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Abstract. Our group previously reported a feasible approach to detect
the internal state of familiarity with eye-gaze features [1]. Utilizing an
existing paradigm [2], we examined participants’ feelings of familiar-
ity during immersion within virtual reality (VR) scenes, some of which
had had their spatial layout familiarized through prior presentation of
a different scene with the same configuration. While immersed in a test
scene, participants indicated the onset of familiarity via a button press
on a handheld controller, then verbally indicated whether they could
state the source of the familiarity or not. A potential issue is that ma-
chine learning models may have detected eye-gaze features reflecting the
act of pressing the button rather than features associated with the in-
ternal state of familiarity. Although in [1] we addressed this challenge
by including a buffer period between the button press and the window
of data used for model training, it remains uncertain within what time
frame features associated with the button press may persist. Here, we
introduce an approach for potentially overcoming the confounding ef-
fects of the button-press by holding it constant. We examine machine
learning models’ ability to detect whether a scene’s layout had been ex-
perimentally familiarized among only instances where subjective famil-
iarity was reported. We then repeat this method for instances where no
familiarity was reported. Finally, we examine experimentally familiar-
ized scenes where familiarity was reported to detect recall-success vs.
recall-failure for the familiarity’s source.
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1. Introduction & Related Works

Research on internal state detection centers on determining the reliability of ma-
chine learning models at identifying whether an individual is in a particular cogni-
tive state based on the external physiological qualities they exhibit. Much of this
research examines the automatic detection of mind wandering, an internal state
often characterized by task-unrelated-thought. These methods have been mostly
successful using data from various physiological features, including eye-gaze, skin
conductance, and heart rate, with eye-gaze features being the most effective [3,4].

Some research has examined the detection of another internal state—the sub-
jective sense of familiarity—from eye-gaze features [1]. Familiarity is a common
subjective experience that is tied closely to recognition. It is thought to trigger
a recall search in memory where individuals will attempt to identify the source
of familiarity [5]. Our group previously employed popular machine learning al-
gorithms to detect when participants were consciously experiencing familiarity
within virtual reality (VR) scenes and found above-chance accuracy results [1].
The current work aims to expand upon our prior findings, including addressing
some methodological challenges we previously encountered.

Establishing a ground-truth for familiarity experiences is a non-trivial task
that requires some form of subjective report from participants. Often used in mind
wandering studies [6], probe-based reports prompt participants throughout the
experiment to periodically answer whether they are currently experiencing the
given cognitive state. However, this method fails to capture the precise moment of
onset for a cognitive state. We aimed to capture the moment of onset of familiarity
by having participants indicate, via a button-press on a VR hand-controller, the
moment something feels familiar in a VR scene. This study design posed unique
challenges. Namely, eye-gaze features may correlate with the action of pressing the
hand-controller button, thereby introducing a confounding variable to extracting
the eye-gaze data that reflect the sensation of familiarity. Training models on this
data set initially produced accuracy levels too high to fit in with prior research
regarding cognitive state detection, suggesting that the models may have been
picking up on differentiable eye-gaze patterns of intent to press the button in the
moments preceding a button press. To negate this effect in our previous study, we
introduced a 500 millisecond (ms) buffer period between the button press and the
two second window of eye-gaze data collected. While this is a viable approach,
there is currently little research to inform the correct buffer size to use in VR
settings for removing eye-gaze features related to the button-press. As such, it
is possible that residual gaze features correlated with the button press persisted
beyond the 500ms buffer period and into the window used for model training; it
is also possible that valuable eye-gaze data reflective of the state of familiarity
were removed from model training.

In the current work we present another approach to dealing with this is-
sue. We hold the VR hand-controller button-press constant while training the
model on experimentally familiarized vs. unfamiliarized VR scenes. Based on
prior research [2,7,8], a VR scene was considered experimentally familiarized if
an otherwise novel scene containing its same spatial layout had been presented
earlier in the experiment. First, we conducted a model search using eye-gaze



features coming from the moments preceding a familiarity report in a scene to
predict the experimentally-familiarized status of the given scene. Next we con-
duct a model search using eye-gaze features coming from randomly selected mo-
ments from within scenes that no familiarity was reported to detect, again, the
experimentally-familiarized status of the given scene. Finally, we trained the mod-
els on experimentally familiarized test scenes where familiarity was reported via
the button-press to compare instances where recall of the corresponding configu-
rally similar study scene succeeded vs failed.

Beyond addressing the button-press challenges inherent in using a button-
press to detect internal states via eye-gaze patterns in VR, we aim to show that
distinct patterns in eye-gaze features emerge from different levels of familiarity
when the subjective state is reported. Familiarity strengths are known to vary,
where “a high degree of overlap between the features of the current situation
and the features of previous experiences in memory produces a relatively strong
familiarity signal” and“a low degree of overlap produces a relatively weak famil-
iarity signal” [9,10]. As such, we might expect higher levels of familiarity with
experimentally familiarized scenes than those that have not been experimentally
familiarized, even among VR scenes for which the button was pressed to indicate
a sense of familiarity.

Machine learning models have been shown to be able to identify previously
seen images from unseen images using eye-gaze features, even in cases where
participants failed to consciously recognize the previously studied images [11].
However, unlike previous research that examined when a participant viewed an
image identical to one previously seen, we aim to detect when participants are
immersed in novel scenes containing the same spatial layout as a previously viewed
scene. Additionally, the current approach allows us to assess whether machine
learning models are able to make this separation not only when participants
consciously felt that the scene was familiar, but also when participants felt that
it was unfamiliar, allowing for a direct comparison of model performance in each
case.

2. Methods

We used the same dataset as [1], in whose study 26 undergraduate students from
Colorado State University participated for course credit. As described in [1], the
procedure from which the data were obtained closely resembled that of [2].

2.1. Data Collection

Eye-gaze data was measured at 120hz by the HTC Vive Pro Eye headset and
collected using the SRanipal software development kit (SDK) version 1.3.6.8.
Data was stored in comma-separated-values (CSV) files along with participants’
recorded verbal responses and annotations, which included columns for familiar-
ization/study status (whether a configurally identical scene was studied) and re-
call status (whether the studied scene was recalled or not following a report of
familiarity).



2.2. Data Preprocessing and Model Training

We extracted eye-gaze data from 1, 2, and 3 second windows before each familiar-
ity indication. Four buffer periods, ranging from 0 ms to 1000 ms, were included
between the familiarity indication and the window of data extracted, consistent
with [1]. Trials in which a familiarity indication occurred too soon into scene’s
onset to extract the given buffer and window size were excluded. For each positive
report of familiarity, a negative instance of the same window size is extracted,
from the same participant, from a scene in which no familiarity was reported.
No buffer period is included for the negative instances, as no button press occurs
during these. Eye-gaze features of interest were extracted using PyTrack. The
result was 24 distinct datasets of eye-gaze features, with 12 datasets for positive
instances and 12 for negative instances, for model training and comparison.

Across all detection tasks, model search was conducted with Hyperopt for
hyper parameter optimization using random search over 300 training evaluations.
Model algorithms used included AdaBoost, Naive Bayes, Logistic Regression,
Support Vector Classifier, Random Forest, and K-Nearest Neighbors. Training
and evaluation was done using Leave-One-Participant-Out-Cross-Validation. Co-
hen’s Kappa was used to evaluate the model accuracy; specifically, we report the
average across the held participants.

3. Results

During instances of positive familiarity reports, the Ada Boost model algorithm
preformed best at differentiating between scenes that were experimentally famil-
iarized and scenes that were not experimentally familiarized. This model resulted
in a Cohen’s Kappa score of 0.16 from training on 3 seconds of eye-gaze data,
temporally separated from the button press by a 500ms buffer. Model results for
all buffer and window sizes tested can be found in Table 1.

The same detection task, preformed on eye-gaze data extracted from scenes
where no familiarity was reported, also found the best performance from the Ada
Boost algorithm combined with a 3 second window of eye-gaze data. However,
the model achieved a lower Cohen’s Kappa score of 0.09. Model results for all
window sizes tested can be found at the bottom of Table 1.

During experimentally familiarized test scenes where familiarity was reported,
the Naive Bayes model was able to detect a participant’s recall status with a
Cohen’s Kappa score of 0.25. This best performing model resulted from training
on 3 seconds of eye-gaze data, temporally separated from the button press by a
250ms buffer. Model results for all buffer and window sizes tested can be found
in Table 2.

4. Discussion

Among instances where participants reported consciously feeling a sense of fa-
miliarity with a VR scene (thus the button-press was held constant as it was



Table 1. Detecting the experimentally familiarized status of scenes using eye-gaze features — a
comparison of model performance with various buffer and window sizes (Standard Deviation in

parenthesis).

Buffer Window Model Cohen’s Kappa F1 Score Familiarity Reported

1 sec Naive Bayes 0.11 (0.17) | 0.49 (0.13) v

0 ms 2 sec Ada Boost 0.08 (0.16) 0.61 (0.11) v

3 sec Ada Boost 0.06 (0.17) 0.60 (0.10) v

1 sec Random Forest 0.08 (0.18) 0.62 (0.13) v

250 ms 2 sec Ada Boost 0.13 (0.18) 0.63 (0.15) v

3 sec Ada Boost 0.13 (0.21) 0.60 (0.13) v

1 sec Ada Boost 0.08 (0.25) 0.62 (0.15) v

500ms | 2 sec SvC 0.13 (0.16) | 0.63 (0.12) v

3 sec Ada Boost 0.16 (0.22) 0.64 (0.12) v

1 sec Ada Boost 0.08 (0.17) 0.62 (0.14) v

1000 ms 2 sec Random Forest 0.10 (0.18) 0.62 (0.15) v

3 sec Ada Boost 0.09 (0.18) 0.60 (0.11) v

1 sec SvC 0.05 (0.14) | 0.56 (0.17) X

N/A 2 sec Ada Boost 0.01 (0.14) | 0.56 (0.14) X

3 sec Ada Boost 0.09 (0.21) 0.63 (0.15) X

Table 2. Detecting participant’s recall status preceding positive reports among experimentally
familiarized scenes — a comparison of model performance with various buffer and window sizes
(Standard Deviation in parenthesis).

Buffer Window Model Cohen’s Kappa F1 Score
1 sec Ada Boost 0.16 (0.27) 0.64 (0.17)
0 ms 2 sec Ada Boost 0.14 (0.26) 0.53 (0.21)
3 sec Naive Bayes 0.23 (0.18) 0.64 (0.12)
1 sec Ada Boost 0.14 (0.24) 0.64 (0.13)
250 ms 2 sec Naive Bayes 0.10 (0.24) 0.54 (0.19)
3 sec Naive Bayes 0.25 (0.21) 0.66 (0.12)
1 sec Naive Bayes 0.06 (0.18) 0.45 (0.16)
500 ms 2 sec Ada Boost 0.19 (0.18) 0.66 (0.12)
3 sec Naive Bayes 0.23 (0.28) 0.65 (0.14)
1 sec Ada Boost 0.16 (0.23) 0.65 (0.15)
1000 ms 2 sec Naive Bayes 0.18 (0.25) 0.60 (0.15)
3 sec Random Forest 0.17 (0.23) 0.66 (0.15)

always pressed in these cases), detectable differences in eye-gaze patterns oc-
curred between experimentally familiarized and unfamiliarized scenes. In con-
trast, when participants did not consciously experience familiarity with a scene
(thus the button-press was held constant in being unpressed), our models were
unable to detect any significant differences in the eye-gaze patterns among exper-
imentally familiarized vs. unfamiliarized scenes. These patterns may suggest that
eye-gaze patterns reflective of experimental familiarization of scene layout is only
detectable when participants are experiencing a sense of familiarity for the scene.
If so, an implication might be that a subjectively detectable sense of familiarity



must be present in the experiencer in order for variations in familiarity intensity
to be externally detectable. However, the lower model performance among neg-
ative instances might reflect not having a precise moment (the button-press) to
reference. Unlike in positive instances where data corresponds to the time point
of the button-press, for negative instances, we sampled a random window of data
from within the scene. Future research should continue to try to tackle this chal-
lenge. One method might be to yoke each positive instance with a random nega-
tive instance from the same participant, using the same time point in the negative
instance as when the button was pressed in the positive instance.

Finally, among experimentally familiarized scenes for which the button was
pressed, we also observed differences in eye-gaze patterns between instances of
familiarity accompanied by recall success vs. failure. This suggests that when a VR,
scene feels familiar, eye-gaze patterns differ in some fundamental way when the
source of the familiarity is identified compared to when it is not, or, alternatively,
that there is a detectable gaze pattern difference between recognizing a scene
based on recall vs. based on familiarity alone.

Methodologically, this work presents a potential means of addressing issues
surrounding measuring eye-gaze in VR when there is a hand-controller button-
press to indicate a subjective mental state. An alternative method for research
could be designing the experiment so that a button-press is always required (both
for positive and negative instances).
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