sequences also poses a
problem for termination in Metagol, where a different approach is taken to avoid infinite loops.
It relies on ordering constraints over predicate arguments of meta-rules wrt. a total ordering
over terms, which constrain the hypothesis space as well. Similar ordering information could
alternatively be employed in our approach to prevent the generation of infinitely many sequences.

Related Work. As discussed in Section 1, our approach is most closely related to (Muggleton
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et al. 2014) which also applies ASP to MIL. However, the ASP-encoding there is tailored to the
induction of grammars, and grounding issues or modeling a procedural bias are not considered.

In addition, several other ILP systems based on ASP have been developed, e.g. (Otero 2001;
Ray 2009; Law et al. 2014), which also mainly rely on an ASP-solver for computing solutions.
Different to our approach, default negation is allowed in the BK and hypotheses, and induced pro-
grams are interpreted under the stable model semantics. Moreover, examples are partial interpre-
tations in the approach by Law et al. (2014). The declarative bias is defined by mode declarations
instead of meta-rules in the mentioned approaches, which enables a more fine-grained specifica-
tion of the hypothesis space; but, to the best of our knowledge, none of them models a procedural
bias wrt. rule introduction in ASP itself. The XHAIL system bounds the search space by splitting
the learning process into phases, where a Kernel set of ground rules is computed deductively
and generalized in an induction phase. However, in contrast to the integration of object-level
deduction and meta-level induction in our encoding, the phases are executed sequentially.

Compared to ASP-based systems, the MIL-approach has the advantage that meta-rules ef-
fectively limit the search space and, in particular, can guide the process of predicate invention,
which is regarded as a very hard problem due to its high combinatorial complexity (Dietterich
et al. 2008). In addition, intensional BK that manipulates complex terms is difficult to integrate
in ASP, while the query-driven procedure exploited by Metagol is well-suited for this.

7 Conclusion

We presented a general HEX-encoding for solving MIL-problems that interacts with the BK via
external atoms and restricts the search space by interleaving derivations on the object and meta
level. In addition, we introduced modifications of the encoding for certain types of MIL-problems
and a state abstraction technique to mitigate grounding issues that are hard to tackle otherwise.

Our approach combines several advantages of Metagol and ASP-based approaches, and it is
very flexible as it allows to plug in arbitrary (monotonic) theories as BK. Moreover, our encod-
ings can easily be adjusted, e.g. by adding further constraints to limit the import of BK. For
instance, we also tried to delay the import of BK by restricting the initial import to chains of a
limited length. This resulted in a significant speed-up for many MIL-problems, but minimality of
solutions is not guaranteed. Nevertheless, in our tests, solutions that were not considerably larger
than solutions of other instances could be obtained instead of timeouts. To investigate how this
and similar modifications affect the accuracy wrt. a test data set remains future work.

The potential of an ASP-based approach for MIL is supported by our empirical evaluation;
and our techniques could also be exploited in future implementations. Here, we use the HEX-
formalism because it is very convenient for prototype implementations. Other formalisms could
be used as well, e.g. the theory interface of Clingo 5 (Gebser et al. 2016), which would potentially
increase performance. In particular, employing optimization of weak constraints is expected to be
beneficial for efficiency as the solver needs to be restarted many times during iterative deepening.
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Appendix A Proof Sketches

Proof Sketch for Theorem 1
(i) The program H must be a solution for M according to Definition 1 because the constraints
in item (4) of Definition 3 ensure that every positive example e+ ∈ E+ is derivable by rules gen-
erated by the BK imported in item (2), the rules generated by item (3b) and meta-substitutions in
S obtained from guesses added by item (3a), and that no negative example e− ∈ E− is derivable.
In addition, atoms not imported from the BK by item (2) are not relevant for deriving examples
according to Definition 2 as they are not entailed by B∪H . Moreover, the facts generated by
item (1) are only used in the positive bodies of guessing rules generated by item (3a) such that
they only constrain the guesses for meta-substitutions.

(ii) We know that H is a solution for M s.t. all meta-substitutions in H satisfy the respective
ordering constraints and are productive. Let I be the interpretation containing all atoms cor-
responding to facts generated by item (1) of Definition 3 wrt. M , the atoms unary(p,a) and
deduced(p,a,b) for all p(a) and p(a,b), resp., s.t. B∪H |= p(a) and B∪H |= p(a,b), and the
atom meta(Rid , p,q1, ...,qk,r1, ...,rn) for every rule p(x,y)← q1(x1,y1), ...,qk(xk,yk),r1(z1), ...,

rn(zn)∈H that is a meta-substitution of the meta-rule R. Furthermore, let I′ be the interpretation
containing all atoms n meta(Rid , p,q1, ...,qk,r1, ...,rn) that occur in a ground rule obtained from
a rule generated by item (3b) whose body is satisfied by I, s.t. meta(Rid , p,q1, ...,qk,r1, ...,rn) 6∈ I.
It can be shown that I ∪ I′ is an answer set of Π(M ) s.t. H is the logic program induced by S.

Proof Sketch for Theorem 2
(i) Compared to the general HEX-MIL-encoding of Definition 3, only item (2) is changed by the
encoding Π f (M ) such that the import of BK is guarded by the predicate s. As before, item (4)
ensures that every positive example e+ ∈ E+ is derivable. It is only left to show that if a negative
example e− ∈ E− is entailed by B∪H , then it can also be derived wrt. the BK imported via
items (f1) and (f2) of Definition 7. Since all meta-rules are assumed to be forward-chained, only
meta-substitutions of the form p(z0,zk)← p(x,y), . . . , p1(x1,y1), . . . , pk(xk,yk),r1(x1), . . . ,rl(xl)

are usable for deriving examples in which x is connected to y by a chain of atoms pi(xi,yi) in
the body, where yi = xi+1, for 1 ≤ i ≤ k−1, x = x1 and y = yk. Furthermore, (f2) imports every
binary atom in the BK where the first argument already occurs as first argument in an example
or as second argument in an atom previously imported from the BK, due to items (f3) and (f4).

Similarly, all unary atoms in the BK are imported by (f1) where the single argument occurs
in a binary atom from the BK that has already been imported. Hence, all BK that is relevant for
derivations by means of meta-substitutions wrt. forward-chained meta-rules is imported, and the
second constraint of item (4) is violated in case a negative example is entailed by B∪H .

(ii) Every minimal solution H for M contains only productive rules as defined right before
Theorem 1 in Section 3 because rules which are not productive are not necessary for deriving a
positive example. Since we only consider forward-chained meta-rules, an answer set S of Π f (M )

such that H is the logic program induced by S only needs to contain those binary atoms from
the BK that occur in a chain that connects the first argument of each positive example e+ ∈ E+

to its second argument because only those atoms are necessary for ensuring that each rule in H

is productive. Now, answer sets of Π f (M ) are modulo the guess in (3a) least models that can
be constructed bottom up incrementally in a fixpoint iteration, and that contain the atoms they
logically entail. Hence, all atoms in the corresponding chain are incrementally imported from the
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BK by the rules in items (f2) and (f4). Accordingly, there is an answer set S of Π f (M ) s.t. the
induced logic program H wrt. S is a minimal solution for M .

Note that this suffices for finding minimal solutions in practice as our implementation finds
any productive solution that is encoded by Π f (M ).

Proof Sketch for Theorem 3
This result can be shown similarly as the previous Theorem 2. Each unary and binary atom
introduced via the items (s1) and (s2) of Definition 12, respectively, whose arguments occur in
an acyclic sequence of binary atoms from the BK that connects the first argument a of each
positive example p(a,b) ∈ E+ to its second argument b, can be mapped to exactly one unary and
binary atom, resp., that is introduced by items (f1) and (f2) of Definition 7. In this regard, the
only difference is that object-level constants in (f1) and (f2) are replaced by abstract states of the
form (e+id ,seqid , i) according to Definition 9 in (s1) and (s2). Furthermore, all acyclic sequences
representing a possible chain that connects the first argument of each positive example to its
second argument are imported by the external atom in item (s4).

Then, the only essential remaining differences between Π f (M ) and Πsa(M ) consist in the
fact that sequences that are modeled by a solution and correspond to derivations of positive
examples are guessed in item (s4), and that instead of the second constraint from item (4) of
Definition 3, the derivability of negative examples is checked by means of the external atom in
item (s7). However, a minimal solution for M needs to model at least one sequence for deriv-
ing each positive example, which is ensured jointly by items (s3), (s5) and (s6). Moreover, no
minimal solution w.r.t. the restriction to acyclic sequences of Part (ii) of Theorem 3 is lost by
excluding cyclic sequences in Definition 8. Finally, item (s7) removes like the second constraint
from item (4) all hypotheses that entail a negative example.

Appendix B Benchmark Encodings and Sample Instance

To illustrate the concrete encodings and the instances employed for the empirical evaluation in
Section 5, we present the encodings Π f (M ) and Πsa(M ) as well as the input to Metagol used
for the Robot Waiter Strategies benchmark (B3). A sample instance and a corresponding solution
of benchmark (B3) can be found at the end of this section.

Moreover, the encodings of all benchmark problems used in Section 5 and all instances used
in the experiments are available at http://www.kr.tuwien.ac.at/research/projects/inthex/hexmil/.

B.1 Forward-Chained HEX-MIL-Encoding

binary(pour_tea,X,Y) :- &pour_tea[X](Y), state(X).

binary(pour_coffee,X,Y) :- &pour_coffee[X](Y), state(X).

binary(move_right,X,Y) :- &move_right[X](Y), state(X).

unary(wants_tea,X) :- &wants_tea[X](), state(X).

unary(wants_coffee,X) :- &wants_coffee[X](), state(X).

unary(at_end,X) :- &at_end[X](), state(X).

order(X,Y) :- skolem(X), binary(Y,_,_).

order(X,Y) :- pos_ex(X,_,_), binary(Y,_,_).

order(X,Y) :- pos_ex(X,_,_), skolem(Y).

order(X,Y) :- skolem(X), skolem(Y), X < Y.
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{meta(precon,P1,P2,P3)} :- order(P1,P3), unary(P2,X), deduced(P3,X,Y).

{meta(postcon,P1,P2,P3)} :- order(P1,P2), deduced(P2,X,Y), unary(P3,Y).

{meta(chain,P1,P2,P3)} :- order(P1,P2), order(P1,P3), deduced(P2,X,Z),

deduced(P3,Z,Y).

{meta(tailrec,P1,P2,n)} :- order(P1,P2), deduced(P2,X,Z), deduced(P1,Z,Y).

deduced(P1,X,Y) :- meta(precon,P1,P2,P3), unary(P2,X), deduced(P3,X,Y).

deduced(P1,X,Y) :- meta(postcon,P1,P2,P3), deduced(P2,X,Y), unary(P3,Y).

deduced(P1,X,Y) :- meta(chain,P1,P2,P3), deduced(P2,X,Z), deduced(P3,Z,Y).

deduced(P1,X,Y) :- meta(tailrec,P1,P2,n), deduced(P2,X,Z), deduced(P1,Z,Y).

state(X) :- pos_ex(_,X,_).

state(Y) :- deduced(_,_,Y).

deduced(P,X,Y) :- binary(P,X,Y).

:- pos_ex(P,X,Y), not deduced(P,X,Y).

:- pos_ex(P,X,Y1), deduced(P,X,Y2), Y1 != Y2.

:- #count{ M,P1,P2,P3 : meta(M,P1,P2,P3) } != N, size(N).

B.2 State Abstraction HEX-MIL-Encoding

Note that even though the syntax of the external atom used for importing binary and unary BK
as well as the positive examples in the encoding below differs from the external atoms used in
Definition 12, identical extensions are imported for the atoms binary, unary and pos as described
in Section 4. Hence, the encoding is equivalent to the encoding of Definition 12.

binary(A,N1,N2) :- &abduceSequence[ID,ExStart,ExEnd](X,N1,N2,A),

pos_ex(ID,_,ExStart,ExEnd), X = seq.

unary(A,N) :- &abduceSequence[ID,ExStart,ExEnd](X,N,N,A),

pos_ex(ID,_,ExStart,ExEnd), X = check.

pos(ID,A,N1,N2) v n_pos(ID,A,N1,N2) :-

&abduceSequence[ID,ExStart,ExEnd](X,N1,N2,A),

pos_ex(ID,_,ExStart,ExEnd), X = goal.

:- &failNeg[meta,pos_ex]().

pos1(ID) :- pos(ID,_,_,_).

:- pos_ex(ID,_,_,_), not pos1(ID).

order(X,Y) :- skolem(X), binary(Y,_,_).

order(X,Y) :- pos(X,_,_), binary(Y,_,_).

order(X,Y) :- pos(X,_,_), skolem(Y).

order(X,Y) :- skolem(X), skolem(Y), X < Y.

meta(precon,P1,P2,P3) :- order(P1,P3), unary(P2,X), deduced(P3,X,Y).

meta(postcon,P1,P2,P3) :- order(P1,P2), deduced(P2,X,Y), unary(P3,Y).

meta(chain,P1,P2,P3) :- order(P1,P2), order(P1,P3), deduced(P2,X,Z),

deduced(P3,Z,Y).

meta(tailrec,P1,P2,n) :- order(P1,P2), deduced(P2,X,Z), deduced(P1,Z,Y).
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deduced(P1,X,Y) :- meta(precon,P1,P2,P3), unary(P2,X), deduced(P3,X,Y).

deduced(P1,X,Y) :- meta(postcon,P1,P2,P3), deduced(P2,X,Y), unary(P3,Y).

deduced(P1,X,Y) :- meta(chain,P1,P2,P3), deduced(P2,X,Z), deduced(P3,Z,Y).

deduced(P1,X,Y) :- meta(tailrec,P1,P2,n), deduced(P2,X,Z), deduced(P1,Z,Y).

deduced(P,X,Y) :- binary(P,X,Y).

:- not deduced(P,X,Y), pos(_,P,X,Y).

:- #count M,P1,P2,P3 : meta(M,P1,P2,P3) != N, size(N).

B.3 Metagol Input Program

metagol:functional.

func_test(Atom,PS,G):-

Atom = [P,A,B],

Actual = [P,A,Z],

\+ (metagol:prove_deduce([Actual],PS,G),Z \= B).

metarule(precon,[P,Q,R],([P,A,B]:-[[Q,A],[R,A,B]])).

metarule(postcon,[P,Q,R],([P,A,B]:-[[Q,A,B],[R,B]])).

metarule(chain,[P,Q,R],([P,A,B]:-[[Q,A,C],[R,C,B]])).

metarule(tailrec,[P,Q],([P,A,B]:-[[Q,A,C],[P,C,B]])).

prim(pour_tea/2).

prim(pour_coffee/2).

prim(move_right/2).

prim(wants_tea/1).

prim(wants_coffee/1).

prim(at_end/1).

a :-

train_exs(Pos),

Neg = [],

learn(Pos,Neg).

pour_tea([robot_pos(X),end(Y),places([place(X,A,cup(up,empty))|R])],

[robot_pos(X),end(Y),places([place(X,A,cup(up,tea))|R])]).

pour_tea([robot_pos(X),end(Y),places([E|R1])],

[robot_pos(X),end(Y),places([E|R2])]) :-

pour_tea([robot_pos(X),end(Y),places(R1)],[robot_pos(X),end(Y),places(R2)]).

pour_coffee([robot_pos(X),end(Y),places([place(X,A,cup(up,empty))|R])],

[robot_pos(X),end(Y),places([place(X,A,cup(up,coffee))|R])]).

pour_coffee([robot_pos(X),end(Y),places([E|R1])],

[robot_pos(X),end(Y),places([E|R2])]) :-

pour_coffee([robot_pos(X),end(Y),places(R1)],[robot_pos(X),end(Y),places(R2)]).

move_right([robot_pos(X1),end(Y)|R],[robot_pos(X2),end(Y)|R]) :-
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X1 < Y, X2 is X1 + 1.

wants_tea([robot_pos(X),end(_),places([place(X,tea,_)|_])]).

wants_tea([robot_pos(X),end(Y),places([_|R])]) :-

wants_tea([robot_pos(X),end(Y),places(R)]).

wants_coffee([robot_pos(X),end(_),places([place(X,coffee,_)|_])]).

wants_coffee([robot_pos(X),end(Y),places([_|R])]) :-

wants_coffee([robot_pos(X),end(Y),places(R)]).

at_end([robot_pos(X),end(X)|_]).

B.4 Sample Instance and Solution

Instance:

pos_ex([robot_pos(1),end(3),places([place(1,coffee,cup(up,empty)),

place(2,coffee,cup(up,empty))])],

[robot_pos(3),end(3),places([place(1,coffee,cup(up,coffee)),

place(2,coffee,cup(up,coffee))])]).

pos_ex([robot_pos(1),end(6),places([place(1,coffee,cup(up,empty)),

place(2,coffee,cup(up,empty)),place(3,coffee,cup(up,empty)),

place(4,tea,cup(up,empty)),place(5,coffee,cup(up,empty))])],

[robot_pos(6),end(6),places([place(1,coffee,cup(up,coffee)),

place(2,coffee,cup(up,coffee)),place(3,coffee,cup(up,coffee)),

place(4,tea,cup(up,tea)),place(5,coffee,cup(up,coffee))])]).

Solution:

robot(A,B):-robot_1(A,B),at_end(B).

robot(A,B):-robot_1(A,C),robot(C,B).

robot_1(A,B):-robot_2(A,C),move_right(C,B).

robot_2(A,B):-wants_tea(A),pour_tea(A,B).

robot_2(A,B):-wants_coffee(A),pour_coffee(A,B).


