ﬁ EasyChair Preprint

Ne 360

Partial Regularization of First-Order Resolution
Proofs

Jan Gorzny, Ezequiel Postan and Bruno Woltzenlogel Paleo

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

July 20, 2018

Partial Regularization of First-Order Resolution

Proofs
Jan Gorzny* Ezequiel Postan*
University of Waterloo Universidad Nacional de Rosario
Waterloo, ON, Canada Rosario, Santa Fe, Argentina
jgorznyQ@uwaterloo.ca ezequiel@fceia.unr.edu.ar

Bruno Woltzenlogel Paleo!

Vienna University of Technology
Vienna, Austria

bruno@logic.at

Proofs are a key interface of modern propositional and first-order theorem provers.
However, this interface is complicated by proofs which are not necessarily as concise
as possible. There are a wide variety of compression techniques for propositional reso-
lution proofs, but fewer compression techniques for first-order resolution proofs gener-
ated by automated theorem provers. This paper describes an approach to compressing
first-order logic proofs based on lifting proof compression ideas used in propositional
logic to first-order logic. An empirical evaluation of the approach is included.

1 Introduction

Proof production is a key feature that has been gaining importance for modern theo-
rem provers. Proofs are a crucial interface for applications that require certification of a
prover’s answers or that extract additional information from proofs (e.g. unsat cores, inter-
polants, instances of quantified variables). Mature first-order automated theorem provers,
commonly based on refinements and extensions of resolution and superposition calculi
(19, 20% 27, 17} [15], support proof generation. However, proof production is non-trivial
[21]], and the most efficient provers do not necessarily generate the shortest proofs.
Lengthy proofs complicate this interface: they take longer to check, consume more
memory during proof-checking, occupy more storage space and are harder to exchange,
may have a larger unsat core (if more input clauses are used in the proof), and have a larger
Herbrand sequent if more variables are instantiated [28| 13| [14} [18]]. For these technical
reasons, it is worth pursuing efficient algorithms that compress proofs after they have been
found. Furthermore, the problem of proof compression is closely related to Hilbert’s 24th
Problem [24], which asks for criteria to judge the simplicity of proofs; proof length is one
possible criterion. Efficient proof compression techniques result in greater usability with
minimal additional overhead that can be integrated into theorem provers or external tools.

*Supported by the Google Summer of Code 2014 and Google Summer of Code 2016 programs
TBruno ist Stipendiat der Osterreichischen Akademie der Wissenschaft (APART) an der TU-Wien

© J. Gorzny, E. Postan & B. Woltzenlogel Paleo
This work is licensed under the
Creative Commons Attribution License.

Submitted to:
UITP 2018

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Partial Regularization of First-Order Resolution Proofs

For propositional resolution proofs, as those typically generated by SAT- and SMT-
solvers, there is a wide variety of proof compression techniques These techniques include
investigating algebraic properties of resolution [7], rearranging and sharing chains of res-
olution inferences [, 22]], and splitting a proof according a literal which may result in a
compressed proof when recombined [5]. Bar-Ilan et al. [2] and Fontaine et al. [8]] de-
scribed a linear time proof compression algorithm based on partial regularization, which
removes an inference 11 when it is redundant in the sense that its pivot literal already occurs
as the pivot of another inference in every path from 1) to the root of the proof.

In contrast, there has been much less work on simplifying first-order proofs. For tree-
like sequent calculus proofs, algorithms based on cut-introduction [16, [12] have been pro-
posed, but these may increase the size of the proof. For arbitrary proofs in the Thousands of
Problems for Theorem Provers (TPTP) [23] format (including DAG-like first-order resolu-
tion proofs), there is an algorithm [25]] that looks for terms that occur often in any Thousands
of Solutions from Theorem Provers (TSTP) [23]] proof and abbreviates them.

The work reported in this paper is part of a new trend that aims at lifting suc-
cessful propositional proof compression algorithms to first-order logic. Our first
target was the propositional LowerUnits (LU) algorithm [8], which delays resolu-
tion steps with unit clauses, and we lifted it to a new algorithm that we called
GreedyLinearFirstOrderLowerUnits (GFOLU) algorithm [10]. Here we continue this
line of research by lifting the RecyclePivotsWithIntersection (RPI) algorithm [8],
which improves the RecyclePivots (RP) algorithm [2] by detecting nodes that can be
regularized even when they have multiple children.

Section[2]defines the first-order resolution calculus and Section[3|summarizes the propo-
sitional RPI algorithm. Section [4] discusses the challenges that arise in the first-order case
(mainly due to unification), which are not present in the propositional case, and concludes
with conditions useful for first-order regularization. Section [6] presents experimental results
obtained by applying this algorithm, and its combinations with GFOLU, on proofs generated
by SPASS and randomly generated proofs. Section [7|concludes the paper.

2 The Resolution Calculus

As usual, our language has infinitely many variable symbols (e.g. x, y, z, X1, X2, ...),
constant symbols (e.g. a, b, c, a1, ay, ...), function symbols of every arity (e.g f, g, f1, f2.
...) and predicate symbols of every arity (e.g. P, Q, P, P»,...). A term is any variable,
constant or the application of an n-ary function symbol to n terms. An atomic formula
(atom) is the application of an n-ary predicate symbol to n terms. A literal is an atom or
the negation of an atom. The complement of a literal ¢ is denoted ¢ (i.e. for any atom
P, P =—P and =P = P). The underlying atom of a literal ¢ is denoted |¢| (i.e. for any
atom p, |P| = P and |=P| = P). A clause is a multiset of literals. | denotes the empty
clause. A unit clause is a clause with a single literal. Sequent notation is used for clauses
(i.e. Pi,...,P,F O1,...,0 denotes the clause {—Py,...,~P,;,01,...,0n}). Var(t) (resp.
Var(?), Var(I')) denotes the set of variables in the term ¢ (resp. in the literal £ and in the

J. Gorzny, E. Postan & B. Woltzenlogel Paleo 3

clause I'). A substitution {x;\t1,x2\t2,...} is a mapping from variables {x;,x»,...} to,
respectively, terms {#1,7,,...}. The application of a substitution o to a term ¢, a literal £ or a
clause I results in, respectively, the term ¢ o, the literal /o or the clause I'c, obtained from
t, £ and I by replacing all occurrences of the variables in ¢ by the corresponding terms in
0. A literal ¢ matches another literal ¢ if there is a substitution ¢ such that fo = ¢'. A
unifier of a set of literals is a substitution that makes all literals in the set equal. We will use
X C Y to denote that X subsumes Y, when there exists a substitution o such that Xo C Y.

A resolution proof is a directed acyclic graph of clauses where the edges correspond to
the inference rules of resolution and factoring, as explained in detail in Definition 2.1} A
resolution refutation is a resolution proof with root L.

Definition 2.1 (First-Order Resolution Proof). A directed acyclic graph (V,E,I"), where
V is a set of nodes and E is a set of edges labeled by literals and substitutions (i.e. £ C
V x 2% x . xV, where & is the set of all literals and . is the set of all substitutions, and

Vi i> v, denotes an edge from node v; to node v, labeled by the literal £ and the substitution
(e}

0), is a proof of a clause I' iff it is inductively constructible according to the following cases:
e Axiom: If T'is a clause, I denotes some proof ({v},@,T’), where v is a new node.

. Resolutiorﬂ: If y; is a proof (V.,E,I'.) and yg is a proof (Vg,Eg,I'g), o1 and og

are substitutions s.t. /767 = (g0, then Yy QZLEGRR W denotes a proof (V,E.T') s.t.

V:VLUVRU{V} F:FLGLUF;QGR
{0} {Cr}
E=E UERU {p(w) VP (WR) v}

where v is a new (resolution) node and p(¢) denotes the root node of ¢. The literals
{1 and fg are resolved literals, whereas ¢; 0y and {rOR are its instantiated resolved
literals. The pivot is the underlying atom of its instantiated resolved literals (i.e.
|¢p 01| or, equivalently, [(gOR|).

e Factoring: If v’ is a proof (V' E' T"), o is a unifier of {/,...,¢,}, and £ = ¢;0 for
any i € {1,...,n}, then | y| ?41....4 , denotes a proof (V,E,T) s.t.

V=vup} T=roufry E=Eufpy) by

where v is a new (factoring) node, and p(¢@) denotes the root node of ¢. O

3 The Propositional Algorithm

RPI (formally defined in [8]]) removes irregularities, which are resolution inferences deriv-
ing a node) when the resolved literal occurs as the pivot of another inference located below

IThis is referred to as “binary resolution™ elsewhere, with the understanding that “binary” refers to the
number of resolved literals, rather than the number of premises of the inference rule.

4 Partial Regularization of First-Order Resolution Proofs

ni: FP(w,x) M: P(w,x) FQ(c)
m: FO(c) Na: Q(c) + P(a,x) m: F P(w,x) Ne: P(y,b) -
Ne: P(y,b) ns: + P(a,x) vl
v L

Figure 1: A proof v (left), and a regularized proof ¥’ (right).

in the path from 1 to the root of the proof. In the worst case, regular resolution proofs can
be exponentially bigger than irregular ones, but RPI takes care of regularizing the proof
only partially, removing inferences only when this does not enlarge the proof.

RPI traverses the proof twice. On the first traversal (bottom-up), it computes and stores
for each node a set of safe literals: literals that are resolved in all paths from the node to
the root of the proof or that occur in the root clause. If one of the node’s resolved literals
belongs to the set of safe literals, then it is possible to regularize the node by replacing it
by the parent containing the safe literal. To do this replacement efficiently, the replacement
is postponed by marking the other parent as a deletedNode. Then, on a single second
traversal (top-down), regularization is performed: any node that has a parent node marked
as a deletedNode is replaced by its other parent.

The RPI and the RP algorithms differ from each other mainly in the computation of the
safe literals of a node that has many children. While the former returns the intersection, the
latter returns the empty set. Moreover, while in RPI the safe literals of the root node contain
all the literals of the root clause, in RP the root node’s set of safe literals is always empty.

4 Lifting to First-Order

Example 4.1. Consider the proof v in Figure |l When computed as in the propositional
case, the safe literals for Nz are {Q(c), P(a,x)}. As neither of M3’s resolved literals is
syntactically equal to a safe literal, the propositional RPI algorithm would not change .
However, n3’s left resolved literal P(w,x) € 1 is unifiable with the safe literal P(a,x).
Regularizing M3, by deleting the edge between My and M3 and replacing N3 by 11, leads to
further deletion of N4 (because it is not resolvable with 1) and finally to the much shorter
proof W' in Figurell|

Unlike in the propositional case, where a resolved literal must be syntactically equal to a
safe literal for regularization to be possible, the example above suggests that, in the first-
order case, it might suffice that the resolved literal be unifiable with a safe literal. However,
there are cases where mere unifiability is not enough and greater care is needed: e.g., when
M :F P(a,c) and 1 : P(a,c) F Q(c) in Example One way to prevent these cases is
to require the resolved literal to be not only unifiable but subsume a safe literal. A slight
modification to the concept of safe literals, which takes into account the unifications that
occur on the paths from a node to the root, results in a weaker (and better) requirement.

Definition 4.1. The set of safe literals for a node 7 in a proof y with root clause I', denoted
#(n), is such that ¢ € .(n) if and only if ¢ € T or for all paths from 7 to the root of v

J. Gorzny, E. Postan & B. Woltzenlogel Paleo 5

M Pu,v) F O(f(a,v),u) M2 Q(f(a,%),y), 0t,x) - O(f(a,2),y)

7731P(”vV)-,Q(fv")"Q(f(avz)-,”) N4: FQ(V,S)
Ne: F P(C’d) URE P(M,V) H Q(f(avz)vu)
ns: O(f(a,e),c) - n7: F O(f(a,2),¢)

v L

Figure 2: An example where pre-regularizability is not sufficient.

. ¢ .
there is an edge vi — v, with /o = /.
e}

As in the propositional case, safe literals can be computed in a bottom-up traversal of the
proof. Initially, at the root, the safe literals are exactly the literals that occur in the root

clause. As we go up, the safe literals .’(n’) of a parent node 1’ of 1 where n’ EN 7 is set
(e}

to .7 (n)U{lc}. Note that we apply the substitution to the resolved literal before adding it
to the set of safe literals (cf. algorithm[2] lines 8 and 10). In other words, in the first-order
case, the set of safe literals has to be a set of instantiated resolved literals.

In the modified case of Example computing safe literals as defined above would
result in .7 (1n3) = {Q(c), P(a,b)}, where clearly the pivot P(a,c) in 7m; is not safe. A
generalization of this requirement, which can be thought of a necessary condition, follows.

Definition 4.2. Let 1 be a node with safe literals .’(n) and parents 71; and 7, assuming

l
without loss of generality, 1, Q n. The node 1 is said to be pre-regularizable in the
[

proof y if ¢} o] matches a safe literal £* € . (n).

Example 4.2. Satisfying the pre-regularizability is not sufficient. Consider the proof W
in Figure 2} After collecting the safe literals, .7 (n3) = {—Q(r,v),=P(c,d),0(f(a,e),c)}.
n3’s pivot Q(f(a,v),u) matches the safe literal Q(f(a,e),c). Attempting to regularize N3
would lead to the removal of N, the replacement of N3 by 1y and the removal of N4 (because
N1 does not contain the pivot required by Ms), with Ns also being replaced by 1. Then
resolution between My and Ne results in 1, which cannot be resolved with ng, as shown
below.

Ne: + P(c,d) m: P(u,v) E O(f(a,v),u)
ns: O(f(a,e),c) - ny: = 0O(f(a.d),c)
vyl 22

Mm’s literal Q(f(a,v),u), which would be resolved with mg’s literal, was changed to
O(f(a,d),c) due to the resolution between 1 and M.

Thus we additionally require that the following condition be satisfied, which ensures that
the remainder of the proof does not expect a variable in 7); to be unified to different values
simultaneously. This property is not necessary in the propositional case, as the literals of
the replacement node do not change lower in the proof.

6 Partial Regularization of First-Order Resolution Proofs

input : A first-order proof y

output: A possibly less-irregular first-order proof y’

v ey

traverse Y’ bottom-up and foreach node 1 in y' do

if 1 is a resolvent node then

setSafeLiterals(n) ;
regularizeIfPossible(n)

v fix(y');

return y’;

D R R I S I

Algorithm 1: FORPI

input : A first-order resolution node y
output: nothing (but the node y gets a set of safe literals)

if ¥ is a root node with no children then . (y) + y.clause ;
else
foreach ' € y.children do
if ' is marked as regularized then safeLiteralsFrom(y’) + .7 (y') ;
elseif v/ =y @Z’-&R YR for some g then safeLiteralsFrom(y') < .7 (y') U {{groR} ;

OLOR

elseif y' =y, g W for some . then safeLiteralsFrom(y") «+ . (y') U {{LoL};
-}(ﬂ(W) — nu//el[/.children safeLiteralsFrom(l//’)

Algorithm 2: setSafelLiterals for FORPI

PO N N S

Definition 4.3. Let 1 be pre-regularizable, with safe literals .#’(1) and parents 1; and 13,
¢

with clauses I'} and I'; respectively, assuming without loss of generality that 1, Q 1N such
(9]

that /; o) matches a safe literal £* € .’(n). The node 7 is said to be strongly regularizable
in wifl“lcrl C Y(n)

The notion of strongly regularizable can be thought of as a sufficient condition, and the
following is proved in the longer version of this paper (available on the ArXiv [[11]), which
also discusses a conjectured weaker condition.

Theorem 4.3. Let y be a proof with root clause T and 1) be a node in y. Let ' = w\ {n}
and T be the root of w'. If 11 is strongly regularizable, then T" C T..

S Implementation

FirstOrderRecyclePivotsWithIntersection (FORPI) (cf. Algorithm [I) is a first-
order generalization of the propositional RPI. FORPI traverses the proof in a bottom-up
manner, storing for every node a set of safe literals. The set of safe literals for a node y
is computed from the set of safe literals of its children (cf. Algorithm [2)), similarly to the
propositional case, but additionally applying unifiers to the resolved literals.If one of the
node’s resolved literals matches a literal in the set of safe literals, then it may be possible to
regularize the node by replacing it by one of its parents.

In the first-order case, we additionally check for strong regularizability (cf. lines 2
and 6 of Algorithm [3). Similarly to RPI, instead of replacing the irregular node by one of

J. Gorzny, E. Postan & B. Woltzenlogel Paleo 7

OLOR

input : A node y =y © e VR
output: nothing (but the proof containing y may be changed)
if 30 and (€ 7 (y) such that { = {goRrC then
if yroro C . (y) then
mark Y, as deletedNode ;
mark y as regularized
else if 30 and { € .7 (y) such that { = {; 6, c then
if yporo C .7 (y) then
mark yg as deletedNode ;
mark y as regularized

Algorithm 3: regularizeIfPossible for FORPI

® N AW N =

its parents immediately, its other parent is marked as a deletedNode, as shown in Algo-
rithm [3] As in the propositional case, fixing of the proof is postponed to another (single)
traversal, as regularization proceeds top-down and only nodes below a regularized node
may require fixing. During fixing, the irregular node is actually replaced by the parent that
is not marked as deletedNode. During proof fixing, factoring inferences can be applied,
in order to compress the proof further.

6 Experiments

A prototype version of FORPI has been implemented in the functional programming lan-
guage Scala as part of the Skeptik library. This library includes an implementation of GFOLU
[10]. Note that by implementing the algorithms in this library, we have a relative guarantee
that the compressed proofs are correct, as in Skeptik every inference rule (e.g. resolution,
factoring) is implemented as a small class (each at most 178 lines of code that is assumed
correct) with a constructor that checks whether the conditions for the application of the rule
are met, thereby preventing the creation of objects representing incorrect proof nodes (i.e.
unsound inferences). We only need to check that the root clause of the compressed proof is
equal to or stronger than the root clause of the input proof and that the set of axioms used
in the compressed proof is a subset of the set of axioms used in the input proof.

FORPI was evaluated on the same 308 proofs generated by SPASS to evaluate GFOLU, as
well as 2280 (the same number of problems initially given to SPASS) randomly generated
proofs. Proof lengths varied from 3 to 700, while the number of resolutions in a proof
ranged from 1 to 368. The same laptop was used to perform proof compression. Details
can be found in [11], and the proofs are available at https://github.com/jgorzny/
Skeptik.

For each proof y, we measured the time needed to compress the proof (#(y)) and
the compression ratio ((|y| — |a(y)|)/|y|) where |y| is the number of resolutions in the
proof, and a(y) is the result of applying a compression algorithm or some composition
of FORPI and GFOLU. Note that we consider only the number of resolutions in order to
compare the results of these algorithms to their propositional variants (where factoring is
implicit). Moreover, factoring could be made implicit within resolution inferences even in

https://github.com/jgorzny/Skeptik
https://github.com/jgorzny/Skeptik

8 Partial Regularization of First-Order Resolution Proofs
Algorithm # of Proofs Compressed # of Removed Nodes
TPTP Random Both TPTP Random Both

GFOLU(p) 55 (17.9%) 817 (35.9%) 872 (33.7%) 107 (4.8%) 17,769 (4.5%) 17,876 (4.5%)
FORPI(p) 23 (7.5%) 666 (29.2%) 689 (26.2%) 36 (1.6%) 28,904 (7.3%) 28,940 (7.3%)
GFOLU(FORPI(p)) || 55 (17.9%) | 1303 (57.1%) | 1358 (52.5%) || 120 (5.4%) | 48,126 (12.2%) | 48,246 (12.2%)
FORPI(GFOLU(p)) 23 (7.5%) | 1302 (57.1%) | 1325(51.2%) 120 (5.4%) | 48,434 (12.3%) | 48,554 (12.3%)
Best 59 (19.2%) | 1303 (57.1%) | 1362 (52.5%) || 120 (5.4%) | 55,530 (14.1%) | 55,650 (14.0%)

Table 1: Number of proofs compressed and number of overall nodes removed

Algorithm First-Order Compression Algorithm Propositional Compression [3]]
All [Compressed Only

GFOLU(p) 4.5% 13.5% LU(p) 7.5%

FORPI(p) 6.2% 23.2% RPI(p) 17.8%

GFOLU(FORPI(p)) | 10.6% 23.0% (LU(RPI(p)) 21.7%

FORPI(GFOLU(p)) | 11.1% 21.5% (RPI(LU(p)) 22.0%

Best 12.6% 24.4% Best 22.0%

Table 2: Mean compression results

the first-order case and we use explicit factoring only for technical convenience.

Table [1| summarizes the results of FORPI and its combinations with GFOLU. The first set
of columns describes the percentage of proofs that were compressed by each compression
algorithm. The algorithm ‘Best’ runs both combinations of GFOLU and FORPTI and returns
the shortest proof output by either of them. The total number of proofs is 308 4-2280 = 2588
and the total number of resolution nodes is 2,249 4 393,883 = 396, 132. The percentages
in the last three columns are computed by (Zyew|W| — Zyew|a(y)|)/(Zyep|y]|) for each
data set ¥ (TPTP, Random, or Both). The use of FORPI alongside GFOLU allows at least
an additional 17.5% of proofs to be compressed. Furthermore, the use of both algorithms
removes almost twice as many nodes than any single algorithm.

Table [2| compares the results of FORPI and its combinations with GFOLU with their
propositional variants as evaluated in [3]]. The first column describes the mean compression
ratio for each algorithm including proofs that were not compressed by the algorithm, while
the second column calculates the mean compression ratio considering only compressed
proofs. It is unsurprising that the first column is lower than the propositional mean for each
algorithm: there are stricter requirements to apply these algorithms to first-order proofs. In
particular, additional properties must be satisfied before a unit can be lowered, or before
a pivot can be recycled. On the other hand, when first-order proofs are compressed, the
compression ratios are on par with or better than their propositional counterparts.

Figure 3] (a) shows the number of proofs (compressed and uncompressed) per grouping
based on number of resolutions in the proof. The red (resp. dark grey) data shows the
number of compressed (resp. uncompressed) proofs for the TPTP data set, while the green
(resp. light grey) data shows the number of compressed (resp. uncompressed) proofs for
the random proofs. The number of proofs in each group is the sum of the heights of each
coloured bar in that group. The overall percentage of proofs compressed in a group is
indicated on each bar. Dark colors indicate the number of proofs compressed by FORPI,

J. Gorzny, E. Postan & B. Woltzenlogel Paleo 9

425 7 = Compressed (Random)

400 | ™ Aways Compressed (Random) 350 — © FORPI(p)

Compressed (TPTP) * GFOLU(p)
375 | = Aways Compressed (TPTP) 2 FORPI(GFOLU(p))
Not Compressed (Random) GFOLU(FORPI(p))

350 - = Not Compressed (TPTP) 300 o &

325 4
300 4
275 +
250
225 o
200
175 o
150 -
125 o
100 -
75 4
50 4
25

04

30 o

250 o
20 A

200

Number of Proofs

150

100

Compressed Length (Resolutions)
°

50 —

= 0

T T
2 =]
I S
= Q ~

g
&
o
8

Proof Length Before Compression (Resolutions) Proof Length (Resolutions)

(a) Number of (non-)compressed proofs (b) Compressed length against input length

350 | + TPTP Data 2%] — Fowp
o Random Data 50 - — FORPI(p)
FORPI(FOLU(p))

i 46 FOLU(FORPI(p))
300 44 + — Best
42 H0.12

250

200
150

00 4o o %

Compressed Resolutions (GFOLU(FORPI(p)))
Number of Removed Resolutions (x10"3)

50

0
50 o
00 o
50 4

350 —

T T T
o o o
S B S
& & &

Compressed Resolutions (FORPI(GFOLU(p)))

(c) FORPI (GFOLU (p)) vs. GFOLU (FORPI (d) Cumulative proof compression
)

Figure 3: GFOLU & FORPI Combination Results

GFOLU, and both compositions of these algorithms; light colors indicate cases were FORPI
succeeded, but at least one of GFOLU or a combination of these algorithms achieved zero
compression. Given the size of the TPTP proofs, it is unsurprising that few are compressed:
small proofs are a priori less likely to contain irregularities. On the other hand, at least 43%
of the randomly generated proofs in each size group could be compressed.

Figure [3] (b) is a scatter plot comparing the number of resolutions of the input proof
against the number of resolutions in the compressed proof for each algorithm. The results
on the TPTP data are magnified in the sub-plot. For the randomly generated proofs (points
outside of the sub-plot), it is often the case that the compressed proof is significantly shorter
than the input proof. Interestingly, GFOLU appears to reduce the number of resolutions by
a linear factor in many cases. This is likely due to a linear growth in the number of non-
interacting irregularities (i.e. irregularities for which the lowered units share no common

10 Partial Regularization of First-Order Resolution Proofs

literals with any other sub-proofs), which leads to a linear number of nodes removed.

Figure [3] (c) is a scatter plot comparing the size of compression obtained by applying
FORPI before GFOLU versus GFOLU before FORPI. Data obtained from the TPTP data set is
marked in red; the remaining points are obtained from randomly generated proofs. Points
that lie on the diagonal line have the same size after each combination. There are 249 points
beneath the line and 326 points above the line. Therefore, as in the propositional case [8],
it is not a priori clear which combination will compress a proof more. Applying FORPI
after GFOLU is more likely to maximize the likelihood of compression, and the achieved
compression also tends to be larger.

Figure 3| (d) shows a plot comparing the difference between the cumulative number of
resolutions of the first x input proofs and the cumulative number of resolutions in the first x
proofs after compression (i.e. the cumulative number of removed resolutions). The TPTP
data is displayed in the sub-plot; note that the lines for everything except FORPI largely
overlap (since the values are almost identical; cf. Table[I). The data shows that the best
approach is to try both combinations of FORPI and GFOLU and choose the best result.

Proof generation required approximately 110 minutes (including some cluster time),
while the total time to apply both FORPI and GFOLU on all these proofs was just over 7.5
minutes on a simple laptop computer. All times include parsing time. These compres-
sion algorithms continue to be very fast in the first-order case, and may simplify the proof
considerably for a relatively small cost in time.

7 Conclusions and Future Work

The main contribution of this paper is the lifting of the propositional proof compression
algorithm RPI to the first-order case. As indicated in Section 4] the generalization is chal-
lenging, because unification instantiates literals and, consequently, a node may be regular-
izable even if its resolved literals are not syntactically equal to any safe literal. Unification
must be taken into account when collecting safe literals and marking nodes for deletion.

We evaluated the algorithm on two data sets, and the compression achieved by FORPT in
a short amount of time on this data set was compatible with our expectations and previous
experience in the propositional level. The obtained results indicate that FORPI is a promis-
ing compression technique to be reconsidered when first-order theorem provers become
capable of producing larger proofs. Although we carefully selected generation probabilites
in accordance with frequencies observed in real proofs, it is important to note that randomly
generated proofs may still differ from real proofs in shape and may be more or less likely
to contain irregularities exploitable by our algorithm.

In this paper, for the sake of simplicity, we considered a pure resolution calculus with-
out restrictions, refinements or extensions. However, in practice, theorem provers do use
restrictions and extensions. It is conceptually easy to adapt the algorithm described here to
many variations of resolution. For instance, a common extension of resolution is the split-
ting technique [26]. When splitting is used, each split sub-problem is solved by a separate
refutation, and FORPI could be applied to each refutation independently.

J. Gorzny, E. Postan & B. Woltzenlogel Paleo 11

References

(1]

(2]

(3]

(4]

(51

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

H. Amjad (2007): Compressing Propositional Refutations. ENTCS 185, pp. 3—15. Available
athttp://dx.doi.org/10.1016/j.entcs.2007.05.025|

O. Bar-Ilan, O. Fuhrmann, S. Hoory, O. Shacham & O. Strichman (2008): Linear-Time Reduc-
tions of Resolution Proofs. In: Haifa Verification Conference, LNCS, Springer, pp. 114-128.
Available athttp://dx.doi.org/10.1007/978-3-642-01702-5_14.

J. Boudou & B. Woltzenlogel Paleo (2013): Compression of Propositional Resolution Proofs
by Lowering Subproofs. In Galmiche & Larchey-Wendling [9], pp. 59-73, doi:10.1007/978-
3-642-40537-2_7. Available athttps://doi.org/10.1007/978-3-642-40537-2.

E. M. Clarke & A. Voronkov, editors (2010): Logic for Programming, Artificial Intelli-
gence, and Reasoning 16th International Conference, Dakar, Senegal, Revised Selected Pa-
pers. LNCS, Springer, doi:10.1007/978-3-642-17511-4.

S. Cotton (2010): Two Techniques for Minimizing Resolution Proofs. In O. Strichman &
S. Szeider, editors: SAT 2010, LNCS, Springer, pp. 306-312. Available at http://dx.doi.
org/10.1007/978-3-642-14186-7_26,

A. P. Felty & A. Middeldorp, editors (2015): Automated Deduction - CADE-25 - 25th Interna-
tional Conference on Automated Deduction, Berlin, Germany, August 1-7, 2015, Proceedings.
LNCS 9195, Springer, doi;10.1007/978-3-319-21401-6. Available at http://dx.doi.org/
10.1007/978-3-319-21401-6.

P. Fontaine, S. Merz & B. Woltzenlogel Paleo (2010): Exploring and Exploiting Algebraic and
Graphical Properties of Resolution. In: 8th International Workshop on SMT.

P. Fontaine, S. Merz & B. Woltzenlogel Paleo (2011): Compression of Propositional Reso-
lution Proofs via Partial Regularization. In: Automated Deduction - CADE-23 - 23rd Inter-
national Conference on Automated Deduction, Wroclaw, Poland, July 31 - August 5, 2011.
Proceedings, LNCS 6803, Springer, pp. 237-251. Available at http://dx.doi.org/10.
1007/978-3-642-22438-6_19,

D. Galmiche & D. Larchey-Wendling, editors (2013): Automated Reasoning with Analytic
Tableaux and Related Methods - 22th International Conference, TABLEAUX 2013, Nancy,
France, September 16-19, 2013. Proceedings. LNCS 8123, Springer, doi;10.1007/978-3-642-
40537-2. Available athttps://doi.org/10.1007/978-3-642-40537-2.

J. Gorzny & B. Woltzenlogel Paleo (2015): Towards the Compression of First-Order
Resolution Proofs by Lowering Unit Clauses. In Felty & Middeldorp [6]], pp.
356-366, doii10.1007/978-3-319-21401-6. Available at http://dx.doi.org/10.1007/
978-3-319-21401-6

J. Gorzny, E. Postan & B. Woltzenlogel Paleo (2018): Partial Regularization of First-Order
Resolution Proofs. CoRR abs/1804.06531. Available at https://arxiv.org/abs/1804.
06531.

S. Hetzl, A. Leitsch, G. Reis & D. Weller (2014): Algorithmic introduction of quantified cuts.
Theoretical Computer Science 549, pp. 1-16, doii10.1016/j.tcs.2014.05.018|

S. Hetzl, A. Leitsch, D. Weller & B. Woltzenlogel Paleo (2008): Herbrand Sequent Extraction.
In: Intelligent Computer Mathematics, 9th Int. Conference, AISC 2008, 15th Symposium, Cal-
culemus 2008, 7th Int. Conference, MKM 2008, Birmingham, UK, July 28 - August 1, 2008.
Proceedings, LNCS, Springer, pp. 462-477, doi;10.1007/978-3-540-85110-3_38. Available at
http://dx.doi.org/10.1007/978-3-540-85110-3_38.

http://dx.doi.org/10.1016/j.entcs.2007.05.025
http://dx.doi.org/10.1007/978-3-642-01702-5_14
http://dx.doi.org/10.1007/978-3-642-40537-2_7
http://dx.doi.org/10.1007/978-3-642-40537-2_7
https://doi.org/10.1007/978-3-642-40537-2
http://dx.doi.org/10.1007/978-3-642-17511-4
http://dx.doi.org/10.1007/978-3-642-14186-7_26
http://dx.doi.org/10.1007/978-3-642-14186-7_26
http://dx.doi.org/10.1007/978-3-319-21401-6
http://dx.doi.org/10.1007/978-3-319-21401-6
http://dx.doi.org/10.1007/978-3-319-21401-6
http://dx.doi.org/10.1007/978-3-642-22438-6_19
http://dx.doi.org/10.1007/978-3-642-22438-6_19
http://dx.doi.org/10.1007/978-3-642-40537-2
http://dx.doi.org/10.1007/978-3-642-40537-2
https://doi.org/10.1007/978-3-642-40537-2
http://dx.doi.org/10.1007/978-3-319-21401-6
http://dx.doi.org/10.1007/978-3-319-21401-6
http://dx.doi.org/10.1007/978-3-319-21401-6
https://arxiv.org/abs/1804.06531
https://arxiv.org/abs/1804.06531
http://dx.doi.org/10.1016/j.tcs.2014.05.018
http://dx.doi.org/10.1007/978-3-540-85110-3_38
http://dx.doi.org/10.1007/978-3-540-85110-3_38

12

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

Partial Regularization of First-Order Resolution Proofs

S. Hetzl, T. Libal, M. Riener & M. Rukhaia (2013): Understanding Resolution Proofs through
Herbrand’s Theorem. In Galmiche & Larchey-Wendling [9], pp. 157-171, doi:10.1007/978-
3-642-40537-2_15. Available athttps://doi.org/10.1007/978-3-642-40537-2_15|

W. McCune (2005-2010): Prover9 and Mace4. Available at http://www.cs.unm.edu/
~mccune/prover9/.

B. Woltzenlogel Paleo (2010): Atomic Cut Introduction by Resolution: Proof Structuring and
Compression. In Clarke & Voronkov [4]], pp. 463—480, doi:10.1007/978-3-642-17511-4.26

V. Prevosto & U. Waldmann (2006): SPASS+T. In G. Sutcliffe, R. Schmidt & S. Schulz,
editors: ESCoR, CEUR Workshop Proceedings, pp. 18-33.

G. Reis (2015): Importing SMT and Connection proofs as expansion trees. In C. Kaliszyk
& A. Paskevich, editors: Proceedings Fourth Workshop on Proof eXchange for Theo-
rem Proving, PxTP 2015, Berlin, Germany, August 2-3, 2015., EPTCS 186, pp. 3-10,
doi:10.4204/EPTCS.186.3. Available athttps://doi.org/10.4204/EPTCS.186.3.

A. Riazanov & A. Voronkov (2002): The design and implementation of VAMPIRE. Al
Commun. (2-3), pp. 91-110. Available at http://iospress.metapress.com/content/
ajar8kjbdtdf7kc2/,

S. Schulz (2013): System Description: E 1.8. In K. L. McMillan, A. Middeldorp &
A. Voronkov, editors: Logic for Programming, Artificial Intelligence, and Reasoning - 19th
International Conference, LPAR-19, Stellenbosch, South Africa, December 14-19, 2013. Pro-
ceedings, LNCS 8312, Springer, pp. 735-743, doi:10.1007/978-3-642-45221-5_49. Available
athttp://dx.doi.org/10.1007/978-3-642-45221-5_49|

S. Schulz & G. Sutcliffe (2015): Proof Generation for Saturating First-Order Theorem
Provers. In D. Delahaye & B. Woltzenlogel Paleo, editors: All about Proofs, Proofs for All,
Mathematical Logic and Foundations 55, College Publications, London, UK.

C. Sinz (2007): Compressing Propositional Proofs by Common Subproof Extraction. In
R. Moreno-Diaz, F. Pichler & A. Quesada-Arencibia, editors: EUROCAST, LNCS, Springer,
pp- 547-555. Available at http://dx.doi.org/10.1007/978-3-540-75867-9_69.

G. Sutcliffe (2009): The TPTP Problem Library and Associated Infrastructure: The FOF and
CNF Farts, v3.5.0. Journal of Automated Reasoning 43(4), pp. 337-362.

R. Thiele (2003): Hilbert’s Twenty-Fourth Problem. The American Mathematical Monthly
110(1), pp. 1-24. Available at http://www.jstor.org/stable/3072340.

J. Vyskocil, D. Stanovsky & J. Urban (2010): Automated Proof Compression by Invention of
New Definitions. In Clarke & Voronkov [4]], pp. 447—-462, doi:10.1007/978-3-642-17511-4_25/|

C. Weidenbach (2001): Combining Superposition, Sorts and Splitting. In J. A. Robinson &
A. Voronkov, editors: Handbook of Automated Reasoning (in 2 volumes), Elsevier and MIT
Press, pp. 1965-2013.

C. Weidenbach, D. Dimova, A. Fietzke, R. Kumar, M. Suda & P. Wischnewski (2009): SPASS
Version 3.5. In R. A. Schmidt, editor: Automated Deduction - CADE-22, 22nd Interna-
tional Conference on Automated Deduction, Montreal, Canada, August 2-7, 2009. Proceed-
ings, LNCS 5663, Springer, pp. 140-145, doii10.1007/978-3-642-02959-2_10. Available at
http://dx.doi.org/10.1007/978-3-642-02959-2_10.

B. Woltzenlogel Paleo (2007): Herbrand Sequent Extraction. M.sc. thesis, Technische Uni-
versitit Dresden; Technische Universitidt Wien, Dresden, Germany; Wien, Austria.

http://dx.doi.org/10.1007/978-3-642-40537-2_15
http://dx.doi.org/10.1007/978-3-642-40537-2_15
https://doi.org/10.1007/978-3-642-40537-2_15
http://www.cs.unm.edu/~mccune/prover9/
http://www.cs.unm.edu/~mccune/prover9/
http://dx.doi.org/10.1007/978-3-642-17511-4_26
http://dx.doi.org/10.4204/EPTCS.186.3
https://doi.org/10.4204/EPTCS.186.3
http://iospress.metapress.com/content/ajar8kjbdtdf7kc2/
http://iospress.metapress.com/content/ajar8kjbdtdf7kc2/
http://dx.doi.org/10.1007/978-3-642-45221-5_49
http://dx.doi.org/10.1007/978-3-642-45221-5_49
http://dx.doi.org/10.1007/978-3-540-75867-9_69
http://www.jstor.org/stable/3072340
http://dx.doi.org/10.1007/978-3-642-17511-4_25
http://dx.doi.org/10.1007/978-3-642-02959-2_10
http://dx.doi.org/10.1007/978-3-642-02959-2_10

	Introduction
	The Resolution Calculus
	The Propositional Algorithm
	Lifting to First-Order
	Implementation
	Experiments
	Conclusions and Future Work

