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Abstract: In this paper proposes an automated and large-scale segmentation of liver based on deep 

learning. Segmentation of the liver and liver lesions is very important in the initial diagnosis of the 

doctor. In the past, manual segmentation was usually used, but it took too long and there was human 

error. The automatically liver and lesions segmentation on a large scale can greatly reduce the 

diagnosis time. First of all, we will do a variety of pre-processing of the slice map, including 

preliminary organ differences and histogram equalization. Furthermore, due to the lack of pre-

processing training data, we use data augmentation methods to increase our training data. We divide 

the model into two parts. The first part focuses on the prediction of the liver and the second part 

focuses on the segmentation of the liver. We trained more than 30,000 liver slice maps. 

Experiments show that our DICE Score can exceed 89% in the liver segmentation, and the lesion 

prediction is 65%. 
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1 Introduction  

          The motivation of machine learning is solving the problems of computer vision that related 

with simulating the human visual. Humans was born without the ability of seen but using supervised 

learning for perception the different between colors and then the ability of object detection[1]. It is 

known as a challenging task for two reasons. First, the number of training data is small. Second, the 

data is collected from different clinical sites with different scanners and protocols, causing large 

variations of the data quality, appearance and spacing [2][3]. The lack of data is a common challenge 

during the process of training that depends on basic Convolutional Neural Networks (CNNs) 

architectures [4]. The problem becomes more complex when it uses 3D data. The human brain has 

a great an ability of understanding millions per second of information that takes over our eyes for 

learning models that around us. Contract Tomography (CT) images are an important tool in medical 

imaging to diagnose several diseases where doctors rely on manual or semi-automatic techniques to 



study anomalies in the shape and texture of organs of CT scans[6].  We will focus on liver and its 

lesions segmentation tasks for afterwards segmenting several organs and other anatomical structures 

[7][8]. Low contrast between lesion, liver and other organs   Lesions are variable in terms of shape, 

size and texture.  Noise in CT scans Typically statistical shape and intensity distribution models 

Medical imaging processing have many challenges where liver cancer is the sixth most common 

cause of cancer-related deaths, and liver cancer is the third most common cause. Primary tumors 

such as breast cancer, colon cancer, and Pancreatic cancer often migrate to the liver part, so 

analyzing the liver and its lesions is its most important task. CT of liver segments and liver lesions 

both are an important basis for the diagnosis of primary and secondary liver tumors. In the past, in 

order to get the liver and its disease the variable segmentation graph is usually manual or semi-

manual [5]. Recently, humans have special abilities to understand a huge different of objects in both 

low and high resolution images. 3D Shapes Analysis Algorithms Based on Artificial Intelligence 

Techniques simulates the idea of human brain that encoding for orientations of the object 

distinguishes many objects and also at propagating through viewpoints from CNNs. The aim behind 

improvement of deep learning algorithms illustration of neurons order in the brain and solving the 

problem of 3D object classification and segmentation. Our research objectives are to apply different 

3D data algorithms and techniques to increase accuracy and decrease the error rate. We also intend 

to improve the computational efficiency and decrease the complexity of computations [9][25]. We 

explain many computer vision problems with deep learning and performance of these models 

compared with traditional approaches. We show how to improve performance of these models by 

geometric solutions [10]. The activity of 3D object recognition and segmentation is growing in last 

researchers propose algorithms and approaches and implementing them. The applications for which 

3D object recognition  technology is used in many fields where 3D object recognition technology 

can make tasks like maintenance more active in machinery Industries and  video surveillance, the 

purpose of 3D technology includes segmenting moving crowds into individuals, face analysis. In 

health care, deep learning is used in computer aided diagnosis systems [5][8]. Various applications 

include analysis of 3D images, in autonomous driving for recognition and prediction of the motion 

of other cars, pedestrians, bikes etc[2].  

 

 

2 Related Works 



Recently, latest related models have been proposed for liver segmentation. These models can be 

categorized as semi-automatic, automatic and interactive approaches. Automatic approaches are 

more desirable as they require no user-interaction but semi-automatic and interactive approaches 

remain significant due to the ambiguity of liver segmentation. This section discusses the method 

used to conduct the literature review and the related works done in liver region of interest detection 

and liver segmentation [11].  Sihong Chen et al. in [12] proposed the deep learning model for 

training data volume such as The ImageNet model, the large dataset enhances the accuracy and 

accelerates the convergence speed. And also in the 3D medical images, the models which rely on 

huge datasets improve the development of the deep learning. However, it is a big challenge to 

construct a huge dataset because it is hard to combine and explain data in 3D medical imaging 

[13][14][15]. The dataset is collected from many medical challenges with several patterns, aimed 

organs, and pathologies to construct 3DSeg-8 dataset. A heterogeneous 3D network called Med3D 

is designed to abstract the features of the 3D medical dataset to train multi-scope 3DSeg-8 to 

provide a chain of pre-trained models. These pre-trained models will then transfer to LIDC dataset, 

pulmonary nodule classification in LIDC dataset and liver segmentation on LiTS challenge 

[16][17][18]. The experimental results prove that the Med3D can speed up the training convergence 

2 times comparing to the Kinetics dataset, and 10 times comparing to the training from scratch.  

The Med3D also enhances the accuracy from 3% to 20%. The Med3D model achieved 94.6% Dice 

coefficient which is near to the result of the perfectible algorithms on the LiTS challenge. Xiaomeng 

et al. in [13] proposed a DenseUNet for liver and tumor segmentation, where the densely connected 

path and UNet connections are integrated depends on pre-defined design models for improving the 

liver tumor segmentation performance. They proposed a H-DenseUNet for exploring hybrid 

features for liver and tumor segmentation. The hybrid feature learning well avoid the problems that 

2D networks ignore the volumetric contexts and 3D networks and can be produce as a new model  

for effectively employing 3D shapes by using  LiTS dataset[29]. Raunak Dey et al. in [14] proposed 

a model for solving an automatic liver lesion segmentation task and helping to assist medical in the 

proposal of efficient curing. Dey designed a cascaded model that combines both 2D and 3D CNNs 

to effectively segment.  2D network work on a slice by slice for segment the liver and huge tumors. 

3D network for detect small lesions that are often missed in a 2D segmentation. The algorithm 

implemented on the LiTS dataset by a Dice score of 68.1% per case [19][20].   The authors proceed 

two-fold cross-validation for reveal the under and over segmentation problems in the LiTS 

challenge. 

3 Proposed works 



Deep Learning achieved unique success in computer vision challenges  such as image classification 

and segmentation. This paper modified the U-net architecture to make it suitable for liver 

segmentation and its prediction of lesions[15]. We depends on the 3D CT scans images for training 

dataset[16]. The ultimate goal is to obtain a segmentation map of the lesions on the liver, so segment  

of liver is implemented in two parts. The first part focuses only on the segmentation of the liver, not 

the whole the image is trained because there are too many irrelevant organs in the scan[15][16]. The 

second part is the liver map is used to make predictions on the lesions[17]. Our pre-processing is 

useful for preliminary removal and screening of irrelevant voxels, training set, data augmentation, 

etc., and finally uses cross-validation to test our final results. The proposed model consists of three 

main steps as shown in figure() which are:  

(i)  Raw 3D CT train volume  (ii) Data preprocessing (iii) Histogram Equalization  (iv) Data  

enhancement (v) Mixed UNet for liver segmentation (vi) Mixed Unet for lesion segmentation 

(vii)3D conditional Random field(prediction) 

 

 

 

 

 

Figure (): The main steps for liver segmentation and predictions on the lesions. 

3.1 Raw 3D CT train volume   

The LiTS dataset  consists of 3D scan images from codalab site [29] as shown in Figure() for hepatic 

tumor segmentation challenge of patient liver. LiTS challenge is organized by universities, research 

institutes. It is dedicated to solving the automatic segmentation of 3D CT images of liver tumor 

lesions with innovative algorithms to diagnose diseases and guide the image and the visualization 

of medical data. It provides a reliable basis for clinical diagnosis and pathology research. The dataset 

contains unlabeled data for patients, which we divide into training 90%, and test 10%.  
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Figure (1): Samples from LiTS dataset for CT scan images and liver lesion part. 

3.2 Data preprocessing and enhancement   

The training images  used  LITS dataset [29] consists of 130 3D CT scans images with (nii) format 

that  is divided into number  of segmentation images slides. Using data preprocessing  methods 

improve the accuracy and solving the over fitting problem as shown in Figure() the effect the 

preprocessing step on the dataset[18] . The liver segmentation maps at different angles have a large 

Different, and the shape of the lesion is not fixed, so that we need a lot of features for training during 

training data. It has been observed the voxel value of the liver and its lesions is in the [-100 , 300] 

interval. The training data  size is reduced into 96X96 instead of 512X512 slice map. Deep learning 

requires a large amount of training data to train the model, if only a small amount of training is used 

data will cause serious overfitting or low accuracy. The medical images are not as good as ordinary 

pictures, so data augmentation is quite useful for deep learning in medical imaging. The data 

augmentation steps for determination  and increasing dataset[19] . The training data of the liver 

model are randomly rotate the image by a certain angle, Transform in such a way that the center 

vertical axis of the image does not change, reduce the image according to the specified scale factor 

and horizontal and vertical movement. For increasing brightness and better distribution on the 

histogram of the images; using the histogram equalization can achieve good results for images where 

Segmentation-500 Segmentation-501 Segmentation-502  Segmentation-503 Segmentation-504 Segmentation-505 



converting into a uniform distribution in the entire gray range[20]. It enhances the data of the 

segmentation map, because the pre-processing deletes many irrelevant to the liver and lesions. The 

segmentation map results in insufficient training data for subsequent training, which is more obvious 

in predicting lesion models. Figure() show the evaluation of liver and lesions without data 

enhancement.  

 

 

Figure (2): The effect of the preprocessing step on the CT scan image. 

 

 

Figure (3): The effect of data augmentation on random CT images. 

3.3Histogram Equalization   

Histogram equalization is used for increasing the global contrast of the image by increasing 

brightness of it.  Histogram equalization can enhance the local contrast without affecting the 

Test51_change3 Test51_change3_mask Test51_change4 Test51_change4_mask 

Test51_change5 
Test51_change5_mask Test52_change0 Test52_change0_mask 



overall contrast and achieving good results for images with close contrast. We use histogram 

equalization to increase the liver and other organs. The histogram equalization formula (3.3) is as 

follows: 

ℎ(𝑥) = 𝑟𝑜𝑢𝑛𝑑(
𝑐𝑑𝑓(𝑥) − 𝑐𝑑𝑓𝑚𝑖𝑛

(𝐿𝑊) − 𝑐𝑑𝑓𝑚𝑖𝑛
)(𝑆 − 1) 

 where 𝐿𝑊 represent the number of pixel values of the image, S represents the gray level, and 

𝑐𝑑𝑓(𝑥) represents the cumulative distribution 

 

                Figure (4): The right image after implement the histogram equalization of the left image. 

3.4 Data training 

 The model architecture used in this paper is modified U-net architecture[20] that is called Mixed 

Unet architecture as shown in Figure() for  using  in liver segmentation and focuse on predicting 

lesions in the liver.   The  Mixed U-net architecture , is based on FCN That  divided into two sides, 

and the first four layers on the left are included  two identical convolution layers using 3X3 

convolution kernels, each using Rectified Linear Unit (Relu) [], and each layer uses a mixed pooling 

layer to reduce parameters instead of max pooling. The pooling layer is used for transforming the 

joint feature representation into helpful one and preserve important information with discarding 

irrelevant details. The pooling layer summarizes the outputs of neighboring groups of neurons in the 

same kernel map [22][23][24]. In the pooling layer, the resolution of the feature maps is reduced by 

pooling over local neighborhood on the feature maps of the previous layer, thereby enhancing the 

invariance to distortions on the inputs[21]. In CNNs, there are two conventional pooling methods, 

including max pooling and average pooling[19][20]. The max pooling method selects the largest 



element in each pooling region. On the other hand, both the max pooling and average pooling 

operators have their own drawbacks[25][26][27].  

About max pooling, it only considers the maximum element and ignores the others in the pooling 

region. Sometimes, this will lead to an unacceptable result. For example, if most of the elements in 

the pooling region are of high magnitudes, the distinguishing feature vanishes after max pooling as 

shown in Fig. 2(a). Regarding average pooling, it calculates the mean of all the elements within the 

pooling region. This operator will take all the low magnitudes into consideration and the contrast of 

the new feature map after pooling will be reduced. Even worse, if there are many zero elements, the 

characteristic of the feature map will be reduced largely, as illustrated in Fig. 2(b). It is well known 

that images in the nature world are ever-changing, and it is of high possibility that the defective 

aspects of max pooling and average pooling as shown in Fig. 2 will have negative effects in applying 

pooling layers to CNNs[28][29][30]. Therefore, as a solution, we consider replacing the 

deterministic pooling operation with a stochastic procedure, which randomly employs the local max 

pooling and average pooling methods when training CNNs. This is the proposed mixed pooling 

method to be introduced next. The last 4 layers on the right, from the 6th layer to the 9th layer Use 

upsampling [21] the number of feature maps, followed by two layers and the previous mentioned 

The same layer, the last 4 layers also use the convolution layer of layer 3X3 and use Relu's excitation 

function. Last layer use 1X1 convolution and use the sigmoid excitation function to ensure that the 

pixel values of the output map are in the interval [0,1], which The final output is a 96X96 output 

image[22]. The first few layers are used to solve the pixel positioning problem, and the last few 

layers are used to solve the problem[23]. Determine the problem of pixel classification. Loss 

function For any pixel in the input image xij, the corresponding FCN output p(w|xij) represents an 

estimated posterior probability for all pixels. Since FCN essentially performs a pixel-wise 

segmentation , cross entropy is usually used as the loss function [24]: 

𝑝𝑘(𝑥) = exp(𝑎𝑘(𝑥)) / ∑ exp(𝑎𝑘′(𝑥))

𝑘

𝑘′=1

 

 Where k Feature channels, ak(x) - The activation in feature channel k at pixel position x

3.5 Optimization 

Adam Optimizer [] uses first-order moment estimation and second-order moment estimation of 

gradients to dynamically adjust each parameter Learning rate, Adam combines the advantages of 

Adagrad [22] that is good at handling sparse gradients [23] is good at handling the advantages of 

unstable targets, and it requires relatively little memory and can be Different parameters calculate 



different adaptive learning rates, which can also be used for large data sets and high-dimensional 

spaces. Adam After offset correction; the learning rate for each iteration has a certain range, making 

the parameters more stable. Its formula () []: 

𝑚𝑗 = µ 𝑥𝑚𝑗−1 + (1 − μ )gj 

𝑛𝑗 = 𝑣 𝑥𝑛𝑗−1 + (1 − v)g2
j
 

Where   gj is the batch gradient, μ and  𝑣 are momentum factors, and 𝑚𝑗 and 𝑛𝑗 are the first-order 

moment estimates of the gradient, respectively. And the second-order moment estimation can be 

regarded as the estimation of the expected E | gj |, E | g2
j
|. 

𝑚�̂� =
𝑚𝑗

1 − μ𝑗 
 

𝑛�̂� =
𝑛𝑗

1 − 𝑣𝑗 
 

mĵ, nĵ is a correction of 𝑚𝑗, 𝑛𝑗, which can be approximated as an unbiased estimate of 

expectations. Moment estimates of such gradients do not 

But it can be dynamically adjusted according to the gradient, and there is no additional burden on 

memory. 

Δθ j =
mĵ

√nĵ + ε
 × η 

 
mĵ

√nĵ+ε
  form a dynamic constraint on the learning rate and have a clear range 

 

3.6 Cross validation 

 This paper uses 10-fold cross-validation to verify our data. The original sample is divided into 10 

equal parts. One of the subsamples is retained as data for the validation model, and the other 9 

samples are used for training. Cross-validation Repeat 10 times, verifies each subsample once, 

average the results 10 times, and get the final estimate. We divided our 130 scans into a 9 to 1 ratio, 

and used 117 scans as a training set. The remaining 13 are test sets. Then add 13 test sets to the 



training set and use another 13 scans as a test set, this process is done 10 times, and the final results 

are averaged to our final results. 

4 Experimental Results 

 In this section, we introduce our system architecture and our implementation in sections 5.1. In 

sections 5.2 and 5.3, we will show the prediction of liver and its lesions after the model. The final 

section 5.4 evaluates our experimental results. 

4.1 System Architecture 

Table 1 show the requirement of training model and testing from hard and software.  

CPU I7-6500U 

VGA NVIDIA GTX-960 4G 

Operating system  Windows 7 

Environment  Tensorflow-keras 

Programming language  Python3.5 

RAM 8GB 

Training data 26.7GB 

Test data 6.84GB 

 

We divided 130 CT scan images  into training and test sets with a ratio of 9 : 1 and performed cross-

validation where 117 image is selected  as the training set, and the rest as the test set. Our training 

phase is divided into two models, the first one  is a predictive liver model, focusing only on cutting  

the liver and background, the other is to predict the lesion model.In our segmented liver model, the 

training dataset is augmented with 30,600 image in size  26.7 GB, and approximately 3,400 in the 

test data set with size 6.84GB. In addition to predicting the lesion model, the training data set is 

about 35550 liver points after data enhancement. Test data is 3950 with size 6.84GB. Finally we 

also prepare about 3,000 test data, and use DICE Score as our evaluation performance. Table 2 

shows the parameters is used where the first 4 layers contain 2 convolutional layers and are 

connected one by one to mixed pooling layer. 

Layer Size 

Number of layers 9 layers (each contains 2 convolutional layers 

and one 



Large pooling layer) 

Mixed pooling layer  2X2 

Convolution  3X3 

Activation function  RELU 

Optimizer  Adam 

dropout  0.5 

Learning rate  1e-5 

Learning rate 1e-5 DICE Score 

Batch size 32 

Number of training iterations  20 

 

4.2 Liver prediction 

This section only focuses on the segmentation of the liver from the background for  improving  the 

accuracy, we use square map equalization method improves the contrast of the background and liver 

a result as shown in figure() . The contrast between the liver in the original image on the left and its 

lesion in the red circle and after histogram equalization on the right, The contrast of each organ and 

the most important liver and its lesions has increased significantly. Figure () shows our liver again. 

The predicted result, our liver prediction model can successfully segment the liver, and the DICE 

Score can reach 90% Above, only the edge will have redundant predictions, but it will not affect our 

lesion prediction[23][24]. 

 

Figure (5): Histogram equalization result. 



 

Figure (6) is a schematic model of the training data input. 

4.3 Lesion prediction 

  This section shows the liver segmentation map containing lesions segmented from CT scans as 

training data. In this model, we still have the same preprocessing on the training data as the liver 

prediction stage, including data enhancement histogram equalization  and then enter the model for 

training our lesions and a map of the lesion mask to be learned as shown in figure () shows the 

pathological changes a final lesion segmentation map after measuring the model. The first and third 

lines are our predicted segmentation maps, and the second and fourth lines are true actual map shows 

from figure (same) that we can already grasp the correct position of the lesion, and most of it  can 

be predicted correctly, but it is still impossible to predict the smaller lesions, and it is easy for two 

relatively similar lesions Points easily stick together. Our lesion DICE Score can reach about 65%, 

Finally, evaluate the results with the real picture. 

 

Figure (): The left two images for the liver and lesions and the two right images for the predicted 

lesions only.  

5.4 Evaluation results 

Our training time is about 3 hours, and each prediction result produced takes about Between 30 

and 100 seconds. We use DICE Score as our final evaluation result. Such as formula () 

DICE(X, Y) =  
2|X ∩ Y|

|X| + |Y|
 



The DICE Score is between 0 and 1, with the best performance being 1 and the worst being 0. Figure 

() is a comparison between our prediction map and the real map. The first line is our prediction map, 

and the second line is the real segmentation map. Real picture, the last line is the cross difference 

diagram of the two. As shown in Figure() and there will be a small error in the surrounding parts. 

 

The first row is the correct location of the lesion in the liver. The second line is the real segmentation 

map, and the last line is our final lesion prediction map. In predicting disease, There is a high 

recognition rate for obvious lesions, but there is still enhancement for smaller lesions.  
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