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Abstract—Physical world contains many complex sentient 

structures. They have evolved to learn how to organize 

themselves and optimally use the resources available to them 

while interacting with their environment. These complex 

adaptive systems (CAS) sustain their continued existence in the 

face of external forces causing large fluctuations. The study of 

CAS functions, structures and their dynamics under the 

influence of fluctuations has thrown light into self-organizing 

patterns that are common among these disparate systems. 

Common theme among these structures is that a system 

encodes and processes information to organize and manage its 

components interacting with each other and their environment. 

The self-organizing patterns also sense and counteract 

fluctuations to maintain their stability. They become 

autopoietic and maintain homeostasis. 

Digital Computing structures composed of distributed and 

communicating software and hardware components also fall 

into the category of a complex system where fluctuations in the 

demand for, or the availability of, resources required to 

execute the computations disturb their stability and 

performance. The fluctuations impact the resiliency and 

efficiency of the structure as the scale of components increase. 

This paper describes the theory and practice of applying the 

self-organizing and self-managing patterns to distributed 

digital computing structures and make them autopoietic 

machines. 

Keywords—Autopoiesis, Sentient Systems, Complex Adaptive 

Systems, Triadic Machines, Digital Genes, Digital Neurons, 

Distributed Computing, Church-Turing Thesis, Structural 

Machines, Knowledge Structures, Theory of Oracles 

I. INTRODUCTION 

All living beings exhibit sentience along with some form 
of intelligence and resilience. Sentience comes from the 
Latin sentient-, "feeling," and it describes things that are 
alive, able to feel and perceive, and show awareness or 
responsiveness. The degree of intelligence (the ability to 
acquire and apply knowledge and skills) and resilience (the 
capacity to recover quickly from non-deterministic 
difficulties without requiring a reboot) depend on the 
cognitive apparatuses the organism has developed. The 
cognitive apparatuses are built using information processing 
structures that exploit physical, chemical and biological 
processes, concerned with matter and energy, that transform 
their physical and kinetic states to establish a dynamic 
equilibrium between themselves and their environment using 
the principle of entropy minimization. 

According to Maturna and Varela [1] “A cognitive 
system is a system whose organization defines a domain of 
interaction in which it can act with relevance to the 

maintenance of itself, and the process of cognition is the 
actual (inductive) acting or behaving in the domain. Living 
systems are cognitive systems, and living as a process is a 
process of cognition. This statement is valid for all 
organisms, with or without a nervous system.”  

According to Wikipedia, "cognition is considered as the 
ability of adaptation in a certain environment. That definition 
is not as strange as it seems at first glance: for example, one 
is considered to have a good knowledge of Mathematics if 
they can understand and subsequently solve a Mathematical 
problem. That is, one can recognize the mathematical 
entities, their interrelations and the procedures used to view 
other aspects of the relevant phenomena; all these, are the 
domain of Mathematics. And one with knowledge of that 
domain, is one adapted to that domain, for they can tweak the 
problems, the entities and the procedures within the certain 
domain.  

Cognition emerges as a consequence of the continuous 
interaction between the components of the system and its 
environment. The continuous interaction triggers bilateral 
perturbations; perturbations are considered problems – 
therefore the system uses its functional differentiation 
procedures to come up with a solution (if it doesn't have one 
handy already through its memory). Gradually the system 
becomes "adapted" to its environment – that is it can 
confront the perturbations so as to survive. The resulting 
complexity of living systems is cognition produced by the 
history of bilateral perturbations within the 
system/environment schema.” 

Cognition enables complex physical structures to evolve, 
adapt and become autopoietic. The term autopoiesis [1] 
refers to a system capable of reproducing and maintaining 
itself. “An autopoietic machine is a machine organized 
(defined as a unity) as a network of processes of production 
(transformation and destruction) of components which: (i) 
through their interactions and transformations continuously 
regenerate and realize the network of processes (relations) 
that produced them; and (ii) constitute it (the machine) as a 
concrete unity in space in which they (the components) exist 
by specifying the topological domain of its realization as 
such a network.” 

Evolution of self-maintenance patterns in complex 
adaptive systems (CAS) has been studied extensively and 
lessons learned have been successfully applied to understand 
and improve diverse domains [2 - 5] such as economics of 
stock market trading, modeling organizational change, 
supply-chain network dynamics, and examining global 
health governance. A CAS consists of a network of 
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individual entities interacting with each other and its 
environment. Each entity exhibits a specific behavior and 
may be composed of subnetworks of entities providing a 
composed behavior. It takes energy to process information, 
sustain its structure and exhibit the intended behavior. 
Various systems adapt different strategies to use matter and 
energy to sustain order in the face of fluctuations caused by 
internal or external forces. The second law of 
thermodynamics comes into play because of matter and 
energy involvement which states that "there is no natural 
process the only result of which is to cool a heat reservoir 
and do external work." In more understandable terms, this 
law observes the fact that the useable energy in the universe 
is becoming less and less. Ultimately there would be no 
available energy left. Stemming from this fact we find that 
the most probable state for any natural system is one of 
disorder. All-natural systems degenerate when left to 
themselves. 

An adaptive system refuses to be ‘left to itself’ and 
develops self-organizing patterns to reconfigure the structure 
to compensate for the deviations of behavior due to 
fluctuations.  Thus function, structure, fluctuations, sensory 
perception, awareness and reconfiguration processes play 
key roles in the evolution of CAS. In Section II, we analyze 
CAS and show how the theory of many-body interactions 
helps us to develop and understand its dynamics and state 
evolution. In Section III, we identify self-organizing and 
self-managing patterns and describe how they assist in 
sustaining order in the face of fluctuations. In Section IV, we 
discuss a new theory of triadic machines, which allows us to 
implement these self-organizing and self-managing patterns 
in digital computing systems. In Section V, we describe 
triadic structural machines as a mathematical model of self-
organizing and self-managing information processing 
systems. In Section VI, we demonstrate that the current 
information processing structures implemented using John 
von Neumann’s stored program implementation could be 
modeled as a complex adaptive system and that similar self-
organizing and self-management patterns can be infused to 
sustain their behaviors in the face of fluctuations even as the 
system grows in scale and is geographically distributed. This 
observation is very timely to address the emerging 
information processing networks that are growing in scale 
connecting people, things and business process automation 
computing structures deployed in public, private, hybrid 
clouds and datacenters. In Section VII, we describe 
application of triadic automata to the implementation of an 
autopoietic edge cloud where a distributed application 
workload is designed to manage itself in the face of 
fluctuations in the availability of or the demand for 
computing resources sustaining the computations. Section 
VIII concludes the paper with lessons learned identifying 
further research aimed at the improvement of the resiliency 
and efficiency at scale of how we deploy distributed 
computing structures in the future. 

II. CAS AND THE DYNAMICS OF  MANY-BODY INTERACTIONS 

“The emerging tapestry of complex systems research is 
being formed by localized individual efforts that are 
becoming subsumed as part of a greater pattern that holds a 
beauty and coherence that belies the lack of an omniscient 
designer. As in Navajo weaving, efforts on one area of this 
tapestry are beginning to meld into another, leaving only 
faint "lazy lines" to mark the event.” This poetic description 

[6] summarizes the state of the art of our understanding of 
CAS bringing together many diverse disciplines. We have 
come a long way since the event in 1984, at Santa Fe 
Institute, which facilitated a new insight into the theory of 
complex adaptive systems and its application to multiple 
domains [7 -10]. Instead of reviewing the current state of the 
art, in this paper, we take a new look at the CAS and its 
evolution using the new mathematical tools introduced by 
Mark Burgin [11] in the form of named sets, knowledge 
structures, cognizing oracle agents and structural machines.  

We study CAS as a system composed of a named set of 
components interacting with each other and their 
environment where the local functions, global structure and 
fluctuations in their interactions play key roles in their 
evolutionary dynamics.  Each component as a named 
component may also have its own structure that defines its 
internal and external interactions and evolution. This model 
of a complex system is a network of networks with the nodes 
defining the local functional behavior and links representing 
the interactions which, in turn determine the global dynamics 
of the system. Both locality of functions, their behaviors and 
the nature of interactions among themselves and their 
environment play a role on the overall structural behavior.  

In this paper, we focus on a particular kind of structure 
which consists of a system of distributed components where 
each component itself may be composed of various 
concurrent asynchronous processes interacting with each 
other and their environment. The dynamics of such a system 
is non-deterministic based on the nature and the strength of 
fluctuations in the interactions. We focus on this type of 
structure because of its relevance to current day digital 
computing-based information processing structures and their 
efficiency and resiliency at scale in the face of fluctuations 
impacting the structure. When the fluctuations are small, the 
system usually exhibits near-equilibrium behavior and as the 
fluctuations increase in magnitude, the system may undergo 
chaotic behavior depending on the magnitude and the nature 
of fluctuations. Whether the trajectory of the system 
evolution is deterministic or non-deterministic, depends both 
on the nature of interactions and the strength of fluctuations. 
The nature of fluctuations determines the degree of non-
linearity in the trajectory. Self-organizing and self-managing 
patterns are designed (often through evolutionary processes) 
to sense the nature of fluctuations and predict the impact on 
the system evolution and take action to counteract and 
maintain equilibrium. Biological systems manage 
homeostasis 1  through self-managing processes which are 
also implemented as physical structures.  

Talking about the description of the physical world, 
Prigogine [12] points out the evolution of our theories from 
groups to semigroups, and from trajectories to processes. To 
him, it was evident from start that the physical structures 
were evolving out of fluctuations. “They appeared in fact as 
giant fluctuations, stabilized through matter and energy 
exchanges with the outer world. Since the formulation of the 
minimum entropy production theorem, the study of non-
equilibrium fluctuation had attracted all his attention.” 

 

1  Homeostasis the tendency toward a relatively stable 

equilibrium between interdependent elements, especially as 

maintained by physiological processes. Example is how body 

maintains the temperature within a range when external 

temperature fluctuates. 
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The structures are formed through the physical and 
chemical processes available in nature using matter, energy 
and their transformation rules. Atoms become molecules and 
molecules become compounds. Function, structure and 
fluctuations determine their macroscopic properties.  For 
example, as the kinetic energy increases (because of heat 
from external source for example), the structure of a set of 
water molecules is rearranged going form solid form to 
liquid form or from liquid form to a gaseous form through 
physical processes. Same holds true for chemical structures 
when different physical structures interact with each other 
and form a composed structure using matter and energy 
transformations. 

The rules that determine their transformations are well 
understood. Their evolution depends on the configuration of 
the structure, strength of the interactions and the nature of 
fluctuations.  Such systems can be represented by state 
vectors in phase space and their dynamics is determined by 
well-defined mathematical relationships that deal with 
matter, energy and their transformation rules defined by the 
physical processes. Mathematical representations of these 
structures stem from the rotational and translation invariance 
properties and the result of the complex space-time manifold. 

In the physical world, as Prigogine pointed out, the 
fundamental triad of energy, structure and matter defines the 
system dynamics [12, 13]. Mark Burgin explains the 
relationship between matter, energy, knowledge and 
information as follows [14]. While knowledge and data are 
objects of the same type with knowledge being more 
advanced than data, information has a different type. It is 
possible to transform knowledge or data into information as 
we can transform matter into energy. Thus knowledge, 
structure and information form another triad which 
represents physical structures and their dynamics. Figure 1 
shows the relationships between matter, energy, structure, 
information and knowledge. 

 

Figure 1: The relationship between matter, energy, information, 
knowledge and data.  

The representation of physical structures is based on 
observation, a developed sense of awareness, classification, 
modeling, memory and reasoning which are characterized as 
cognitive abilities.  A cognitive apparatus allows creating 
mental models and creating cognitive structures that 
represent observed physical structures and infer results about 
their evolution. Cognitive structures are possible only with 
cognitive apparatuses and biological systems have figured 
out how to create, use and replicate cognitive apparatuses. 
The genes in biological systems act as cognitive apparatuses, 
allow encoding information, configure physical structures 
and evolve them to execute cognitive processes using 

physical and chemical processes. The genome defines the 
blueprint to configure, monitor and manage a biological CAS 
with accumulated knowledge and its representation. 

Complex adaptive structures therefore, are characterized 
by cognitive apparatuses that facilitate sentience (the ability 
to sense and feel), intelligence (the ability to process 
information) and resilience (using the information to 
rearrange the structure and facilitate its management using 
the cognitive apparatuses). The observations are represented 
in the form of named objects, their attributes (data) and the 
knowledge of the intra-object and inter-object relationships 
and behaviors when an interaction event perturbs any of the 
attributes. The mental world is represented by the cognitive 
apparatus that facilitates observation, modeling, memory, 
reasoning and action to rearrange the structures. The degree 
of cognition depends on the cognitive apparatuses developed 
and deployed in the system. The evolution of the cognitive 
apparatus as yet another physical structure, that allows 
encoding information and its processing mechanisms using 
physical and chemical processes, differentiates the sentient 
beings. As Charles Darwin explains "the difference in mind 
between man and the higher animals, great as it is, certainly 
is one of degree and not of kind.” (cf., [15]) 

Complex structures (with or without cognition) often 
exhibit emergent behavior, which arises from their 
interactions. In it, the collective behavior of various 
components in the structure is very different from the 
behavior that the components can produce separately. In 
essence, the whole is not just the sum of all the component 
behaviors.  For example, the phase transition from water to 
ice or steam can be described as emergent. When a system 
undergoes a phase transition, its micro-components get 
rapidly reconfigured into a qualitatively different macro-
structure. And yet the components themselves are 
unchanged. Non cognitive systems just are obeying the non-
linear dynamics of the structure and its interaction with the 
environment influenced by the laws of nature. On the other 
hand, cognitive structures have developed various cognitive 
apparatuses to create sentient, resilient and intelligent 
behavior at scale. For example, in an ant colony, each ant is 
an autonomous unit that reacts depending only on its local 
environment and the genetically encoded rules for its variety 
of ant. Despite the lack of centralized decision making, ant 
colonies exhibit complex behavior and have even 
demonstrated the ability to solve geometric problems. For 
example, colonies routinely find the maximum distance from 
all colony entrances to dispose of dead bodies. Human 
genome provides the example of a complex set of cognitive 
apparatuses in the form of genes, neurons and cellular 
component structures with the highest degree of sentience, 
resilience and intelligence. 

With the advent of digital computing machines, a whole 
new class of digital structures has evolved allowing 
information processing to extend our cognitive abilities of 
observation, modeling, memory, reasoning and action to 
rearrange the structures both in the physical and mental 
worlds.  Figure 2 shows the relationship of digital structures 
to both physical and mental structures. This is made possible 
by John von Neumann’s stored program implementation of 
the Turing machine (TM). It provides a physical 
implementation of a cognitive apparatus to represent and 
transform knowledge structures that are created by physical 
or mental worlds in the form of data structures representing 
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the domain under consideration. Figure 2 represents the 
implementation of Turing Machines as a cognitive apparatus 
with locality and the ability to form information processing 
structures where information flows from one apparatus to 
another with a velocity defined by the medium. These 
implementations have allowed us to develop current state of 
the art of information processing structures using digital 
computing machines.  

 

Figure 2: Structures as information processing machines 

In the physical world, the “gene” encodes the process of 
“life” in an executable form, and a neural network encodes 
various processes to interact with the environment in real 
time.  Together, they provide the complex adaptive structures 
in the form of body, brain and the mind which exhibit 
sentience, resilience and intelligence.  

The digital computing machine gives us the framework 
for encoding the models of physical and mental structures 
and their evolution in executable form where a digital 
computing structure provides information processing similar 
to the genes and neurons. Figure 2 depicts the digital gene 
and the neuron implemented using the digital computing 
machine. First, symbolic computing in the form of 
executable tasks allows us to process a list of formal, 
mathematical rules or a sequence of event driven actions 
such as modeling, simulation, business workflows, 
interaction with devices, etc. The digital computing machine, 
in essence, acts as a “cognitive apparatus” to implement 
cognitive functions described as easily described tasks. 
Second, algorithms are designed to mimic the neural 
networks in the brain and process information. The neural 
network model allows computers to understand the world in 
terms of a hierarchy of concepts to perform tasks that are 
easy to do "intuitively", but are hard to describe formally or a 
sequence of event driven actions such as recognizing spoken 
words or faces. Digital computing structures have allowed 
many paradigms of computation, including Mainframe, PC, 
Network, Internet, Distributed Computing, Grid Computing, 
Cloud Computing, Machine Learning and Deep Learning. 

However, the limitation of current state of the art is 
pointed out by Cockshott et al. [16] in their book 
“Computation and its limits” with the concluding paragraph 
“The key property of general-purpose computer is that they 
are general purpose. We can use them to deterministically 
model any physical system, of which they are not themselves 
a part, to an arbitrary degree of accuracy. Their logical limits 
arise when we try to get them to model the part of the world 
that includes themselves.” The Turing’s system is limited to 
single, sequential processes and is not amenable for 
expressing dynamic concurrent processes where changes in 
one process can influence changes in other processes while 
the computation is still in progress in those processes [17]. 
This is an essential requirement for describing cognitive 

processes. Concurrent and asynchronous task execution and 
regulation require a systemic view of the context, constraints, 
communication and control where the identities, autonomic 
behaviors and associations of individual components also 
must be part of the description.  

The thesis of this paper is that sentience, resilience and 
intelligence are the results of information processing 
structures that various systems design and develop to manage 
their own state evolution in an optimal way by minimizing 
entropy in spite of a natural tendency for entropy to increase.  
They do this by creating physical structures that sense, 
model, monitor and evolve their states to establish 
equilibrium between their internal states and the environment 
with which they interact. Matter and energy and physical, 
chemical and biological information processing structures 
that exploit their transformation rules enabled sentience, 
resilience and intelligence in the physical world.  

We argue that we can model both physical and mental 
structures using structural machines, cognizing oracle2 agents 
and the knowledge structures [18 - 24] along with the 
cognitive apparatuses (digital genes and neurons) that enable 
flow of information from one knowledge structure to 
another.  These digital structures implementing the structural 
machines allow us to design and develop sentient, resilient 
and intelligent systems with models that include both 
themselves and the physical structures they are made up of 
and interact with. In the next section we identify the key self-
organizing and self-managing patterns extracted from the 
studies of CAS. 

III. SELF-ORGANIZING AND SELF-MANAGING PATTERNS 

 Biological systems, in addition, have developed 
cognitive capabilities that allow them to: 

• Integrate information from multiple sensory 
channels to marshal an effective response to 
fluctuating conditions;  

• Make decisions under conditions of uncertainty; 

• Share information within the components of the 
system and with outside, and 

• Coordinating collective behavior to increase the 
chances of maintaining their desired state. 

Cognition, in essence, allows the system to create a 
model of the physical structure of the self and its interactions 
with the environment in the form of mental structures and 
create additional physical processes that interact with 
physical structures to maintain its state or reconfigure itself 
to a new state that keeps it intact. 

Biological systems have discovered a way to encode the 
processes and execute them in the form of genes, neurons, 
nervous system, the body and the brain etc., through 
evolutionary learning.  The genome, which is the complete 
set of genes or genetic material present in a cell or organism 
defines the blueprint that includes instructions on how to 
organize resources to create the functional components, 
organize the structure and the rules to evolve the structure 
while interacting with environment using the encoded 

 

2 Theory of oracles built by Mark Burgin [23] is a far-

reaching generalization of the concept proposed by Alan 

Turing [24]. 
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cognitive processes. Placed in the right environment, the cell 
containing the genome executes the processes that manage 
and maintain the self-organizing and self-managing structure 
adopting to fluctuations. 

Shettleworth [25] studied cognitive apparatuses in 
animals and describes Cognition. “Cognition refers to the 
mechanism by which animals acquire, process, store and act 
on information from the environment. These include 
perception, learning, memory, and decision making.”  She 
cites examples of crows using tools to crack nuts, bees 
communicating with dance, ants finding their way in the 
deserts and rats negotiating their way in mazes. "Cognitive is 
often reserved for declarative rather than procedural 
knowledge. Declarative knowledge is "knowing that" 
whereas procedural knowledge is "knowing how" or 
knowing what to do." Declarative knowledge implies more 
flexible behavior than the procedural knowledge, but in both 
cases behavior results from processing and storing 
information about the world. "A related distinction is that 
between first-order and higher-order processes, only the 
latter of which may be regarded as interestingly cognitive. 
First-order processes operate directly on perceptual input, as 
when a stimulus triggers a response or creates a trace in 
memory. Second-order processes operate on first-order 
processes, as in evaluating the strength of one's memory for 
an event." 

These observations are very relevant to the digital 
information processing structures in attempting to infuse 
cognition into them. The digital genes and the digital neurons 
mentioned above generate the first order in intelligent 
processes on the Internet. In addition, the cognitive agent 
behavior described in the theory of oracles [22] is second-
order intelligent process, which operates on the first-order 
processes. The next two sections present the theory of triadic 
automata (TA) where three-level digital computing structure 
is describes that points a way to infuse cognitive behavior in 
digital information processing systems.   

IV. TRIADIC AUTOMATA AND MACHINES AS MATHEMATICAL 

MODELS OF AUTOPOIETIC MACHINES 

An autopoietic machine is an appealing inspiration but it 
is only an idea and to put it into practice demands 
transformation of this idea into a functioning physical 
machine. The process of transformation usually includes 
several stages. 

First, it is necessary to develop a realistic structure of an 
autopoietic machine. 

Second, it is necessary to specify components of the 
developed structure. 

Third, it is necessary to construct a physical realization 
of the autopoietic machine. 

To make this process constructive, we need to analyze 
these stages and what they involve. 

In this context, the structure can be informal or formal. 
For construction, the structure must be formal and its 
formalization can be mathematical or engineering. The same 
is true for specifications. They can be informal or formal 
while formal specifications can be mathematical or 
engineering. 

Some think that it is simpler to proceed from a general 
idea to the engineering descriptions of the future system. 

However, peoples experience shows that engineering 
projects are always better when they are based on sound 
mathematical theories and models. Indeed, theoretical 
grounding and mathematical modeling allows evading many 
mistakes in engineering development as well as obtaining a 
better, e.g., more efficient or optimal, system. 

One of the most transparent examples for this is the 
history of the von Neumann architecture. 

It tells us that the earliest computing machines had fixed 
programs. Changing the program of a fixed-program 
machine required rewiring, restructuring, or even redesigning 
the machine. It was – when possible at all – an arduous 
process. It started with producing paper notes and flowcharts, 
followed by detailed engineering designs, and then the 
painstaking process of physically rewiring and rebuilding the 
machine. In particular, it could take up to three weeks to set 
up and debug a program on one of the first computers 
ENIAC. 

In 1945, while consulting for the Moore School of 
Electrical Engineering on the EDVAC project, von Neumann 
wrote an incomplete set of notes, titled the First Draft of a 
Report on the EDVAC. These notes were widely distributed 
laying foundations of a novel, at that time, computer 
architecture in which the data and the program are both 
stored in the computer's memory. It was called later von 
Neumann architecture, which became the de facto computer 
standard for a long time and sometimes is still used today. 

The main idea of von Neumann architecture was copied 
from such a mathematical model of computation as a 
universal Turing machine. Although von Neumann did not 
mention this in his Report on the EDVAC, he was well 
acquainted with the work of Turing, who was a graduate 
student at Princeton when he published his famous paper 
describing what was later called Turing machine [24]. 

That is why here we build a mathematical model of an 
autopoietic machine using the pinnacle achievements and the 
most advanced structures of computer science. It is important 
to note that till now, nobody elaborated such a model 
although there are some predecessors of it. In particular, self-
reproductivity was the principal feature of cellular automata 
introduced by von Neumann [26]. 

To build an adequate mathematical model of an 
autopoietic machine, we need to analyze the idea of such a 
machine and the tentative informal description of its 
functioning. In essence, an autopoietic machine is a technical 
system capable of regenerating, reproducing and maintaining 
itself by production, transformation and destruction of its 
components and the network of processes in these 
components. 

When we have a technical (physical) information 
processing system, its inner structure comprises three 
components: hardware, software and infware [27]. 

The hardware of a system consists of all devices that 
belong to the system and connections between them. 

The software of a system consists of various programs 
and algorithms that control its functioning. 

The infware of a system consists of diverse information 
carriers, e.g., data or knowledge, with which this system 
works. 
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Thus, the inner structure of an information processing 
system consists of these components and relations between 
them [27]. 

In a general situation, the hardware of an information 
processing system also has three key components: the input 
subsystem, output subsystem and processing subsystem. If we 
want to build an adequate mathematical model of a physical 
system with these components, we need to establish the 
corresponding components in the model, which is an abstract 
automaton or machine. However, in many theoretical models 
of computation, such as finite automata or conventional 
Turing machines, input and output devices are either not 
specified or represented by components of the common 
memory and/or of the processor. For instance, a conventional 
Turing machine performs input and output operations by 
writing the input to and reading the output from the working 
memory, which consists of one or several tapes. In contrast 
to this, any inductive Turing machine has special input and 
output registers for this purpose, e.g., tapes [27].  

Neural networks also have these three key components: 
their input subsystem comprises all input neurons while the 
output subsystem consists of all output neurons. At the same 
time, it is possible to define its information processing 
subsystem either as all neurons of the network or only all its 
hidden neurons [28]. Some authors call input and output 
neurons by the name visible neurons. 

Considering infware, we see that the majority of abstract 
automata (abstract computing devices) work with strings of 
symbols, and thus, their infware consists of strings in some 
alphabet. 

Turing machines with two-dimensional tapes and two-
dimensional cellular automata work with two-dimensional 
symbolic arrays. It means that their infware consists of two-
dimensional symbolic arrays. Turing machines with n-
dimensional tapes and n-dimensional cellular automata work 
with n-dimensional symbolic arrays. It means that their 
infware consists of n-dimensional symbolic arrays. 

At the same time, such algorithms (automata) as 
Kolmogorov algorithms and storage modification machines 
work with arbitrary graphs [29, 30]. In addition, there are 
also many concrete algorithms that work with graphs (cf., for 
example, [31, 32]. Consequently, their infware also consists 
of graphs. 

Structural machines work with arbitrary structures [23, 
18 and 19]. Consequently, their infware consists of arbitrary 
structures. 

Coming to software, we see that in many abstract 
automata, such as finite automata, pushdown automata, 
Minsky machines, timed automata, register machines, 
Kolmogorov algorithms, random access machines (RAM), 
and Turing machines, instructions and rules compose their 
software. 

Neural networks are often contrasted to other kinds of 
abstract automata. However, it is possible to treat the system 
of weights, activation functions, threshold functions and 
output functions as the software of neural networks. It is 
possible to treat these systems as algorithms although their 
form is different from traditional algorithms, which are 
described as sets of instructions. 

Existence of three components in the automaton or 
machine implies that to be autopoietic, a machine needs 
ability to perform operations with these components. The 
unique theoretical model of computation that can do this is a 
triadic automaton or machine [23]. Let us describe this 
model. 

Triadic automata (machines) transform infware (for 
example, data), software (for example, instructions or 
programs) and hardware (for example, memory or 
processors). There are different types of triadic machines 
(triadic automata): 

− a hardware modification machine (automaton) 
transforms only infware and hardware 

− a software modification or symmetric machine 
(automaton) transforms only infware and 
software 

− a full triadic machine (automaton) transforms 
infware, software and hardware 

− a transducer transforms only infware and has 
input and output 

− a generator transforms only infware and has 
only output 

− an acceptor transforms only infware and only 
input  

− a hardware expansion machine (automaton) 
only expands its hardware 

− a software expansion machine (automaton) only 
expands its software 

− a symmetric expansion machine (automaton) 
only expands its hardware and software 

− a hardware alteration machine (automaton) 
only updates its hardware 

− a software alteration machine (automaton) only 
updates its software 

− a symmetric alteration machine (automaton) 
only updates its hardware and software 

Besides, there are different ways to perform 
hardware/software modifications. With respect to the source 
of modification it is possible to consider three types of 
hardware/software modifications in an automaton (machine) 
M: 

− External modification is performed by another 
system.  

− Internal modification is performed by the 
automaton (machine) M.  

− Combined modification is performed by both the 
automaton (machine) M and another system. 

Taking a specific class of triadic automata (machines), 
we see that what modifications are possible and permissible 
in a given class depends on the structure of a triadic 
machines (triadic automata) from this class. In any case, 



Triadic Automata October 19, 2020 P a g e  | 7 

mandatory components, which make these automata efficient 
for computation, include input and output systems working 
together with one or more processors. Often, input and 
output components of an automaton (machine) are specific 
registers in the memory of the machine (automaton) [27]. At 
the same time, input and output in neural networks are 
organized using specified neurons [28]. 

At the same time, adding memory and other components 
to automata allows increasing their flexibility, 
interoperability and efficiency. These changes are reflected 
in the structure of triadic machines (automata) of different 
types.  Let us consider two of such types - state and 
instruction triadic automata (machines). 

Definition 4.1. A state triadic machine or triadic state 
automaton A with memory has seven core hardware 
components: 

• The control device CA , which is a finite 
automaton and represents states of the machine 
(automaton) A 

• The data memory WA , which stores data and 
includes input and output registers 

• The software memory VA , which stores software 
of the machine (automaton) A 

• The data processor PM , which transforms 
(processes) information (data) from the memory 
WM  

• The software processor DM , which transforms 
(processes) software of A stored in the memory 
VM  

The metaprocessor PA , which transforms (e.g., builds or 
deletes connections in) the hardware HA and/or changes the 
control device CA 

In the standard form, both memories consist of cells, 
which are connected by transition links. Processors have 
their programs of functioning, which constitute the software 
of the automaton. 

In the same way as state triadic machines, instruction 
triadic machines constitute a special class of triadic 
machines. In a general case, it is possible that the functioning 
of an instruction triadic machine does depend on its state. 
However, we include the state system in the general 
description of instruction triadic machines because when the 
functioning of an instruction triadic machine does depend on 
its state, it is possible to treat this as a machine with only one 
state.   

Definition 4.2. A instruction triadic machine or 
instruction triadic automaton H with memory has seven core 
hardware components: 

• The control device CH , which is a finite 
automaton and represents states of the machine 
(automaton) H 

• The data memory WH , which stores data 

• The instruction memory VH , which stores 
instructions 

• The data processor PM , which transforms 
(processes) information (data) from the memory 
WM  

• The instruction processor DM , which transforms 
(processes) information (instructions) from the 
memory VM  

• The memory processor PW , which transforms 
(builds or deletes connections and/or cells in) the 
memory WM  

• The memory processor PV , which transforms 
(e.g., builds or deletes connections and/or cells 
in) the memory VM  

Memory processors are hardware transformers and it is 
also possible to include a control device processor in the 
structure of an instruction triadic machine. This additional 
processor changes the control device CA . 

Many kinds of algorithms and abstract automata, such as 
finite automata, pushdown automata, register machines, 
Kolmogorov algorithms, random access machines (RAM), 
and Turing machines, use systems of instructions, for 
example, in the form of transition rules, to control 
computational processes. These instructions determine 
computational processes, which are controlled by algorithms 
and are going in these automat and constitute the software of 
these automata and machines, which form specific classes of 
instruction machines.  

There are different classes of instruction triadic machines 
(automata). Namely, when instruction triadic machines 
(automata):  

− do not have processors that transform hardware, 
e.g., memory or processors, they are called 
symmetric instruction machines 

− have only processor(s) that transform infware, 
e.g., data, they are called pure instruction 
machines 

− have only processor(s) that transform software, 
i.e., systems of instructions, they are called 
translation machines or translators 

− have only processor(s) that transform hardware, 
i.e., memory or processors, they are called 
construction machines or constructors 

− do not have processors that transform infware, 
e.g., data, they are called constructors 
(construction machines) with translators 

− do not have processors that transform software, 
i.e., systems of instructions, they are called 
generative instruction machines 

Machines from each class have their specific functions. 
For instance, construction machines (constructors) can be 
used to construct memory for other machines. This technique 
is employed in inductive Turing machines of the second and 
higher orders use inductive Turing machines of lower orders 
as their constructors [27, 33]. 

Besides, there are different methods to organize program 
formation with the help of computing/constructing agents. If 
the memory of the automaton has connections between any 
pair of cells, then the program can use these connections. 
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Thus, it is possible to organize the inductive mode of 
computing by inductive computation (compilation) of the 
program for the main computation. 

In the simplest approach called the sequential strategy, it 
is assumed that given some schema, for example, a 
description of the structure of the memory E of an inductive 
Turing machine M, an automaton A builds the program and 
places it in the memory E before the machine M starts its 
computation. When M is an inductive Turing machine of the 
first order, its constructor A is a Turing machine, which, for 
example, puts the names of the connections of the memory 
of M into instructions (rules) of M. When M is an inductive 
Turing machine of the second or higher order, its constructor 
A is also an inductive Turing machine, the order of which is 
less than the order of M and which modifies instructions 
(rules) of M. For instance, the program of inductive Turing 
machines of the second order is constructed by Turing 
machines of the first order 

According to another methodology called the concurrent 
strategy,  program formation by the automaton A and 
computations of the machine M go concurrently, while the 
machine M computes, the automaton A constructs the 
program in the memory E.  

It is also possible to use the mixed strategy when some 
parts of the program E are assembled before the machine M 
starts its computation, while other parts are formed parallel 
to the computing process of the machine M. 

These three strategies determine three kinds of the 
constructed program (software):  

• In the static program (static software) of the 
machine M, everything is constructed before M 
starts working. 

• In the growing program (growing software) of the 
machine M, parts are constructed while M is 
working but no parts are deleted. 

• In the dynamic program (growing software) of the 
machine M, when it necessary, some parts are 
constructed and when it necessary, some parts are 
deleted while M is working. 

It is possible to use similar strategies for hardware 
modification. This approach determines three types of the 
constructed hardware of a triadic automaton/machine:  

• In the static hardware of the machine M, everything 
is constructed before M starts working. 

• In the growing hardware of the machine M, parts 
are constructed while M is working but no parts are 
deleted. 

• In the dynamic hardware of the machine M, when it 
necessary, some parts are constructed and some 
parts are deleted while M is working. 

In the next section, we discuss problems of efficiency of 
information processing describing the most flexible and 
efficient model of computation, which is called structural 
machine. 

 

V. TRIADIC STRUCTURAL MACHINES AS ADVANCED FORMS 

OF TRIADIC AUTOMATA 

Information is represented by diverse structures. Only 
some of them are formalized as data structures and used in 
real-life computations. However, conventional theoretical 
model even do not comprise the majority of data structures 
operated by contemporary computers. Indeed, programming 
languages use a variety of data structures such as characters, 
integers, floating-point real number values, enumerated types 
(i.e., a small set of uniquely-named values), arrays, records 
(also called tuples or structs), unions, lists, streams, sets, 
multisets, stacks, queues, double-ended queues, trees, general 
graphs, etc. In addition, word processors, such as Word or 
TeX, work with various geometrical shapes, figures and 
pictures. 

At the same time, data structures processed by abstract 
automata are more limited because they work only with 
separate symbols, strings of symbols, trees and arrays. To 
eliminate this limitation, the new model of computation 
called structural machine was introduced [18, 19 and 23]. 
These machines provide means of processing arbitrary 
structures. Here we introduce new forms of these machines – 
triadic structural machines and autopoietic structural 
machines. 

An autopoietic structural machine is a technical system 
capable of regenerating, reproducing and maintaining itself 
by production, transformation and destruction of its 
components and the network of processes in these 
components by working with a variety of flexible structures. 

Triadic structural machines are mathematical models of 
autopoietic structural machines. 

Here for simplicity, we consider only structural 
machines, which work with structures of the first order. 

Definition 5.1 [34]. A first-order structure is a triad of 
the form 

A = (A, r, R) 

Here: 

− A is a set, which is called the substance of the 
structure A and consists of elements of the 
structure A, which are called structure elements 
of the structure A 

− R is a set, which is called the arrangement of 
the structure A and consists of relations 
between elements from A in the structure A, 
which have the first order and are called 
structure relations of the structure A 

− r is the incidence relation, which connects 
groups of elements from A with the names of 
relations from R 

For instance, if R is an n-ary relation from R and a1 , a2 , 
a3 , … , an are elements from A, then the expression r(R; a1 , 
a2 , a3 , … , an) means that the elements a1 , a2 , a3 , … , an 
belong to the relation R with the name R, i.e., the incidence 
relation r connects the elements a1 , a2 , a3 , … , an with R. 

It is necessary to remark that all conventional concepts of 
structure include only structures of the first order (cf., for 
example, [35 – 37]. Only Bourbaki go to higher structures in 



Triadic Automata October 19, 2020 P a g e  | 9 

their formal definition but they are confined to the set-
theoretical context and use unnecessary condition making 
their definition blurred and too restrictive [38, 39]. The 
comprehensive definition of structures of all orders is 
elaborated in the general theory of structures [34]. 

Describing structures, it is important to distinguish 
relations and their names because when a structural machine 
functions, relations, as a rule, are changing, while their 
names can remain the same indicating that this relation is 
dynamically the same but it statics is changing. For instance, 
when a structure A on a set A has a ternary relation R with 
the name R as its component and in the process of 
computation, the machine connects three elements that were 
not related by R by a link including this triple into the 
relation R. As a result, R becomes larger but stays 
dynamically the same preserving the same name R. This is 
similar to the situation when a human being is changing 
remaining, at the same time, the same person. 

Lists, queues, arrays, words, texts, graphs, multigraphs, 
directed graphs, mathematical and chemical formulas, tapes 
of Turing machines and Kolmogorov complexes are 
particular cases of structures of the first order that have only 
unary and binary relations. Note that labels, names, types and 
properties are unary relations. 

In the case when the arrangement R of relations consists 
of one binary and several unary relations, the first order 
structure is a labeled (named) directed graph. Transition 
diagrams of finite automata are examples of labeled directed 
graph. When the arrangement R contains only binary and 
unary relations, the first order structure is a labeled (named) 
directed multigraph [40] 

Definition 5.2. The type T(A) of a first-order structure A 
= (A, r, R) is the set {(R, (R)); R  R } of pairs (R, (R)) 
where (R) is the arity of the relation R with the name R.  

We assume that two first-order structures A = (A, r, R) 
and B = (B, p, P) have the same type if there is a one-to-one 
mapping f: T(A)  T(B) such that if f(R, (R)) = (P, (P)), 
then (R) = (P). 

For instance, all binary relations have the same type. 

Definition 5.3. A structural machine M works with 
structures of a given type and has three components: 

• The unified control device CM regulates the 
state of the machine M 

• The unified processor PM performs 
transformation of the processed structures and 
its actions (operations) depend on the state of 
the machine M and the state of the processed 
structures 

• The unified functional space SpM  contains 
input, output and processed structures and 
consists of three components: 

o The input space InM , which contains 
the input structure.  

o The output space OutM , which 
contains the output structure.  

o The processing space PSM , in which 
the input structure(s) is transformed 
into the output structure(s).  

In many cases, it is assumed that all structures – the input 
structure, the output structure and the processed structures – 
have the same type. 

Definition 5.4. A structural machine M is triadic if it is a 
triadic automaton, i.e., it processes its infware, software and 
hardware. 

Computation of a triadic structural machine M 
determines the trajectory of computation, which is a tree in 
general case and a sequence when the computation is 
deterministic case and is performed by a single processor 
unit. 

Definition 5.5. There are three forms of unified 
functional spaces - CSpM , TSpM and USpM - in structural 
machines in general and triadic structural machines in 
particular: 

• CSpM is called a categorical functional space 
and is the set (category) of all structures that 
can be processed by the (triadic) structural 
machine M  

• USpM is called a universal functional space and 
is a structure for which all structures that can 
be processed by the (triadic) structural machine 
M are substructures of USpM  

• TSpM is called a transformation functional 
space and is a structure for which all structures 
that can be processed by the (triadic) structural 
machine M are transformations of TSpM 

Definition 5.6. There are three basic types of unified 
control devices: 

• A central control device controls all processors 
of the triadic structural machine 

• A cluster control device controls a cluster of 
processors in the triadic structural machine 

• An individual control device controls a single 
processor in the triadic structural machine 

 

Definition 5.7. There are three basic types of unified 
processors: 

• A localized processor is a single abstract 
device (processor unit or unit processor) 

• A distributed processor, which is also called a 
total processor of the first level, consists of a 
system of unit processors or processor units  

• A clustered processor, which is also called a 
total processor of the second level, consists of a 
system of total processors of the first level 

Continuing this construction, we can define and build 
total processors of any positive level in a triadic structural 
machine. 

It is possible to treat a localized processor in a triadic 
structural machine as a singular unit processor although it 
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can be constructed as a robustly tied together several 
processor units. 

Note that a triadic structural machine can have several 
distributed and/or clustered processors. 

In turn, there are three basic types of distributed 
processors in a triadic structural machine: 

• A homogeneous distributed processor consists 
of a system of identical unit processors, i.e., all 
these unit processors are copies of one 
processor 

• An almost homogeneous distributed processor 
consists of a system in which almost all unit 
processors are identical 

• A heterogeneous distributed processor consists 
of a system of different unit processors 

As a result, we have three structural types of processors 
in a triadic structural machine.  

There are also three basic temporal classes of distributed 
processors in a triadic structural machine: 

• In a synchronous distributed processor, all unit 
processors perform each operation at the same 
time 

• In an almost synchronous distributed 
processor, almost all unit processors perform 
each operation at the same time  

• In an asynchronous distributed processor, unit 
processors function independently 

A cellular automaton is a synchronous distributed 
processor, while a Petri net is an asynchronous distributed 
processor [41]. 

Organization of control in distributed processors 
determines three control categories of distributed processors 
in a triadic structural machine: 

• A distributed processor with the centralized 
control has one control device, which controls 
all its unit processors 

• A distributed processor with the dispersed 
control has several control devices, each of 
which controls a group of its unit processors 

• A distributed processor with the individualized 
control has a control device for each of its unit 
processors 

In a general case, a unit processor moves from one topos, 
e.g., a structure element of infware, software or hardware, to 
another performing operations in their neighborhoods. It is 
possible to assume that unit processors of a triadic structural 
machine perform only local operations. As a result, it is 
possible to consider a localized processor as a special type of 
a distributed processor with one unit processor. A model 
example of a localized processor is the head of a Turing 
machine with one head or a finite automaton.   

A model example of a homogeneous distributed 
processor is the system of all heads in a Turing machine with 
several heads.  Examples of heterogeneous distributed 
processors are processing devices in evolutionary automata 

such as evolutionary finite automata, evolutionary Turing 
machines or evolutionary inductive Turing machines [42]. 

In a general case, not all heterogeneous distributed 
processors are the same and to discern their properties it is 
possible to use measures of homogeneity [43]. These 
measures can be also useful for exploring and utilizing 
structures processed by computers and their models such as 
structural machines. 

As triadic structural machines process structures from all 
its three basic components, it is natural to specialize 
processors of these machines. This gives us three pure types 
of processors in a triadic structural machine: 

• Infware processors or I-processors PrI work 
with infware 

• Software processors or S-processors PrS work 
with software 

• Hardware processors or H-processors PrH 
work with hardware 

Definition 5.7. A triadic structural machine M is 
stratified if all its processors are purely specialized. 

There are also four general types of processors – flexible 
and three types of mixed processors in a triadic structural 
machine: 

• Flexible processors or F-processors work with 
infware, software and hardware 

• IS-processors work with infware and software  

• IH-processors work with infware and hardware 

• SH-processors work with software and 
hardware 

For a general purpose processor, its specialization is the 
role it plays in the computational process. Pure-type 
processors can play only one role. Mixed processors can play 
two roles while a flexible processor can play all three roles. 

In the process of computation, a metaprogram of a triadic 
structural machine determines the role of each processor 
according to its restrictions and possibilities. Metaprograms 
of triadic structural machines are second-level algorithms 
[44, 45]. 

A further specialization determines the part of the system 
components, with which the processor works. With respect 
to this specialization, S-processors, H-processors and SH-
processors can be: 

• module H-processors (S-processors), which 
create/add, destroy/eliminate or 
transform/change modules and elements of the 
system hardware (software). 

• connection H-processors (S-processors), which 
create/add, destroy/eliminates open or close 
connections between modules and elements of 
the system hardware (software). 

• module-module SH-processors, which 
create/add, destroy/eliminate or 
transform/change modules and elements of the 
system hardware and software. 
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• module-connection SH-processors, which 
create/add, destroy/eliminates open or close 
connections between modules and elements of 
the system software and create/add, 
destroy/eliminates open or close connections 
between modules and elements of the system 
hardware. 

• connection-module SH-processors, which 
create/add, destroy/eliminates open or close 
connections between modules and elements of 
the system hardware and create/add, 
destroy/eliminate or transform/change modules 
and elements of the system hardware . 

• connection-connection SH-processors, which 
create/add, destroy/eliminates open or close 
connections between modules and elements of 
the system hardware and software. 

 

Note that changing connections, it is possible to add or 
eliminate parts of the system hardware or software. 

With respect to its orientation, there are three types of 
pure processors: 

• an external S-processor (H-processor) 
transforms software (hardware) of another 
processor from its own triadic structural 
machine 

• an internal S-processor (H-processor) 
transforms its own software (hardware)  

• an outer S-processor (H-processor) transforms 
software (hardware) of another triadic 
structural machine 

There are also nine types of mixed processors: 

• an external SH-processor transforms software 
and hardware of another processor from its 
own triadic structural machine 

• an internal SH-processor transforms its own 
software and hardware 

• an outer SH-processor when it transforms 
software and hardware of another triadic 
structural machine 

• an ex-internal SH-processor transforms 
software of another processor from its own 
triadic structural machine and its own hardware 

• an in-external SH-processor transforms its own 
software and hardware of another processor 
from its own triadic structural machine 

• an o-internal SH-processor transforms 
software of another triadic structural machine 
and its own hardware 

• an o-external SH-processor transforms 
software of another triadic structural machine 
and hardware of another processor from its 
own triadic structural machine 

• an ex-outer SH-processor transforms software 
of another processor from its own triadic 

structural machine and hardware of another 
triadic structural machine 

• an in-outer SH-processor transforms its own 
software and hardware of another triadic 
structural machine 

The developed classification of control devices and 
processors of triadic structural machines is aimed at analysis, 
exploration and utilization of properties of these machines 
for the development of future autopoietic supercomputers 
and autopoietic computer networks. 

VI. CAS,  DIGITAL INFORMATION PROCESSING STRUCTURES 

AND CURRENT INFORMATION TECHNOLOGY (IT) EVOLUTION 

In summary, complex adaptive system is a dynamic 
structure which can be represented as a network of networks 
connecting dynamic functional behaviors (where individual 
components interact with each other and their environment) 
using information processing nodes and links. The network 
of network implies that nodes contain nodes and links may 
contain links. The nature and strength of these interactions 
define the complexity. In addition, fluctuations in these 
interactions often result in the properties of emergence where 
the system behavior as a whole is not just equal to the sum of 
the behaviors of the individual nodes. Physical and chemical 
systems process information using physical and chemical 
processes obeying the laws of physics. On the other hand, 
biological systems have developed cognitive apparatuses in 
the form of genes and neurons to model the systemic 
behaviors, monitor them and manage them using their 
cognitive apparatuses with embedded, embodied, enactive 
and extended (4E) cognition. Genes enable encoding the 
information processing structures, their execution 
mechanisms and their day to day operation. Neurons in the 
nervous system or the brain provide the information 
processing neural networks that assist in building cognitive 
behaviors sensing, interacting and managing information 
processing through memory and reasoning apparatuses. 
Cognition, thus is a biological phenomenon.  Biological 
systems have developed ways to leverage 4E cognition to 
create higher level cognitive behaviors as colonies, societies 
etc., thus endowing themselves with higher degree of 
resilience and efficiency at scale. It is important to note that 
emergence is non-deterministic with an element of surprise, 
while cognition is an instrument to control the dynamics to 
reach a new state of the structure by rearranging it to meet 
the goals with resiliency and efficiency. 

1) Digital Computational Structures, Computing Models, 

Models of Computation, Sentient Behaviors and their 

resilency and efficiency optimization: 

With the advent of digital genes and neurons discussed 
earlier, information processing structures in the digital realm 
have exploded resulting in the Internet and the current Cloud 
Computing technologies [46]. They allow us to model both 
the physical structures and the mental structures, reason 
about them and manage them by establishing sensors and 
actuators to interact with the physical world. Figure 3 depicts 
the relationships between the physical, mental and cognitive 
structures. 
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Figure 3: Physical and Mental Structures, their representation in 
the Digital Structures and Cognitive Modeling, Reasoning and self-

Managing Patterns with Mind-Brain-Body Embodied Cognition 

In biological systems, cognition is embodied in physical 
structures and is encoded in its cell that enables its functions, 
structure and fluctuation management.  As Waldrop Mitchell 
points out in his book on complexity [10], “The DNA was 
actually the foreman in charge of construction. In effect, 
DNA was a kind of molecular -scale computer that directed 
how the cell was to build itself and repair itself and interact 
with the outside world.” Each cell can divide and 
differentiate itself into muscle cells, brain cells, liver cells, 
and all other kinds of cells that make up a new born. Each 
different type of cell corresponds to a different pattern of 
activated genes. In figure 2. We represent the embodied 
cognition in the human genome that that senses, models, 
reasons and manages both physical and mental structures 
(using the mind, brain, and body structures).  

The digital structures are made possible by the human 
mind and its implementation of cognitive representations of 
the physical world using physical structures such as 
computers, networks and storage devices. Current 
information technologies are implemented as physical 
structures implementing the models of the physical and 
mental structures using the digital genes and digital neurons.  
They are modeled and managed by the human.  Figure 4 
shows the digital structures and their implementation using 
physical structures such as computer, networks and storage 
devices. 

 

Figure 4: Digital Structures Modeling and Managing the 
Physical Structures 

. The physical and Cognitive structures are modeled as 
digital information processing structures and are used to 
establish sensors and actuators and manage the physical and 
mental worlds.  Complex mathematical problems using 
digital information processing. Current enterprise business 
process automation and the Internet based services have all 
been made possible using both the digital genes and neurons.  

Next, we discuss the limitations of current information 
technologies and taking the cues from the embodied 
cognition in biological systems, we propose infusion of 
cognitive behavior in digital computing structures to 
implement self-managing patterns that provide resiliency and 
efficiency at scale. However, [16], the limitation of current 
computing model is the inability of including the computing 
infrastructure itself in the model of the computing structure 
that models and manages the physical world.  

In addition to the self-referential circularity of the Turing 
computing model, the Church-Turing thesis boundaries are 
challenged when rapid non-deterministic fluctuations drive 
the demand for resource readjustment in real-time without 
interrupting the service transactions in progress. This is more 
pronounced in the case of distributed computing structures 
that are composed of concurrent and asynchronous functions 
contributing to a common goal as in the case of business 
process automation tasks. The information processing 
structure in this case utilizes software components executed 
in hardware components from multiple infrastructure 
providers with local management systems enabling the 
deployment, operation and maintenance of the computation 
workloads on their infrastructure in the form of a cloud or a 
datacenter. The information processing system, in effect, 
behaves as complex autonomous system and is prone to 
emergent behavior in the face of strong fluctuations.  For 
example, when the system is subject to sudden fluctuations 
in the demand for computing resources or sudden decrease 
due to failure of some components, the system will 
experience severe deviation from its mission unless the 
resources are restored and the inconsistencies resulting from 
the local components being in different states are resolved 

 

Figure 5: Digital Computing Structures with Infused Cognition 

Taking the cue from biological cognitive systems with 
self-managing patterns, we assert that the digital information 
processing structures must also become autonomous and 
predictive by extending their cognitive apparatus to include 
themselves and their behavior along with the information 
processing tasks at hand. Figure 5 shows the infusion of 
cognition into digital computing structures using the 
structural machine approach described in this paper. 

Cognitive apparatuses that sense, model and monitor, 
reason and manage the digital computing structure allow 
encoding the information to deploy, monitor and manage the 
computing processes with local autonomy and global 
coordination.  True intelligence involves generalizations 
from observations, creating models, deriving new insights 
from the models through reasoning. In addition, human 
intelligence also creates history and uses past behaviors and 
experience in making the decision. The cognitive overlay we 
propose in this paper provides a means to encode the 



Triadic Automata October 19, 2020 P a g e  | 13 

information and the means to execute the processes required 
to understand the goals of the computational structure, 
available resources and the means to execute end to end 
deployment, monitoring and management to maintain 
homeostasis. In short, the new digital genome provides a 
means to create an autopoietic machine. In the next section, 
we discuss how the cognitive overlay allows the self-
managing properties of auto-failover, auto-scaling and live 
migration of computing functions while maintaining local 
autonomy and global consistency. We demonstrate the 
implementation of such an autopoietic digital computing 
structure in an edge cloud.   

VII. STRUCTURAL MACHINE ORCHESTRATOR (SMO): AN 

IMPLEMENTATION OF TRIADIC AUTOMATA WITH MANAGED 

MICRO-SERVICES ORCHESTRATION AND WORKLOAD 

MOBILITY 

We describe here a proposed implementation of the 
triadic structural machine which processes its infware, 
software and hardware. We propose to use a cluster of edge 
clouds at Golden Gate University to demonstrate the 
autopoietic features by implementing the resiliency of a 
workload as a distributed web application that provides a 
specific service to many end points reached through the 
Internet. Figure 6 shows the proposed autopoietic machine 
configuration. 

 

Figure 6: An Autopoietic Machine managing the resiliency of a 
cluster of edge clouds offering Kubernetes orchestrated workload 

(in the form of PoDs) connected to many endpoints through the 
Internet. USOM infuses cognitive control overlay network 
depicted by the hexagons. The data path connections are 

shown connecting the PoD network. 

A high-performance edge cluster [47] is used as the 
hardware shown in figure 6. It provides low-latency 
computing as an edge cloud using commodity off-the-shelf 
computing hardware cluster connected at 100 GbE over 
fiber. It eliminates the complexity of legacy networking 
stacks by replacing merchant switch ASIC SDKs with a 
streamlined user space driver layer and using only L3 routing 
with leaf-spine topologies. In addition, it integrates low-
latency storage (SSDs with RDMA and NVMeoF). The 
cluster management includes zero-touch provisioning, 
monitoring and run-time management of Infrastructure as a 
service (IaaS) to enable microservice or bare-metal 
workloads. The software consists of Kubernetes 
orchestration of a PoD network deployed in the IaaS which 
executes both the middleware (PaaS components such as the 
database and shared libraries/components) and specific 
application workloads and data. The particular workload 
shown here is a text spelling check application where various 
users create text which is checked in real-time for spelling 
accuracy. 

The edge cluster proposed here is very typical of many 
cloud systems that offer IaaS and PaaS configuration and 
orchestration tools that are used to implement various 
workloads.  However, the distinguishing and differentiating 
features of the triadic automata which infuse cognition into 
workload deployment, configuration, monitoring and self-
management patterns are as follows: 

1. A hierarchy of universal service orchestration 
managers (USOM) infuse cognitive overlay 
using the knowledge structures that model, 
configure or discover, monitor and manage both 
the physical and digital computing structures 
downstream using various sensors and actuators. 
The knowledge structures consist of the 
downstream entities with various attributes with 
internal relationships among them along with 
behaviors that will be executed whenever a state 
change occurs.   

2. Each USOM is implemented as a structural 
machine executing the downstream knowledge 
structure evolution by synchronizing the model 
with physical and digital structures being 
managed using the sensors and actuators. 

3. Changes in the state in downstream structure 
invokes various behaviors that are encoded in 
the USOM to detect the change event, reason 
and determine appropriate action and act using 
the sensors and actuators that manage the 
downstream physical and digital structures. 

VIII. COMPARISION WITH CURRENT STATE OF THE ART AND 

CONCLUSION 

Current state of the art that provides failover, scaling, and 
reconfiguration of workloads is through the automation of 
deploying, monitoring and reconfiguring either container-
based or virtual machine-based images along with associated 
PoD and Virtual Machine networks. Workloads are locked 
within the IaaS and PaaS components and the automation of 
their management is performed by managing the IaaS and 
PaaS configurations. Figure 7 shows the current state of the 
art of workload deployment. 

 

Figure 7: Current state of the art is a complex overlay of 
multiple layers evolved over a long period of time and are 
subject to the Church-Turing thesis boundaries in dealing 

with fluctuations in resource demand or availability. 

The shortcomings of current state of the art and a 
potential new approach demonstrating workload mobility 
across multiple IaaS and PaaS infrastructures in multiple 
clouds without service disruption was published by Burgin 
and Mikkilineni in 2018 [21] based on the work carried out 
by one of the authors at C3DNA. In contrast to the current 
approach, that implementation was based on an extension to 
the Turing Machine by introducing a read/write instruction 
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change based on an external cognizing oracle [49]. While 
this approach worked, it required an intervention in the data 
path and does not provide a generalized approach to infuse 
cognition with its modeling, reasoning and changing the 
evolution of the digital computing structure with systemic 
view.  

The approach using Triadic Automata described in this 
paper provides a decoupling of workload orchestration from 
the Iaas and PaaS infrastructure orchestration. The cognitive 
layer models the IaaS and PaaS configurations, establishes 
sensors and actuators to synchronize the model with its 
physical structure and manages the evolution based on the 
cognitive knowledge infused in the knowledge structures. 
Figure 8 shows the new approach. 

 

Figure 8: Workload orchestration using cognitive overlay 
in the form of knowledge structures, cognizing agents and 

structural machines. 

The authors believe that the new mathematics and the 
proposed implementation of Triadic Automata will pave the 
way to bring a higher degree of efficiency, resiliency and 
scalability to digital information processing structures. First 
implementation of the Triadic Automata will be described in 
detail in a following paper by the implementors using the 
edge clouds described above. 

We conclude this paper with the observation from von 
Neumann [50]. “It is very likely that on the basis of 
philosophy that every error has to be caught, explained, and 
corrected, a system of the complexity of the living organism 
would not last for a millisecond. Such a system is so 
integrated that it can operate across errors." 

The cognitive layer infused in the Triadic Automata 
provides the mechanism for the system to operate across 
errors in the face of nondeterministic fluctuations. 
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