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Abstract This manuscript introduces and studies a notion of cautious
distributed belief. Di�erent from the standard distributed belief, the cau-
tious distributed belief of a group is inconsistent only when all group
members are individually inconsistent. The paper presents basic results
about cautious distributed belief, investigates whether it inherits prop-
erties from individual belief, and compares it with standard distributed
belief. Although both notions are equivalent in the class of re�exive mod-
els, this is not the case in general. The propositional language extended
only with cautious distributed belief is strictly less expressive than the
propositional language extended only with standard distributed belief.
We, �nally, identify a minimal extension of the language making the
former as expressive as the latter.

Keywords: cautious distributed belief · distributed belief · epistemic
logic · expressivity · bisimilarity

1 Introduction

Epistemic logic (EL; [12]) is a simple and yet powerful framework for representing
the knowledge of a set of agents. Semantically, it typically relies on relational
`Kripke' models, assigning to each agent a binary indistinguishability relation
over possible worlds (i.e., possible states of a�airs). Syntactically, it uses the
agent's indistinguishability to de�ne her knowledge: at a world w an agent i
knows that φ is the case if and only if φ holds in all the situations that are,
for her, indistinguishable from w. Despite its simplicity, EL has become a wide-
spread tool, contributing to the formal study of complex multi-agent epistemic
phenomena in philosophy [9], computer science [6,14] and economics [4,15].

One of the most attractive features of EL is that one can reason not only
about individual knowledge, but also about di�erent forms of knowledge for
groups. A historically important example is the notion of common knowledge
[13], which is known to be crucial in social interactions.1 Another important
epistemic notion for groups, key in distributed systems, is that of distributed
knowledge [11,7,8]. Intuitively, a group has distributed knowledge of φ if and only
if φ follows from the combination of the individual knowledge of all its members.
In EL (which, recall, uses uncertainty to de�ne knowledge), this intuition has a

1 A group has common knowledge of φ if and only if everybody in the group knows
φ, everybody in the group knows that everybody in the group knows φ, and so on.
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natural representation: at a world w a group G has distributed knowledge of φ if
and only if φ holds in all the situations that all the members of the group consider
indistinguishable (i.e., if and only if φ holds in all the situations no one in the
group can distinguish) from w. In other words, the indistinguishability relation
for the distributed knowledge of a group G corresponds to the intersection of
the indistinguishability relation of G's members.

Since distributed knowledge is the result of combining the individual know-
ledge of di�erent agents, one can wonder whether agents might have inconsistent
distributed knowledge (i.e., whether it is possible for a set of agents to know
⊥ distributively). When one works with a truthful notion of knowledge (se-
mantically, when all indistinguishability relations are required to be re�exive),
distributed knowledge does not have this problem: all indistinguishability rela-
tions contain the re�exive edges, and thus their intersection will never be empty.
However, when one works with weaker notions of information, counterintuitive
situations might occur. For example, if one works with a notion of beliefs (typ-
ically represented by using a serial, transitive and Euclidean relation; see, e.g.,
[12]), it is possible for all agents to be consistent (i.e., no one of them believes
contradictions), and yet their distributed beliefs might contain ⊥.

This paper introduces and studies a notion of cautious distributed belief
(modality: D∀). It has the property that it does not become inconsistent in the
case of mutual inconsistency, picking instead a form of maximally consistent
combined information. The intuition behind it is that, although a group G as a
whole might be inconsistent at some world w (i.e., the set of worlds everybody
in G considers possible from w is empty), there might be consistent subgroups
among which the maximal ones become important. Considering notions of max-
imal consistency is a standard approach in non-monotonic reasoning for resolv-
ing potential con�icts.2 As its name suggest, D∀ uses these maximally consistent
subgroups of agents in a cautious way: at a world w a group G has cautious dis-
tributed belief that φ if and only if every maximally consistent subgroup of G
has distributed belief that φ.3

The manuscript is organised as follows. Section 2 recalls the de�nition of
a relational `Kripke' model as well as that of the standard distributed belief
operator D. Then it introduces the notion of cautious distributed belief, using a
relatively simple example to compare the two notions, and presenting some basic
results about it. Section 3 studies whether this notion of belief for groups inherits
properties from the individual beliefs of the group's members. Section 4 compares
the expressive power of both modalities, showing that a modal language with
only D∀ is strictly less expressive than a modal language with only D; it does so

2 Think, e.g., about the extensions of a theory in default logic [16], or the maximally
admissible (i.e., preferred) sets of arguments in abstract argumentation theory [5].
The idea has been also used within epistemic logic (e.g., by [2] in the context of
evidence-based beliefs) and also for distributed beliefs (by [10], in the context of
explicit beliefs de�ned via belief bases).

3 This corresponds to the skeptical reasoner in non-monotonic reasoning. There is also
an alternative that matches the credulous reasoner, discussed brie�y in Section 5.
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by providing a notion of bisimulation for D∀. Yet, the paper identi�es what it
is that D can see but D∀ cannot. Finally, Section 5 summarises the results and
discusses further research lines.

2 Basic de�nitions

Throughout this text, let A be a �nite non-empty set of agents and P be a
countable non-empty set of atomic propositions. The basic propositional lan-
guage (using ¬ and ∧ as primitive operators) is denoted by L. (Its semantic
interpretation is as usual.) Then, LX1,...,Xn

is the language extending L with
the operators X1, . . . , Xn. In particular, LD is L with the additional use of DG

for ∅ ̸= G ⊆ A, and LD∀ is L with the additional use of D∀
G for ∅ ̸= G ⊆ A.

De�nition 1 (Belief model) A belief model is a tuple M = ⟨W,R, v⟩ where
W is a non-empty set of possible worlds (also denoted as D(M)), R = {Ra ⊆
W ×W | a ∈ A} assigns an arbitrary accessibility relation to each agent a ∈ A,
and v : P → 2S is a valuation function. A pointed belief model is a pair (M, s)
with M a belief model and s ∈ D(M) a world in it. The class of all belief
models is denoted as M. Given ⟨W,R, v⟩ in M, a ∈ A and s ∈ W , the set
Ca(s) := {s′ ∈ W | sRas

′} is called a's conjecture set at s. The generalisation
to a set of agents G ⊆ A, called G's (combined) conjecture set at s, is de�ned
as CG(s) :=

⋂
a∈G Ca(s). ◀

Belief models are nothing but multi-agent Kripke (relational) models. Thus,
they allow us to represent not only the beliefs each individual agent has, but
also di�erent belief notions for groups. As discussed in the introduction, the
focus here is the novel notion of cautious distributed beliefs (D∀), together with
its relationship with the well-known notion of distributed beliefs (D). For the
semantic interpretation of the �rst, the following de�nitions will be useful.

De�nition 2 (Consistency and maximal consistency) Let ⟨W,R, v⟩ be in
M. Take sets of agents ∅ ⊂ G′ ⊆ G ⊆ A and a world s ∈ W . The set G′ is
consistent at s if and only if CG′(s) ̸= ∅. It is maximally consistent at s w.r.t.
G (notation: G′ ⊆max

s G) if and only if it is consistent at s and, additionally,
every H satisfying G′ ⊂ H ⊆ G is inconsistent (i.e., CH(s) = ∅). Finally, the
set C∀

G(s) :=
⋃

G′⊆max
s G CG′(s) (the consistent (combined) conjecture set of G at

s) contains the worlds that are relevant for the maximally consistent subgroups
of G at world s. The cautious distributed belief relation R∀

G ⊆ D(M)×D(M),
given by sR∀

Gt i� t ∈ C∀
G(s), will simplify some later work. ◀

Here is the semantic interpretation of the two operators, D and D∀, together
with the standard operator for individual belief B. We also present the semantics
of an additional constant ≍G, which will be useful later. Languages using these
operators will be discussed in Section 4.

De�nition 3 (Two types of distributed belief) Let (M, s) be a pointed be-
lief model with M = ⟨W,R, v⟩; take a ∈ A and a non-empty G ⊆ A. Then,
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M, s ⊨ Ba φ i� ∀s′ ∈ Ca(s): M, s′ ⊨ φ,

M, s ⊨ DG φ i� ∀s′ ∈ CG(s): M, s′ ⊨ φ,

M, s ⊨ D∀
G φ i� ∀G′ ⊆max

s G, ∀s′ ∈ CG′(s): M, s′ ⊨ φ

(equivalently, ∀s′ such that sR∀
Gs

′: M, s′ ⊨ φ),4

M, s ⊨ ≍G i� CG(s) = ∅.

A formula φ is valid in a class of belief models C (notation: C ⊨ φ) when φ
is true in every world of every model in C. A formula is valid (notation: ⊨ φ)
when M ⊨ φ. ◀

Note the di�erence between DG and D∀
G. On the one hand, DG φ holds at s

when every world in the conjecture set of G satis�es φ.5 On the other hand,D∀
G φ

holds at s when every world in the conjecture set of every maximally consistent
subgroup of G satis�es φ. In other words, D∀

G φ holds at s if and only if every
maximally consistent subgroup of G has distributed belief of φ. Note also how
≍G simply expresses the fact that the conjecture set of G is inconsistent.

Here is an simple example showing the di�erences between D and D∀.

Example 1 Consider the belief model M below.6 Note how, at w1, a believes p
to be true and q to be false (M, w1,⊨ Ba p∧Ba ¬q). Nevertheless, b is uncertain
about p but believes q to be true (M, w1 ⊨ (¬Bb p ∧ ¬Bb ¬p) ∧Bb q). Finally, c
believes p but is uncertain about q (i.e., M, w1,⊨ Bc p ∧ (¬Bc q ∧ ¬Bc ¬q)).

w1 : {p, q}

w2 : {p} w3 : {q} w4 : {p}

a
b

b, c

a, b, c a, b, c a, b, c

c

Consider �rst the group G1 = {a, b}. On the one hand, both members of G1 are
individually consistent at w1 and yet CG1

(w1) = ∅; thus, at w1, the maximally
consistent subgroups are {a} and {b}. Their conjecture sets are Ca(w1) = {w2}
and Cb(w1) = {w1, w3}, and hence G1's consistent conjecture set is C∀

G1
(w1) =

{w1, w2, w3}. Thus, M, w1 ⊨ ¬D∀
G1
p ∧ ¬D∀

G1
q. On the other hand, when we

consider standard distributed belief, we see that M, w1 ⊨ DG1 p ∧DG1 q. This is

4 The two de�nitions are equivalent. The �rst makes explicit the two quanti�cation
steps; the second, given in terms of the group's cautious distributed belief relation,
reveals that D∀

G is in fact a normal modality.
5 In particular, individual belief operators Ba can be de�ned in terms of D, as D{a} φ
(abbreviated as Da φ) holds in a world s if and only if M, s′ ⊨ φ for all s′ ∈ Ca(s).

6 Note: the individual relations are serial, transitive and Euclidean. While the paper
uses the term �belief� in a rather loose way, these three properties are the ones
commonly associated to a belief operator.
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however due to the fact that CG1
(w1) = ∅ and we end up quantifying over an

empty set. Thus, we also get M, w1 ⊨ DG1
⊥.

Now c joins the group, G2 = {a, b, c}. On the one hand, at w1 both b and
c are consistent (i.e., they can `consistently combine information'); still, a and
c are not. Thus, the maximally consistent sets are {a} and {b, c}. The relevant
conjecture sets are now Ca(w1) = {w2} and C{b,c}(w1) = {w1}, so C∀

G2
(w1) =

{w1, w2}. Then, M, w1 ⊨ D∀
G2
p∧¬D∀

G2
q (the latter because, even though b and

c together believe q, agent a remains `a loner' and still believes that q is false).
On the other hand, the situation with standard distributed belief remains as for
G1: M, w1 ⊨ DG2 p ∧DG2 q ∧DG2 ⊥. ◀

Some basic results about D∀
G. The standard notion of distributed belief, DG,

can be inconsistent even when every agent in G is consistent. The �rst result here
shows that this is not the case for cautious distributed belief: it is inconsistent
if and only if all agents in G are inconsistent.

Proposition 1 For every non-empty G ⊆ A we have ⊨ D∀
G ⊥ ↔

∧
a∈G

Ba ⊥.

Proof. Take any M, any s ∈ D(M) and any non-empty G ⊆ A. (⇒) If M, s ⊨
D∀

G ⊥ then, because no world satis�es ⊥, either CG′(s) = ∅ for all G′ ⊆max
s G,

or there is no G′ satisfying G′ ⊆max
s G. But, by de�nition, no G′ satisfying

G′ ⊆max
s G is s.t. CG′(s) = ∅. Hence, there is no G′ satisfying G′ ⊆max

s G,
which means every G′ ⊆ G is s.t. CG′(s) = ∅. In particular, all singletons {a}
for a ∈ G are s.t. Ca(s) = ∅, and thus M, s ⊨

∧
a∈GBa ⊥. (⇐) If M, s ⊨∧

a∈GBa ⊥ then Ca(s) = ∅ for every a ∈ G. Hence, every non-empty G′ ⊆ G is

s.t. CG′(s) = ∅, so there is no G′ satisfying G′ ⊆max
s G. Thus, M, s ⊨ D∀

G ⊥.■

For another basic result, recall that individual belief operators (Ba for a ∈ A)
can be expressed using the distributed belief operator for singleton groups (Da).
The same can be done with cautious distributed belief. For any world s and
any agent a, there is at most one maximally consistent subgroup of {a}, namely
{a} itself. Then, Ca(s) = C∀

a (s) and hence agent a's individual belief and {a}'s
cautious distributed belief coincide.

Proposition 2 ⊨ Baφ↔ D∀
{a} φ. ■

Finally, an important property of standard distributed belief is coalition
monotonicity : if a group H ⊆ A has standard distributed belief that φ, then
so does any extension G ⊇ H (thus, H ⊆ G ⊆ A implies ⊨ DH φ → DG φ).
This is not the case for cautious distributed belief. This is because the agents
that join the group might not be consistent with any of the ones that were there
before. In such cases, when consistent, they will be part of a di�erent maxim-
ally consistent subgroup, which might not have the distributed belief φ. This is
shown in Example 1, where M, w1 ⊨ D∀

{b} q and yet M, w1 ⊭ D∀
{a,b} q. Thus,

Fact 1 ⊭ D∀
H φ→ D∀

G φ for H ⊆ G ⊆ A. ■
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Frame condition Characterising formula

seriality (l): consistency :

∀s ∈ W ∃t ∈ W . sSt 2φ → 3φ

re�exivity (r): truthfulness of knowledge/belief :

∀s ∈ W . sSs 2φ → φ

transitivity (t): positive introspection:

∀s, t, u ∈ W . ((sSt & tSu) ⇒ sSu) 2φ → 22φ

symmetry (s): truthfulness of possible knowledge/belief :

∀s, t ∈ W . (sSt ⇒ tSs) 32φ → φ

Euclidicity (e): negative introspection:

∀s, t, u ∈ W . ((sSt & sSu) ⇒ tSu) ¬2φ → 2¬2φ

Table 1: Relational properties and their well-known characterising formula.

3 Inheriting relational properties

When one studies a notion of knowledge/belief for groups, it is interesting to
�nd out whether it inherits the properties of the knowledge/beliefs of the indi-
viduals. For example, suppose that the individual knowledge of all agents in a
group is truthful and both positively and negatively introspective. Then, it is
well-known that, while the group's common knowledge inherits all these prop-
erties, the group's general knowledge7 inherits only truthfulness (i.e., it might
not be positively or negatively introspective). Similar studies have been made
for notions of belief [1].

This section studies which properties of individual belief are inherited by cau-
tious distributed belief. The discussion is rather semantic, focussing on whether
certain frame conditions on individual indistinguishability relations are inherited
by the relation that de�nes cautious distributed belief (see Footnote 4). The con-
nection between these conditions and the properties of knowledge/belief is made
thanks to the well-known correspondence between the frame conditions and the
validity of certain modal formulas [3, Chapter 3]. Using S for an arbitrary binary
relation and 2 (3) for its corresponding normal universal (existential) modality,
Table 1 lists some of these frame conditions, together with the formulas that
characterise them (and its intuitive epistemic/doxastic reading).8

Here are, then, the needed de�nitions.
7 A group has general knowledge of φ if and only if everybody in the group knows φ.
8 More precisely, a frame (a model without the valuation) has the given relational
property if and only if the formula is valid in the frame (i.e., it is true in any world
of the model under any valuation).
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w1 w2 w3

b

a

a

b

a, b

(a) F1

w1

w2

a

a

a, b

(b) F2

w1

w2 w3

a b
a, b a, b

(c) F3

w1

w2 w3

a
a, ba, b

b

(d) F4

w1

w2 w3

a a

a

a, b aa

(e) F5

Figure 1: Counterexamples for the proof of Proposition 3

De�nition 4 (Inheriting properties) Let x ∈ {l, r, t, s, e} be a frame condi-
tion, and let F ⊆ {l, r, t, s, e} be a collection of them. Let G ⊆ A be a non-empty
set of agents, each one of them associated to a binary relation under a given
domain W . A relation SG ⊆W ×W de�ned in terms of the individual relations
for agents in G (e.g., their union/intersection) inherits the condition x under
the additional conditions in F if and only if SG has the property x whenever all
the relations in {Ri | i ∈ G} have all the properties in F ∪ {x}. ◀

For singleton groups, all properties are preserved. This is because if G is a
singleton {a}, then the cautious distributed belief relation R∀

{a} is identical to
a's individual relation Ra.

Proposition 3 Given a collection of relations {Ra ⊆ W ×W | a ∈ G} for a
group G ⊆ A with at least two agents, the relation R∀

G ⊆W ×W

(1) inherits seriality under F = ∅;
(2) inherits re�exivity under F = ∅;
(3) (a) does not inherit transitivity under any F ⊆ {l, e};

(b) inherits transitivity under any F ⊇ {r} (also under any F ⊇ {l, s}9);
(c) inherits transitivity under any F ⊇ {s};

(4) (a) does not inherit symmetry under any F ⊆ {t, e};
(b) does not inherit symmetry under any F ⊆ {l, e};
(c) inherits symmetry under any F ⊇ {r} (also under any F ⊇ {l, t});

(5) (a) does not inherit Euclidicity under any F ⊆ {l, s};
(b) does not inherit Euclidicity under any F ⊆ {l, t};

9 Inheritance under any F ⊆ {l, s} follows immediately from inheritance under any
F ⊆ {r}, since seriality, transitivity and symmetry together imply re�exivity. The
same applies for the properties in (3)(c) and (5)(d) below.
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(c) does not inherit Euclidicity under any F ⊆ {t, s};
(d) inherits Euclidicity under any F ⊇ {r} (also under any F ⊇ {l, t, s}).

Proof.

(1) Pick any s ∈ W . Every relation in {Ri | i ∈ G} is serial so, since G ̸= ∅,
there is a ∈ G such that Ra is serial, and a is consistent at s (Ca(s) ̸= ∅).
Thus, G has at least one subgroup G′ that is maximally consistent at s (one
containing a), and hence there is t ∈ CG′(s) ⊆ C∀

G(s). Then, R
∀
G is serial.

(2) Pick any s ∈W . Every relation in {Ri | i ∈ G} is re�exive, so s ∈ Ca(s) for
every a ∈ G, and then the only maximally consistent subgroup is G itself.
Thus, CG(s) = C∀

G(s) and therefore s ∈ C∀
G(s). Then, R

∀
G is re�exive.

(3) (a) In frame F1 (Figure 1a), relations Ra and Rb are transitive, serial and
Euclidean. Still, R∀

{a,b} = {(w1, w1), (w1, w2), (w2, w2), (w2, w3), (w3, w3)}
is not transitive.

(b) Pick any s, t, u ∈ W such that sR∀
Gt and tR

∀
Gu. By re�exivity, G is the

only maximally consistent subgroup at both s and t, so CG(s) = C∀
G(s)

and CG(t) = C∀
G(t). Then, sRit and tRiu for every i ∈ G, which by

transitivity implies sRiu for all such i. Thus, u ∈ C∀
G(s) and hence

sR∀
Gu. Then, R

∀
G is transitive.

(c) Pick any s, t, u ∈W such that sR∀
Gt and tR

∀
Gu. Then, there are H1 ⊆max

s

G and H2 ⊆max
t G such that t ∈ CH1

(s) and u ∈ CH2
(t). By individual

symmetry, s ∈ CH1(t) and t ∈ CH2(u); then, by individual transitivity,
t ∈ CH1(t) and t ∈ CH2(t). But then, H1 ∪ H2 is consistent at t and,
since H2 is maximally consistent at t, then (H1 ∪ H2) ⊆ H2, that is,
H1 ⊆ H2. Hence, the previous u ∈ CH2

(t) implies u ∈ CH1
(t) which,

together with t ∈ CH1
(s) and individual transitivity implies u ∈ CH1

(s).
Finally, since H1 is maximally consistent at s w.r.t. G, u ∈ C∀

G(s), and
hence sR∀

Gu.
(4) (a) In frame F2 (Figure 1b), relations Ra and Rb are symmetric, transit-

ive and Euclidean. Still, R∀
{a,b} = {(w1, w1), (w1, w2), (w2, w2)} is not

symmetric.
(b) In frame F3 (Figure 1c), relations Ra and Rb are symmetric, serial and

Euclidean. Still, R∀
{a,b} = {(w1, w2), (w1, w3), (w2, w2), (w3, w3)} is not

symmetric.
(c) Pick any s, t ∈W such that sR∀

Gt. By re�exivity, G is the only maximally
consistent subgroup at both s and t, so CG(s) = C∀

G(s) and CG(t) =
C∀

G(t). Then, sRit for every i ∈ G, which by symmetry implies tRis for
all such i. Thus, s ∈ C∀

G(t) and hence tR∀
Gs. Then, R

∀
G is symmetric.

(5) (a) In frame F3 (Figure 1c), relations Ra and Rb are Euclidean, serial and
symmetric. Still, R∀

{a,b} = {(w1, w2), (w1, w3), (w2, w2), (w3, w3)} is not
Euclidean.

(b) In frame F4 (Figure 1d), relations Ra and Rb are Euclidean, serial and
transitive. Still, R∀

{a,b} = {(w1, w2), (w1, w3), (w2, w2), (w3, w3)} is not
Euclidean.

(c) In frame F5 (Figure 1e), relations Ra and Rb are Euclidean, symmetric
and transitive. Still, R∀

{a,b} = (W × W ) \ {(w2, w1), (w2, w3)} is not
Euclidean.
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(d) Pick any s, t, u ∈ W such that sR∀
Gt and sR

∀
Gu. By re�exivity, G is the

only maximally consistent subgroup at both s and t, so CG(s) = C∀
G(s)

and CG(t) = C∀
G(t). Then, sRit and sRiu for every i ∈ G, which by

Euclidicity implies tRiu for all such i. Thus, u ∈ C∀
G(t) and hence tR∀

Gu.
Then, R∀

G is Euclidean. ■

Thus, seriality and re�exivity are each inherited without additional assump-
tions. Symmetry and Euclidicity are both inherited in the presence of re�exivity;
transitivity is inherited in the presence of re�exivity, but also in the presence
of symmetry. Thus, just as with individual belief, cautious distributed belief is
factive in re�exive models, and it is consistent in serial models. However, it does
not need to be introspective (neither positively nor negatively), even when the
model has the frame condition (transitivity and Euclidicity, respectively).

These results are quite di�erent from the corresponding ones for the standard
notion of distributed belief. In fact, with the exception of re�exive models (in
which cautious and standard distributed belief coincide; see Proposition 4 below),
the behaviour of cautious distributed belief is, in this respect, the opposite of
that of standard distributed belief. For the latter, transitivity, symmetry and
Euclidicity are each inherited without additional assumptions, while seriality is
is inherited only in the presence of re�exivity [1].

4 Relationship between DG and D∀
G

This section discusses the relationship between standard and cautious distributed
belief. The following de�nitions will be useful.

De�nition 5 Let L1 and L2 be two languages whose formulas can be evaluated
over pointed belief models.

� L2 is at least as expressive as L1 (notation: L1 ≼ L2) if and only if every
formula in L1 has a semantically equivalent formula in L2: for every α1 ∈ L1

there is α2 ∈ L2 s.t., for every pointed belief model (M, s), we have M, s ⊨ α1

if and only if M, s ⊨ α2.
10

� L1 and L1 are equally expressive (notation: L1 ≈ L2) if and only if L1 ≼ L2

and L2 ≼ L1.

� L2 is strictly more expressive than L1 (notation: L1 ≺ L2) if and only if
L1 ≼ L2 and L2 ̸≼ L1.

11 ◀

The proposition below provides some connections betweenDG andD∀
G. First,

D∀
G is de�nable in terms of DG and Boolean operators. Second, both notions

coincide when the indistinguishability relations are re�exive.
10 A typical strategy for proving L1 ≼ L2 is to give a translation tr : L1 → L2 such

that for every (M, s) we have M, s ⊨ α1 i� M, s ⊨ tr(α1). The crucial cases are
those for the operators in L1 that do not occur in L2.

11 A typical strategy for proving L1 ̸≼ L2 is to �nd two pointed models that satisfy
exactly the same formulas in L2, and yet can be distinguished by a formula in L1.
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Proposition 4

(1) ⊨ D∀
G φ↔

∧
G′⊆G

((
¬DG′⊥ ∧

∧
G′⊂H⊆G

DH⊥
)
→ DG′φ

)
.

(2) Let T be the class of all belief models whose accessibility relations are all
re�exive. Then, T ⊨ D∀

G φ↔ DGφ.

Proof.

(1) Suppose M, s ⊨ D∀
G φ. By de�nition, this is the case if and only if every

G′ ⊆max
s G is such that M, s ⊨ DG′φ. But the fact that G′ ⊆max

s G (i.e.,
G′ is a maximally consistent subgroup of G at s) is equivalently stated as
M, s ⊨ ¬DG′⊥ ∧

∧
G′⊂H⊆GDH⊥.12 Then, the previous is the case if and

only if M, s ⊨
∧

G′⊆G

(
(¬DG′⊥ ∧

∧
G′⊂H⊆GDH⊥) → DG′φ

)
.

(2) Immediate, as CG(s) = C∀
G(s) holds for any re�exive belief model M, world

s ∈ D(M) and group ∅ ̸= G ⊆ A (see the proof of Proposition 3(2)). ■

Using the �rst part of Proposition 4, one can de�ne a translation that takes
any formula in LD∀ and returns a semantically equivalent formula in LD . Thus,
it already establishes a connection between LD and LD∀ .

Corollary 1 LD is at least as expressive as LD∀ (in symbols: LD∀ ≼ LD). ■

A question remains: is LD∀ also at least as expressive as LD (so the languages
are equally expressive), or is LD strictly more expressive than LD∀ (so there are
situations that LD∀ cannot tell apart, and yet they can be distinguished by LD)?

When discussing the relative expressivity of modal languages, it is useful to
have a semantic notion guaranteeing that two pointed models cannot be distin-
guished by a language. A multi-agent version of the standard notion of bisimula-
tion (see, e.g., [3, Section 2.2]) plays this role for the basic multi-agent epistemic
language. When the modality for standard distributed knowledge is added (i.e.,
for LD), one rather requires the notion of collective bisimulation [17], which asks
for the conditions of the standard bisimulation to be ful�lled by the intersection
relation of every group. Still, the results below will show that this notion is not
the adequate one for our language LD∀ .

The notion of LD∀-bisimulation de�ned below will be shown to be the ad-
equate one for LD∀ : it implies that two pointed models cannot be distinguished
by LD∀ (Proposition 5), and it exists between any image-�nite pointed models
that cannot be distinguished by the language (Proposition 6).

De�nition 6 (LD∀-Bisimulation) Let M = ⟨W,R, v⟩ and M′ = ⟨W ′, R′, v′⟩
be two belief models. A non-empty relation Z ⊆ D(M) × D(M′) is a LD∀-
bisimulation between M and M′ if and only if Zss′ implies all of the following.

Atom. For all p ∈ P : s ∈ v(p) if and only if s′ ∈ v′(p).

Forth. For all G ⊆ A, for all t ∈ D(M): if there is H ⊆max
s G such that

t ∈ CH(s), then there are H ′ ⊆max
s′ G and t′ ∈ CH′(s′) such that Ztt′.13

12 Note: this relies on the fact that G is �nite (because A is �nite).
13 Equivalently: for all G ⊆ A, for all t ∈ D(M), if sR∀

Gt, then ∃t′ such that s′R∀
Gt

′

and Ztt′.
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Back. For all G ⊆ A, for all t′ ∈ D(M′): if there is H ′ ⊆max
s′ G such that

t′ ∈ CH′(s′), then there are H ⊆max
s G and t ∈ CH(s) such that Ztt′.14

Write Z : M, s -D∀ M′, s′ when Z is a LD∀-bisimulation between M and M′

with Zss′. Write M, s -D∀ M′, s when there is such a bisimulation Z. ◀

A LD∀-bisimulation follows the idea of a standard one. First, LD∀-bisimilar
worlds should satisfy the same atoms. Then, if one of them has a `relevant
successor' t, the other should also have a `relevant successor' t′ and, moreover,
these successors should be LD∀-bisimilar. The only di�erence between a LD∀-
bisimulation and others in the literature is what `a relevant successor' means.
In a multi-agent standard bisimulation, a `relevant successor' is any world that
can be reached through the relation Ri, for some agent i ∈ A. In a collective
bisimulation, a `relevant successor' is any world that can be reached through
the intersection of the relations of the individuals in G, for some group G ⊆ A.
In the just de�ned LD∀ bisimulation, a `relevant successor' is any world that
belongs to the conjecture set of some maximally consistent subgroup of G, for
some non-empty set of agents G ⊆ A.15 As it is shown below, this de�nition
guarantees that every world in W that is relevant for cautious distributed belief
in (M, s) has a `matching' world in W ′ that is relevant for cautious distributed
belief in (M′, s′) (and vice versa). (For an example of LD∀-bisimilar models see
the proof of fact 2 below.)

De�nition 7 (LD∀-equivalence) Two pointed models M, s and M′, s′ are
LD∀-equivalent (notation: M, s↭D∀ M′, s′) if and only if, for every φ ∈ LD∀ ,

M, s ⊨ φ if and only if M′, s′ ⊨ φ.

When the models are clear from context, we will write simply s↭D∀ s′. ◀

Proposition 5 (LD∀-Bisimilarity implies LD∀-equivalence) LetM, s and
M′, s′ be pointed belief models. Then,

M, s -D∀ M′, s′ implies M, s↭D∀ M′, s′. ■

Proof. First, pull out the universal quanti�cation over formulas hidden in ↭D∀ ,
so the statement becomes �for every formula in LD∀ : if two pointed models are
D∀-bisimilar, then they agree on the formula's truth-value�. Now, proceed by
structural induction on formulas in LD∀ . The case for atomic propositions fol-
lows from the atom clause, and those for Boolean operators (in our case, ¬ and
∧) follow from their respective inductive hypotheses.

For formulas expressing cautious distributed belief, work by contraposition.
(⇒) Suppose M′, s′ ⊭ D∀

G φ. Then, there are H ′ ⊆max
s′ G and t′ ∈ CH′(s′)

14 Equivalently: for all G ⊆ A, for all t′ ∈ D(M′), if s′R∀
Gt

′, then ∃t such that sR∀
Gt

and Ztt′.
15 Note then that, while a collective bisimulation requires that a group is inconsistent

at any world bisimilar to one at which the group is inconsistent, this not the case
for a LD∀ -bisimulation. The models in the proof of Fact 2 below show this.
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such that M′, t′ ⊭ φ. But M, s -D∀ M′, s′ so, by the back clause, there are
H ⊆max

s G and t ∈ CH(s) such that M, t -D∀ M′, t′. By inductive hypothesis,
the latter implies M, t↭D∀ M′, t′, so from the earlier M′, t′ ⊭ φ it follows that

M, t ⊭ φ. Thus, M, s ⊭ D∀
G φ. (⇐) Similar, using the forth clause instead. ■

A weakened version of the converse holds: if two image-�nite pointed belief
models are LD∀-equivalent, then there is a LD∀-bisimulation between them.

Proposition 6 (LD∀-Equivalence implies LD∀-bisimilarity)Let M, s and

M′, s′ be image-�nite pointed belief models.16 Then,

M, s↭D∀ M′, s′ implies M, s -D∀ M′, s′.

Proof. It will be shown that ↭D∀ is in fact a LD∀-bisimulation. To do this,
take any s and s′ such that s↭D∀ s′; it will be shown that the three clauses of
De�nition 6 are satis�ed.

Atom. It is clear that s and s′ satisfy the same atomic propositions.

Forth. Take any ∅ ⊂ G ⊆ A; suppose there are H ⊆max
s G and t ∈ CH(s). For

the sake of a contradiction, suppose there are no H ′ ⊆max
s′ G and t′ ∈ CH′(s′)

such that t ↭D∀ t′; in other words, suppose that every H ′ ⊆max
s′ G and

t′ ∈ CH′(s′) are such that t ↭̸ D∀ t′. This means that if t′i ∈ C∀
G(s

′) then

t ↭̸ D∀ t′i: for every world t′i ∈ C∀
G(s

′) there is ψi ∈ LD∀ such that M, t ⊭ ψi

and M′, t′i ⊨ ψi.
Now note that C∀

G(s
′) is non-empty and �nite.17 Thus, ψ :=

∨
t′i∈C∀

G(s′) ψi

is a non-contradictory formula (as C∀
G(s

′) is non-empty) in LD∀ (as C∀
G(s

′)

is �nite). Hence, M, t ⊭ ψ and yet M′, t′i ⊨ ψ for every t′i ∈ C∀
G(s

′). Since
H ⊆max

s G and t ∈ CH(s), the former implies M, s ⊭ D∀
G ψ; nevertheless,

the latter implies M′, s′ ⊨ D∀
G ψ. This contradicts the original assumption

s ↭̸ D∀ s′. Therefore, there is some H ′ ⊆max
s′ G and some t′ ∈ CH′(s′) such

that t↭D∀ t′.

Back. Analogous to the previous clause. ■

We have now enough tools to answer the question above.

Fact 2 LD∀ is not at least as expressive as LD (in symbols: LD ̸≼ LD∀).

Proof. Consider the belief models shown below.

16 A belief model M is image-�nite i� Ca(s) is �nite for every s ∈ D(M) and every
a ∈ A (equivalently, i� CG(s) is �nite for every s ∈ D(M) and every G ⊆ A).

17 It is non-empty because, from H ⊆max
s G and t ∈ CH(s), it follows that t ∈ Ca(s)

for some a ∈ H ⊆ G, and thus M, s ⊨ ¬D∀
a ⊥. But s ↭D∀ s′, so M′, s′ ⊨ ¬D∀

a ⊥,
so a is consistent at s′ in M′. Then, since a is in G, there should be an H ′ ⊆max

s′ G
with a ∈ H ′. But, once again, a is consistent, so CH′(s′) ̸= ∅ and thus C∀

G(s
′) ̸= ∅.

It is �nite because the models are image-�nite.
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w : {p}

u : ∅

a, b
a, b

M

w′ : {p}

u′
1 : ∅ u′

2 : ∅

a b
a, b a, b

M′
■

Use MCG(s) to denote all subgroups of G that are maximally consistent at s.
The dashed edges de�ne a bisimulation between M, w and M′, w′. Indeed,

� (w,w′). The atom clause is immediate. Now forth. For G = {a}, note that
MC {a}(w) = {{a}} and thus C∀

{a}(w) = {u}. But then MC {a}(w
′) = {{a}}

and thus C∀
{a}(w

′) = {u′1}; moreover, Zuu′1. The case for G = {b} is analog-

ous. For G = {a, b}, note that MC {a,b}(w) = {{a, b}} and thus C∀
{a,b}(w) =

{u}. But then MC {a,b}(w
′) = {{a}, {b}} and thus C∀

{a,b}(w
′) = {u′1, u′2};

moreover, Zuu′1 and Zuu′2. The back clause follows a similar pattern.

� (u,u′
1). The atom clause is immediate. Consider forth. For G = {a}, note

that MC {a}(u) = {{a}} and thus C∀
{a}(u) = {u}. But then MC {a}(u

′
1) =

{{a}} and thus C∀
{a}(u

′) = {u′1}; moreover, Zuu′1. The case for G = {b}
is analogous. For G = {a, b}, note that MC {a,b}(u) = {{a, b}} and thus

C∀
{a,b}(u) = {u}. But then MC {a,b}(u

′
1) = {{a, b}} and thus C∀

{a,b}(u
′
1) =

{u′1}; moreover, Zuu′1. The back clause follows a similar pattern.

� (u,u′
2). As the previous case.

Thus, M,w -D∀ M′, w′ and hence, by Proposition 5, M, w ↭D∀ M′, w′. How-
ever, the pointed models can be distinguished by a formula in LD , as M, w ⊭
D{a,b} ⊥ and yet M′, w′ ⊨ D{a,b} ⊥. Therefore LD ̸≼ LD∀ . ■

Note how the belief models used above are serial, transitive and Euclidean:
the kind of models one normally uses for representing a proper notion of belief.

Corollary 2 LD is strictly more expressive than LD∀ (symbols: LD∀ ≺ LD).■

Thus, LD∀ can `see' strictly less than what LD can. The proposition below
shows that the group inconsistency constant ≍G introduced before is exactly
what the former needs to `see' exactly as much as the latter.

Proposition 7 LD∀,≍ and LD are equally expressive (symbols: LD∀,≍ ≈ LD).

Proof. Clearly, ⊨ ≍G ↔ DG ⊥. Thus, both ≍G and D∀
G are de�nable in LD (for

the latter, recall Proposition 4), so LD∀,≍ ≼ LD .

For proving LD ≼ LD∀,≍ , it is enough to show that DG is de�nable in LD∀,≍ :

⊨ DG φ↔ (≍G ∨D∀
G φ).
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(⇒) Suppose M, s ⊨ DG φ, so every t ∈ CG(s) is such that M, t ⊨ φ. Assume
further that M, s ⊭ ≍G. Then, MCG(s) = {G} and thus M, s ⊨ D∀

G φ. (⇐)
Proceed by contraposition: suppose M, s ⊭ DG φ. Then, there is t ∈ CG(s) such
that M, t ⊭ φ. Thus, CG(s) ̸= ∅, so MCG(s) = {G}. From the former, M, s ⊭
≍G; from t ∈ CG(s) and the latter, M, s ⊭ D∀

G φ. Thus, M, s ⊭ ≍G ∨D∀
G φ. ■

5 Summary and further work

This paper has introduced the notion of cautious distributed belief. While a set
of agents G has distributed belief that φ (DG φ) if and only if φ is true in every
world in the conjecture set of the group, the group has cautious distributed belief
that φ (D∀

G φ) if and only if φ is true in every world in the conjecture set of every
maximally consistent subgroup of G.

The paper has discussed basic properties of D∀, showing, e.g., how it is
inconsistent if and only if all agents in the group are inconsistent. Then, the
paper has studied whether this group notion inherits properties from the indi-
vidual notions of the group's members. It has been shown that consistency and
truthfulness (technically, seriality and re�exivity) are inherited, and that so are
both positive and negative introspection (technically, transitivity and Euclidi-
city) when the epistemic/doxastic notion is also truthful (technically, re�exive).
This is the opposite of what happens with standard distributed belief, which
inherits both positive and negative introspection (transitivity, symmetry and
Euclidicity) without additional assumptions, and inherits consistency (seriality)
only when the individual notions are truthful (re�exive). The �nal part of the
paper has focussed on the relationship between D∀

G and DG. It has been show
that, while they coincide in re�exive models (i.e., cautions distributed know-
ledge coincides with standard distributed knowledge), in general the latter (D)
is strictly more expressive than the former (D∀). This di�erence in expressivity
has been proved by providing a notion of structural equivalence that, within
image-�nite models, characterises modal equivalence w.r.t to LD∀ (a language
extending the propositional one with D∀). Finally, the paper has identi�ed the
`missing piece' that makes a language with D∀ as expressive as one with D.

Among the questions that still need answer, the main ones are an axiom
system for the language LD∀ and a study of its complexity pro�le. Among the
further research lines, the idea of dealing with potential group inconsistencies by
looking at maximally consistent subgroups leads to another interesting alternat-
ive: a group has bold distributed belief that φ (say, D∃

G φ) if and only if φ is true
in every world in the conjecture set of some maximally consistent subgroup of G.
The quanti�cation pattern of this alternative notion (∃∀) suggest that, di�erent
from D∀, the bold distributed belief operator is not a normal modal operator.
Thus, further technical tools will be needed for studying its pro�le.
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