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Abstract— Time-motion studies (TMS), essential for 

analyzing and optimizing work processes in industrial 

environments, have traditionally relied on manual observation 

and data collection, incurring labor-intensive efforts and 

potential biases. The advancement of computer vision and 

machine learning presents opportunities for automating and 

refining TMS through real-time 2D key point data analysis. 
However, existing methods often require labeled data for 

training, which can be a significant bottleneck. To address this 

challenge, we propose a novel approach leveraging 

unsupervised learning to classify human motions without 

requiring any labeling, thereby streamlining the process 

significantly. This study utilizes the Mediapipe framework to 

extract human skeletal key points, which are processed by a 

sequence-to-sequence (seq2seq) autoencoder model. The 

Encoder component captures key point sequences while the 

Decoder reconstructs these sequences from a compressed latent 

space. Subsequently, unsupervised clustering techniques are 

applied to group similar activities, enhancing action recognition 

efficiency without manual labeling. This innovative 

methodology eliminates the dependency on labeled data and 

paves the way for more efficient and scalable TMS in industrial 

settings. 
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I. INTRODUCTION  

Action recognition is essential for monitoring human 
workers in industrial settings to enhance operational 
efficiency, safety, and quality control. By accurately 
identifying and analyzing worker actions, industries can 
ensure compliance with standard operating procedures, 
promptly detect and address errors, and optimize workflow 
management. Traditional methods for monitoring workers in 
industrial environments, such as direct observation or video 
analysis, are often employed but are often time-consuming 
and labor-intensive. 

Human Action Recognition (HAR) is a part of computer 
vision that focuses on how computers and machines can learn 
and recognize the pattern of the input data from various 
sources, including sensors, video sequences, or real-time 
video, and then predict and classify the action being 
performed. HAR using 2D keypoint data has emerged as a 

promising approach for understanding and analyzing human 
behavior in real time, particularly in industrial settings.   

Recent research has extensively explored Deep Learning-
based methods involving Convolution Neural Networks 
(CNNs), Autoencoder, Recurrent Neural Networks (RNNs), 
and other Deep Neural Architecture [1], [2], [3], [4], [5], [6].  

Integrating HAR systems within industrial environments 
holds immense potential for enhancing worker safety, 
optimizing workflow management, and improving overall 
operational efficiency. By accurately identifying and 
classifying worker actions in real-time, these systems can 
promptly detect and rectify errors and provide invaluable 
insights into worker productivity and task performance. 
Moreover, integrating HAR with time-motion studies allows 
for the precise measurement and analysis of task durations, 
enabling data-driven decision-making for process 
optimization and efficiency improvement. [7], [8].  

Despite the significant advancements in HAR, several 
challenges remain, particularly in supervised learning. While 
supervised methods can achieve remarkable accuracy, they 
depend heavily on extensive labeled datasets, which are often 
costly and time-consuming to create. This dependency on 
labeled data poses a significant obstacle to the widespread 
adoption of HAR in industrial environments, where the 
diversity of activities and environments necessitates highly 
customized and adaptable models. To overcome the 
limitations of supervised learning, exploring unsupervised 
learning techniques, which do not require labeled data, holds 
immense promise for developing more efficient, scalable, and 
adaptable HAR systems. 

II. RELATE WORK 

Real-time unsupervised classification in industrial time-
motion studies using 2D key points or real-time video data is 
a modern research area that aims to automate the 
categorization of movements in industrial settings without 
manual labeling or supervision. Many researchers are 
exploring related concepts that can help develop systems 
capable of real-time motion data classification and analysis. A 
landmark study in this domain was conducted by Srivastava et 
al. (2015), who introduced an unsupervised learning approach 
for video representation using Long Short-Term Memory 
(LSTM) networks [6]. Their research showcased the 
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effectiveness of LSTMs in processing sequential images for 
tasks like frame reconstruction, future frame prediction, and 
human action prediction, laying the groundwork for 
subsequent research in action recognition. Building upon 
Srivastava et al.’s work, Su et al. (2019) explored the fusion 
of autoencoders and the K-Nearest Neighbors (K-NN) model 
for predicting and clustering similar actions [1]. This hybrid 
approach capitalizes on the strengths of both autoencoders for 
dimensionality reduction and K-NN for classification, 
yielding enhanced performance in action recognition tasks. To 
further bolster the Encoder’s resilience, the authors 
implemented Fixed Weights (FW) and Fixed States (FS), 
compelling the Decoder to rely on the Encoder’s hidden states, 
thereby improving feature robustness. Another significant 
advancement was the integration of the Variational 
Autoencoder (VAE) with the Hidden Markov Model (HMM) 
[2][3]. This VAME (Variational Embeddings of Animal 
Motion) system learns probabilistic representations of 3D 
body key point sequences using a VAE, which are then 
modeled by an HMM to capture the temporal dynamics of 
actions. This approach facilitates the study of complex 
behaviors without needing labeled data, offering a valuable 
solution in scenarios where labeled data is scarce or costly to 
obtain. 

 Qin et al. (2022) developed a system for virtual hand 
control utilizing a Channel wise CNN (CW-CNN) regression 
model, incorporating Kalman filters to reduce latency, 
suitable for adapting to unsupervised tasks in industrial 
motion studies[9]. Leone et al. (2022) introduced a parallel 
classification method using logistic regression to 
simultaneously control multiple joint movements, enhancing 
the efficiency of categorizing complex motions in real 
time[10]. Further, Cheta et al. (2020) examined how training 
parameters influence the performance of neural networks in 
task recognition, which is vital for creating adaptable 
unsupervised classification systems[11]. Cho et al. (2020) 
combined different machine learning approaches, including a 
constrained autoencoder and support vector machines, to 
estimate finger force from surface electromyography  (sEMG) 
signals, showing potential for broad applications in motion 
analysis[12].  

In practical applications, Huang et al. (2020) demonstrated 
near-infrared spectroscopy for real-time monitoring in 
industrial composting, indicating the feasibility of such 
technologies for environmental monitoring[13]. Ravi et al. 
(2022) developed a semi-supervised quality control system 
using physics-based models and support vector machine 
(SVM) classifiers, suggesting enhancements in system 
robustness[14]. Yang (2024) utilized unsupervised learning 
techniques, such as principle component analysis (PCA) and 
K-means clustering, for analyzing deformation in built 
environments, offering methods adaptable for industrial 
motion pattern analysis[15].  

Lastly, Shyamal and Swartz (2018) created a dynamic 
optimization-based system for electric arc furnace operations, 
integrating first-principles models to aid real-time decision-
making[16]. These environments often present challenges 
such as variations in lighting, occlusions, and diverse human 
actions, which can hinder the performance of current 
algorithms. Future research should prioritize the development 
of algorithms that can address these challenges and enable 
accurate and reliable action recognition in real-time industrial 
settings. 

III. METHODOLOGY 

The proposed model uses an autoencoder architecture to 
extract meaningful representations from input sequence data 
then the K-means unsupervised learning is apply to group 
similar action. This architecture consists of an Encoder and a 
Decoder. The Encoder transforms the sequence of key points 
into a latent space representation using a Recurrent Neural 
Network (RNN) layer. The Decoder then uses this latent space 
input to reassemble the original input sequence. 

Figure 1 illustrates the architecture of the proposed model, 
which uses the Encoder-Decoder to compress and rebuild the 
sequence action. 

A. Data collection 

This model uses the 2D human key points dataset to train 
the Encoder-Decoder model. The data was first extracted from 
a recorded video of shoe factory employees’ activities during 
working hours. The worker in the video inspects the shoes’ 
quality and stores them. The Mediapipe framework draws 
human body points and extracts the key points from the video, 
as shown in the figure below.  When the worker is not in the 
camera area, we assign all the values of the human body key 
points to 0. 

B. Data preprocessing 

 The extracted keypoints from the video recordings are 
organized into a dataset with dimension of (sequence length, 
feature size, x, y) where (sequence length) represents the total 
number of sequence in the dataset, and 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑠𝑖𝑧𝑒 
denotes the total number of keypoints. According to the 
MediaPipe framework, the feature size includes 33 
keypoints.The (𝑥, 𝑦)  coordinates specify the positions of 
these keypoints in each frame. The  (𝑥, 𝑦)  coordinates are 
subsequently flattened into a new dimension, resulting in a 
dataset with dimensions of (sequence length, xy)The min-max 
normalization technique is used to range the value of the 

dataset set from 0 to 1. Consider 𝐾 = {𝑘𝑖𝑗}  as the raw 

keypoints dataset after flattening where: 

 

Fig 1: model architecture 

Fig 2:Data collection 



• i ranges from 1 to total frame 

• j range from 1 to 66 the number of features, which 
are the flatten x and y coordinates. 

 Let 𝐾𝑚𝑖𝑛 be the minimum values of each keypoints joints 
and 𝑋𝑚𝑎𝑥  is the maximum values of each keypoints 
joints. 𝐾𝑛𝑜𝑟𝑚 = {𝑘𝑖𝑗

𝑛𝑜𝑟𝑚}  represent the dataset after 

normalization, where each normalized element 𝑘𝑖𝑗
𝑛𝑜𝑟𝑚 is 

computed as described below: 

C. Autoencoder 

The Encoder of our model takes sequences of input and 

tries to generate meaningful information at the last layer so 

that the Decoder can reconstruct the sequence input back 

from the latent space. Consider 𝐸(𝑥) is the Encoder with the 

sequence input of x, and 𝑧 is the latent space in the bottleneck. 

Then, the relation between the Encoder and latent space is 

given by: 

 𝑧 = 𝐸(𝑥) (4) 

 

The Decoder tries to reconstruct the input by taking the 

latent and rebuilding the sequence based on LSTM layers. 

Consider 𝐷(𝑧)  is the Decoder and 𝑥′  is the reconstructed 

sequence.  

 𝑥′ = 𝐷(𝑧) (5) 

 𝑥′ = 𝐷(𝐸(𝑥)) (6) 

 

The objective function is to minimize the error between 

the actual sequence and the reconstructed sequence. Denote 

𝑓 as the objective function that tries to minimize the error. 

 𝑓(𝑥) = min (𝑥 − 𝑥′) (7) 

 

D. Action clustering 

The latent space from the Encoder exists in a higher 
dimension, which is not very suitable for visualization. The t-
SNE algorithm projects the latent space from a higher-
dimension space to a two-dimensional space, allowing for 
easier observation of the latent space’s behavior, which shows 
similar properties. Once projected into a lower-dimensional 
space, unsupervised learning algorithm techniques become 
instrumental in grouping similar latent space representations. 
This paper proposes several unsupervised algorithms, 
including K-means, Hierarchical Clustering, Mean Shift, and 
DBSCAN algorithms. The optimal number of clusters for K-
means was identified as 3 using the elbow technique, 
facilitating efficient data partitioning and revealing underlying 
patterns within the latent space. Additionally, through visual 
inspection of the results, as illustrated in the accompanying 
image, the efficacy of the clustering methodology in 
effectively capturing the data’s inherent structure was 
confirmed.  

IV. EXPERIMENTAL 

The dataset being used is the recorded video. The 
experiment is set up in this environment by performing 3 
actions: picking up, inspecting, and storing the shoes. The 

total duration of the video is 39 minutes and 47 seconds. The 
dataset is split into 70% training, 10% validation, and 20% 
testing. During training the Autoencoder, the hidden size 
value is set to 32, and the learning rate to 3 × 103, and the 
sequence length to 40. The model’s Encoder comprises 2 
LSTM layers to learn valuable information regarding key 
input sequence points. 

Additionally, the bidirectional property of the LSTM 
layers enables the architecture to learn both the forward and 
backward directions of the input. During training, the size of 
the hidden state is 32, but due to the property set, the final 
output of the hidden state is 128. To ensure the hidden output 
matches the output size, the hidden layers are applied to the 
last hidden state of both directions of the LSTM layers, which 
is then fed into the Decoder. A setup has been developed 
where the Decoder mirrors the Encoder, creating a seamless 
process for data reconstruction. Using two layers of 
bidirectional GRU units in the Decoder enhances the ability to 
capture time-related patterns and context effectively. 
Afterward, a simple linear function is applied to align the key 
points of the reconstructed sequence with those of the input. 
This approach ensures that the reconstructed data faithfully 
represents the original, reflecting dedication to accuracy and 
meticulous research practices. 

After completing our training phase, we will retrieve the 
latent space from the Encoder again. This latent space 
encompasses crucial information about the sequence of inputs. 
The unsupervised learning algorithm can be deployed using 
the extracted latent space to categorize similar key points into 
clusters. This method systematically groups data points based 
on their inherent similarities within the latent space. 

V. RESULT 

After training, the training loss between the input and the 
reconstruction key point is 0.0003, indicating that the model 
has effectively learned to reconstruct the input data with 
minimal error. To further analyze the model’s performance, 
we apply the K-means unsupervised learning algorithm to the 
latent space, which helps cluster similar data points and 
uncover patterns in the dataset. This approach is compared 
with other unsupervised methods to ensure the robustness and 
accuracy of our findings. The elbow method is used to find the 
best value of k for the K-means algorithm. With the value of 
k of K-means equal to 3, the latent space is grouped as shown 
in the table below.  

  

 
𝐾𝑛𝑜𝑟𝑚 =

𝐾 − 𝐾𝑚𝑖𝑛

𝐾𝑚𝑎𝑥 − 𝐾𝑚𝑖𝑛 

 
(1) 

 𝐾𝑚𝑖𝑛,𝑗 = min
1<𝑖≤𝑡𝑜𝑡𝑎𝑙 𝑓𝑟𝑎𝑚𝑒

(𝑘𝑖𝑗) for j = 1,2, … ,66 (2) 

 𝐾𝑚𝑎𝑥,𝑗 = 𝑚𝑎𝑥
1<𝑖≤𝑡𝑜𝑡𝑎𝑙 𝑓𝑟𝑎𝑚𝑒

(𝑘𝑖𝑗) for j = 1,2, … ,66 (3) 

Fig 3: K-means clustering in the latent space 



 The model is then evaluated on an unknown dataset to 
assess its performance in settings resembling real-world 
conditions. The unseen dataset includes a range of actions 
comprising 8 minutes and 32 seconds of film. It consists of 36 
separate operations, evenly split over three categories: 12 
instances of picking up shoes, 12 instances of examining the 
shoes, and 12 instances of storing them in their respective 
locations. To effectively measure the model’s performance, 
we use a confusion matrix, a useful tool for visualizing 
prediction accuracy across multiple categories. Using the 
confusion matrix, we calculate the classification accuracy, 
precision, recall, and F1 score for each type of action. This 
comprehensive evaluation explains the model’s ability to 
generalize and accurately identify actions during training. By 
analyzing these metrics, we gain insights into specific areas 
where the model excels or may need further refinement, 
ensuring it performs robustly in practical applications. This 
process tests the model’s effectiveness and highlights 
potential improvements that could enhance its applicability in 
dynamic, real-world environments. 

Table 1: Confusion matrix 

  Predict Class 

  Positive Negative 

Actual Class 

Positive TP=28 FP = 8 

Negative FN = 8 TN=64 

 

 
𝑟𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
= 77.77% 

 

(8) 

 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
= 86.66% 

(9) 

   

 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
= 77.77% 

(10) 

 

The model demonstrated robust performance. It recorded 
a recall rate of 86.11%, signifying that it accurately identified 
approximately 86.11% of the true action instances. The 
precision rate was 89.13%, indicating that around 89.13% of 
the model’s positive action identifications were correct. 
Overall, the model achieved an accuracy of 86.11%. 
86.11%These metrics collectively suggest that the model is 
highly effective at recognizing and correctly classifying 
specified actions with a low rate of false positives, which is 
critical in reducing operational errors within an industrial 
environment. 

Further analysis of the model’s performance across 
individual actions could provide insights into specific areas 
that may benefit from targeted improvements. The proposed 
model is compared with other traditional unsupervised 
machine learning models. This comparison aims to evaluate 
the effectiveness of the proposed model’s feature processing 
and classification strategies relative to the conventional 
approach. 

Table 2: Comparison of other unsupervised learning 
models 

 

Based on this table, the proposed method can have better 
accuracy in detecting human action without any label sets.  

VI. CONCLUSION 

This study presents an unsupervised learning methodology 
for human action recognition (HAR) in industrial contexts by 
using the Mediapipe framework and a sequence-to-sequence 
autoencoder model. This approach significantly enhances the 
scalability and practicality of time-motion studies by 
eliminating the dependency on labeled datasets, a common 
bottleneck in traditional HAR methods. Empirical evaluations 
substantiate the model’s capacity to accurately classify worker 
activities in real time, enabling proactive operational 
management strategies to enhance efficiency and safety. 
Integrating t-SNE and K-mean clustering further reinforces 
the model’s robustness. 

This research shows promising outcomes in a controlled 
setting. However, further studies are needed to determine if 
these results can be applied to complex industrial 
environments with varying activities and conditions. The 
model’s reliance on 2D skeletal key points could limit its 
effectiveness when objects block the view or the perspective 
changes significantly. The transition between different 
movements presents a significant challenge in this research. 
For instance, when a worker switches their movement from 
picking up an object to inspecting it, the model struggles to 
predict actions during these transitions accurately. Future 
research should include additional data types, such as depth 
information, to improve the model’s robustness and accuracy 
in real-world conditions. 

 Despite these challenges, this study lays the groundwork 
for creating intelligent systems that can adapt and learn 
autonomously within their surroundings. The methodology 
introduced here holds the potential for real-time monitoring 
and analysis of human activities, which could significantly 
change how operations are managed in industrial contexts. 
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