
EasyChair Preprint
№ 4497

Autopoietic Computing Systems and Triadic
Automata: The Theory and Practice

Mark Burgin, Rao Mikkilineni and Vidya Phalke

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

November 2, 2020

Triadic Automata October 19, 2020 P a g e | 1

Autopoietic Computing Systems and Triadic

Automata: The Theory and Practice

Mark Burgin

Department of Mathematcs

University of California

Los Angeles, USA

mburgin@math.ucla.edu

Rao Mikkilineni

Ageno School of Business

Golden Gate University

San Francisco, USA

rmikkilineni@ggu.edu

Vidya Phalke

Chief Innovation Officer

MetricStream

Palo Alto, USA

phalke@gmail.com

Abstract—Physical world contains many complex sentient

structures. They have evolved to learn how to organize

themselves and optimally use the resources available to them

while interacting with their environment. These complex

adaptive systems (CAS) sustain their continued existence in the

face of external forces causing large fluctuations. The study of

CAS functions, structures and their dynamics under the

influence of fluctuations has thrown light into self-organizing

patterns that are common among these disparate systems.

Common theme among these structures is that a system

encodes and processes information to organize and manage its

components interacting with each other and their environment.

The self-organizing patterns also sense and counteract

fluctuations to maintain their stability. They become

autopoietic and maintain homeostasis.

Digital Computing structures composed of distributed and

communicating software and hardware components also fall

into the category of a complex system where fluctuations in the

demand for, or the availability of, resources required to

execute the computations disturb their stability and

performance. The fluctuations impact the resiliency and

efficiency of the structure as the scale of components increase.

This paper describes the theory and practice of applying the

self-organizing and self-managing patterns to distributed

digital computing structures and make them autopoietic

machines.

Keywords—Autopoiesis, Sentient Systems, Complex Adaptive

Systems, Triadic Machines, Digital Genes, Digital Neurons,

Distributed Computing, Church-Turing Thesis, Structural

Machines, Knowledge Structures, Theory of Oracles

I. INTRODUCTION

All living beings exhibit sentience along with some form
of intelligence and resilience. Sentience comes from the
Latin sentient-, "feeling," and it describes things that are
alive, able to feel and perceive, and show awareness or
responsiveness. The degree of intelligence (the ability to
acquire and apply knowledge and skills) and resilience (the
capacity to recover quickly from non-deterministic
difficulties without requiring a reboot) depend on the
cognitive apparatuses the organism has developed. The
cognitive apparatuses are built using information processing
structures that exploit physical, chemical and biological
processes, concerned with matter and energy, that transform
their physical and kinetic states to establish a dynamic
equilibrium between themselves and their environment using
the principle of entropy minimization.

According to Maturna and Varela [1] “A cognitive
system is a system whose organization defines a domain of
interaction in which it can act with relevance to the

maintenance of itself, and the process of cognition is the
actual (inductive) acting or behaving in the domain. Living
systems are cognitive systems, and living as a process is a
process of cognition. This statement is valid for all
organisms, with or without a nervous system.”

According to Wikipedia, "cognition is considered as the
ability of adaptation in a certain environment. That definition
is not as strange as it seems at first glance: for example, one
is considered to have a good knowledge of Mathematics if
they can understand and subsequently solve a Mathematical
problem. That is, one can recognize the mathematical
entities, their interrelations and the procedures used to view
other aspects of the relevant phenomena; all these, are the
domain of Mathematics. And one with knowledge of that
domain, is one adapted to that domain, for they can tweak the
problems, the entities and the procedures within the certain
domain.

Cognition emerges as a consequence of the continuous
interaction between the components of the system and its
environment. The continuous interaction triggers bilateral
perturbations; perturbations are considered problems –
therefore the system uses its functional differentiation
procedures to come up with a solution (if it doesn't have one
handy already through its memory). Gradually the system
becomes "adapted" to its environment – that is it can
confront the perturbations so as to survive. The resulting
complexity of living systems is cognition produced by the
history of bilateral perturbations within the
system/environment schema.”

Cognition enables complex physical structures to evolve,
adapt and become autopoietic. The term autopoiesis [1]
refers to a system capable of reproducing and maintaining
itself. “An autopoietic machine is a machine organized
(defined as a unity) as a network of processes of production
(transformation and destruction) of components which: (i)
through their interactions and transformations continuously
regenerate and realize the network of processes (relations)
that produced them; and (ii) constitute it (the machine) as a
concrete unity in space in which they (the components) exist
by specifying the topological domain of its realization as
such a network.”

Evolution of self-maintenance patterns in complex
adaptive systems (CAS) has been studied extensively and
lessons learned have been successfully applied to understand
and improve diverse domains [2 - 5] such as economics of
stock market trading, modeling organizational change,
supply-chain network dynamics, and examining global
health governance. A CAS consists of a network of

Triadic Automata October 19, 2020 P a g e | 2

individual entities interacting with each other and its
environment. Each entity exhibits a specific behavior and
may be composed of subnetworks of entities providing a
composed behavior. It takes energy to process information,
sustain its structure and exhibit the intended behavior.
Various systems adapt different strategies to use matter and
energy to sustain order in the face of fluctuations caused by
internal or external forces. The second law of
thermodynamics comes into play because of matter and
energy involvement which states that "there is no natural
process the only result of which is to cool a heat reservoir
and do external work." In more understandable terms, this
law observes the fact that the useable energy in the universe
is becoming less and less. Ultimately there would be no
available energy left. Stemming from this fact we find that
the most probable state for any natural system is one of
disorder. All-natural systems degenerate when left to
themselves.

An adaptive system refuses to be ‘left to itself’ and
develops self-organizing patterns to reconfigure the structure
to compensate for the deviations of behavior due to
fluctuations. Thus function, structure, fluctuations, sensory
perception, awareness and reconfiguration processes play
key roles in the evolution of CAS. In Section II, we analyze
CAS and show how the theory of many-body interactions
helps us to develop and understand its dynamics and state
evolution. In Section III, we identify self-organizing and
self-managing patterns and describe how they assist in
sustaining order in the face of fluctuations. In Section IV, we
discuss a new theory of triadic machines, which allows us to
implement these self-organizing and self-managing patterns
in digital computing systems. In Section V, we describe
triadic structural machines as a mathematical model of self-
organizing and self-managing information processing
systems. In Section VI, we demonstrate that the current
information processing structures implemented using John
von Neumann’s stored program implementation could be
modeled as a complex adaptive system and that similar self-
organizing and self-management patterns can be infused to
sustain their behaviors in the face of fluctuations even as the
system grows in scale and is geographically distributed. This
observation is very timely to address the emerging
information processing networks that are growing in scale
connecting people, things and business process automation
computing structures deployed in public, private, hybrid
clouds and datacenters. In Section VII, we describe
application of triadic automata to the implementation of an
autopoietic edge cloud where a distributed application
workload is designed to manage itself in the face of
fluctuations in the availability of or the demand for
computing resources sustaining the computations. Section
VIII concludes the paper with lessons learned identifying
further research aimed at the improvement of the resiliency
and efficiency at scale of how we deploy distributed
computing structures in the future.

II. CAS AND THE DYNAMICS OF MANY-BODY INTERACTIONS

“The emerging tapestry of complex systems research is
being formed by localized individual efforts that are
becoming subsumed as part of a greater pattern that holds a
beauty and coherence that belies the lack of an omniscient
designer. As in Navajo weaving, efforts on one area of this
tapestry are beginning to meld into another, leaving only
faint "lazy lines" to mark the event.” This poetic description

[6] summarizes the state of the art of our understanding of
CAS bringing together many diverse disciplines. We have
come a long way since the event in 1984, at Santa Fe
Institute, which facilitated a new insight into the theory of
complex adaptive systems and its application to multiple
domains [7 -10]. Instead of reviewing the current state of the
art, in this paper, we take a new look at the CAS and its
evolution using the new mathematical tools introduced by
Mark Burgin [11] in the form of named sets, knowledge
structures, cognizing oracle agents and structural machines.

We study CAS as a system composed of a named set of
components interacting with each other and their
environment where the local functions, global structure and
fluctuations in their interactions play key roles in their
evolutionary dynamics. Each component as a named
component may also have its own structure that defines its
internal and external interactions and evolution. This model
of a complex system is a network of networks with the nodes
defining the local functional behavior and links representing
the interactions which, in turn determine the global dynamics
of the system. Both locality of functions, their behaviors and
the nature of interactions among themselves and their
environment play a role on the overall structural behavior.

In this paper, we focus on a particular kind of structure
which consists of a system of distributed components where
each component itself may be composed of various
concurrent asynchronous processes interacting with each
other and their environment. The dynamics of such a system
is non-deterministic based on the nature and the strength of
fluctuations in the interactions. We focus on this type of
structure because of its relevance to current day digital
computing-based information processing structures and their
efficiency and resiliency at scale in the face of fluctuations
impacting the structure. When the fluctuations are small, the
system usually exhibits near-equilibrium behavior and as the
fluctuations increase in magnitude, the system may undergo
chaotic behavior depending on the magnitude and the nature
of fluctuations. Whether the trajectory of the system
evolution is deterministic or non-deterministic, depends both
on the nature of interactions and the strength of fluctuations.
The nature of fluctuations determines the degree of non-
linearity in the trajectory. Self-organizing and self-managing
patterns are designed (often through evolutionary processes)
to sense the nature of fluctuations and predict the impact on
the system evolution and take action to counteract and
maintain equilibrium. Biological systems manage
homeostasis 1 through self-managing processes which are
also implemented as physical structures.

Talking about the description of the physical world,
Prigogine [12] points out the evolution of our theories from
groups to semigroups, and from trajectories to processes. To
him, it was evident from start that the physical structures
were evolving out of fluctuations. “They appeared in fact as
giant fluctuations, stabilized through matter and energy
exchanges with the outer world. Since the formulation of the
minimum entropy production theorem, the study of non-
equilibrium fluctuation had attracted all his attention.”

1 Homeostasis the tendency toward a relatively stable

equilibrium between interdependent elements, especially as

maintained by physiological processes. Example is how body

maintains the temperature within a range when external

temperature fluctuates.

Triadic Automata October 19, 2020 P a g e | 3

The structures are formed through the physical and
chemical processes available in nature using matter, energy
and their transformation rules. Atoms become molecules and
molecules become compounds. Function, structure and
fluctuations determine their macroscopic properties. For
example, as the kinetic energy increases (because of heat
from external source for example), the structure of a set of
water molecules is rearranged going form solid form to
liquid form or from liquid form to a gaseous form through
physical processes. Same holds true for chemical structures
when different physical structures interact with each other
and form a composed structure using matter and energy
transformations.

The rules that determine their transformations are well
understood. Their evolution depends on the configuration of
the structure, strength of the interactions and the nature of
fluctuations. Such systems can be represented by state
vectors in phase space and their dynamics is determined by
well-defined mathematical relationships that deal with
matter, energy and their transformation rules defined by the
physical processes. Mathematical representations of these
structures stem from the rotational and translation invariance
properties and the result of the complex space-time manifold.

In the physical world, as Prigogine pointed out, the
fundamental triad of energy, structure and matter defines the
system dynamics [12, 13]. Mark Burgin explains the
relationship between matter, energy, knowledge and
information as follows [14]. While knowledge and data are
objects of the same type with knowledge being more
advanced than data, information has a different type. It is
possible to transform knowledge or data into information as
we can transform matter into energy. Thus knowledge,
structure and information form another triad which
represents physical structures and their dynamics. Figure 1
shows the relationships between matter, energy, structure,
information and knowledge.

Figure 1: The relationship between matter, energy, information,
knowledge and data.

The representation of physical structures is based on
observation, a developed sense of awareness, classification,
modeling, memory and reasoning which are characterized as
cognitive abilities. A cognitive apparatus allows creating
mental models and creating cognitive structures that
represent observed physical structures and infer results about
their evolution. Cognitive structures are possible only with
cognitive apparatuses and biological systems have figured
out how to create, use and replicate cognitive apparatuses.
The genes in biological systems act as cognitive apparatuses,
allow encoding information, configure physical structures
and evolve them to execute cognitive processes using

physical and chemical processes. The genome defines the
blueprint to configure, monitor and manage a biological CAS
with accumulated knowledge and its representation.

Complex adaptive structures therefore, are characterized
by cognitive apparatuses that facilitate sentience (the ability
to sense and feel), intelligence (the ability to process
information) and resilience (using the information to
rearrange the structure and facilitate its management using
the cognitive apparatuses). The observations are represented
in the form of named objects, their attributes (data) and the
knowledge of the intra-object and inter-object relationships
and behaviors when an interaction event perturbs any of the
attributes. The mental world is represented by the cognitive
apparatus that facilitates observation, modeling, memory,
reasoning and action to rearrange the structures. The degree
of cognition depends on the cognitive apparatuses developed
and deployed in the system. The evolution of the cognitive
apparatus as yet another physical structure, that allows
encoding information and its processing mechanisms using
physical and chemical processes, differentiates the sentient
beings. As Charles Darwin explains "the difference in mind
between man and the higher animals, great as it is, certainly
is one of degree and not of kind.” (cf., [15])

Complex structures (with or without cognition) often
exhibit emergent behavior, which arises from their
interactions. In it, the collective behavior of various
components in the structure is very different from the
behavior that the components can produce separately. In
essence, the whole is not just the sum of all the component
behaviors. For example, the phase transition from water to
ice or steam can be described as emergent. When a system
undergoes a phase transition, its micro-components get
rapidly reconfigured into a qualitatively different macro-
structure. And yet the components themselves are
unchanged. Non cognitive systems just are obeying the non-
linear dynamics of the structure and its interaction with the
environment influenced by the laws of nature. On the other
hand, cognitive structures have developed various cognitive
apparatuses to create sentient, resilient and intelligent
behavior at scale. For example, in an ant colony, each ant is
an autonomous unit that reacts depending only on its local
environment and the genetically encoded rules for its variety
of ant. Despite the lack of centralized decision making, ant
colonies exhibit complex behavior and have even
demonstrated the ability to solve geometric problems. For
example, colonies routinely find the maximum distance from
all colony entrances to dispose of dead bodies. Human
genome provides the example of a complex set of cognitive
apparatuses in the form of genes, neurons and cellular
component structures with the highest degree of sentience,
resilience and intelligence.

With the advent of digital computing machines, a whole
new class of digital structures has evolved allowing
information processing to extend our cognitive abilities of
observation, modeling, memory, reasoning and action to
rearrange the structures both in the physical and mental
worlds. Figure 2 shows the relationship of digital structures
to both physical and mental structures. This is made possible
by John von Neumann’s stored program implementation of
the Turing machine (TM). It provides a physical
implementation of a cognitive apparatus to represent and
transform knowledge structures that are created by physical
or mental worlds in the form of data structures representing

Triadic Automata October 19, 2020 P a g e | 4

the domain under consideration. Figure 2 represents the
implementation of Turing Machines as a cognitive apparatus
with locality and the ability to form information processing
structures where information flows from one apparatus to
another with a velocity defined by the medium. These
implementations have allowed us to develop current state of
the art of information processing structures using digital
computing machines.

Figure 2: Structures as information processing machines

In the physical world, the “gene” encodes the process of
“life” in an executable form, and a neural network encodes
various processes to interact with the environment in real
time. Together, they provide the complex adaptive structures
in the form of body, brain and the mind which exhibit
sentience, resilience and intelligence.

The digital computing machine gives us the framework
for encoding the models of physical and mental structures
and their evolution in executable form where a digital
computing structure provides information processing similar
to the genes and neurons. Figure 2 depicts the digital gene
and the neuron implemented using the digital computing
machine. First, symbolic computing in the form of
executable tasks allows us to process a list of formal,
mathematical rules or a sequence of event driven actions
such as modeling, simulation, business workflows,
interaction with devices, etc. The digital computing machine,
in essence, acts as a “cognitive apparatus” to implement
cognitive functions described as easily described tasks.
Second, algorithms are designed to mimic the neural
networks in the brain and process information. The neural
network model allows computers to understand the world in
terms of a hierarchy of concepts to perform tasks that are
easy to do "intuitively", but are hard to describe formally or a
sequence of event driven actions such as recognizing spoken
words or faces. Digital computing structures have allowed
many paradigms of computation, including Mainframe, PC,
Network, Internet, Distributed Computing, Grid Computing,
Cloud Computing, Machine Learning and Deep Learning.

However, the limitation of current state of the art is
pointed out by Cockshott et al. [16] in their book
“Computation and its limits” with the concluding paragraph
“The key property of general-purpose computer is that they
are general purpose. We can use them to deterministically
model any physical system, of which they are not themselves
a part, to an arbitrary degree of accuracy. Their logical limits
arise when we try to get them to model the part of the world
that includes themselves.” The Turing’s system is limited to
single, sequential processes and is not amenable for
expressing dynamic concurrent processes where changes in
one process can influence changes in other processes while
the computation is still in progress in those processes [17].
This is an essential requirement for describing cognitive

processes. Concurrent and asynchronous task execution and
regulation require a systemic view of the context, constraints,
communication and control where the identities, autonomic
behaviors and associations of individual components also
must be part of the description.

The thesis of this paper is that sentience, resilience and
intelligence are the results of information processing
structures that various systems design and develop to manage
their own state evolution in an optimal way by minimizing
entropy in spite of a natural tendency for entropy to increase.
They do this by creating physical structures that sense,
model, monitor and evolve their states to establish
equilibrium between their internal states and the environment
with which they interact. Matter and energy and physical,
chemical and biological information processing structures
that exploit their transformation rules enabled sentience,
resilience and intelligence in the physical world.

We argue that we can model both physical and mental
structures using structural machines, cognizing oracle2 agents
and the knowledge structures [18 - 24] along with the
cognitive apparatuses (digital genes and neurons) that enable
flow of information from one knowledge structure to
another. These digital structures implementing the structural
machines allow us to design and develop sentient, resilient
and intelligent systems with models that include both
themselves and the physical structures they are made up of
and interact with. In the next section we identify the key self-
organizing and self-managing patterns extracted from the
studies of CAS.

III. SELF-ORGANIZING AND SELF-MANAGING PATTERNS

 Biological systems, in addition, have developed
cognitive capabilities that allow them to:

• Integrate information from multiple sensory
channels to marshal an effective response to
fluctuating conditions;

• Make decisions under conditions of uncertainty;

• Share information within the components of the
system and with outside, and

• Coordinating collective behavior to increase the
chances of maintaining their desired state.

Cognition, in essence, allows the system to create a
model of the physical structure of the self and its interactions
with the environment in the form of mental structures and
create additional physical processes that interact with
physical structures to maintain its state or reconfigure itself
to a new state that keeps it intact.

Biological systems have discovered a way to encode the
processes and execute them in the form of genes, neurons,
nervous system, the body and the brain etc., through
evolutionary learning. The genome, which is the complete
set of genes or genetic material present in a cell or organism
defines the blueprint that includes instructions on how to
organize resources to create the functional components,
organize the structure and the rules to evolve the structure
while interacting with environment using the encoded

2 Theory of oracles built by Mark Burgin [23] is a far-

reaching generalization of the concept proposed by Alan

Turing [24].

Triadic Automata October 19, 2020 P a g e | 5

cognitive processes. Placed in the right environment, the cell
containing the genome executes the processes that manage
and maintain the self-organizing and self-managing structure
adopting to fluctuations.

Shettleworth [25] studied cognitive apparatuses in
animals and describes Cognition. “Cognition refers to the
mechanism by which animals acquire, process, store and act
on information from the environment. These include
perception, learning, memory, and decision making.” She
cites examples of crows using tools to crack nuts, bees
communicating with dance, ants finding their way in the
deserts and rats negotiating their way in mazes. "Cognitive is
often reserved for declarative rather than procedural
knowledge. Declarative knowledge is "knowing that"
whereas procedural knowledge is "knowing how" or
knowing what to do." Declarative knowledge implies more
flexible behavior than the procedural knowledge, but in both
cases behavior results from processing and storing
information about the world. "A related distinction is that
between first-order and higher-order processes, only the
latter of which may be regarded as interestingly cognitive.
First-order processes operate directly on perceptual input, as
when a stimulus triggers a response or creates a trace in
memory. Second-order processes operate on first-order
processes, as in evaluating the strength of one's memory for
an event."

These observations are very relevant to the digital
information processing structures in attempting to infuse
cognition into them. The digital genes and the digital neurons
mentioned above generate the first order in intelligent
processes on the Internet. In addition, the cognitive agent
behavior described in the theory of oracles [22] is second-
order intelligent process, which operates on the first-order
processes. The next two sections present the theory of triadic
automata (TA) where three-level digital computing structure
is describes that points a way to infuse cognitive behavior in
digital information processing systems.

IV. TRIADIC AUTOMATA AND MACHINES AS MATHEMATICAL

MODELS OF AUTOPOIETIC MACHINES

An autopoietic machine is an appealing inspiration but it
is only an idea and to put it into practice demands
transformation of this idea into a functioning physical
machine. The process of transformation usually includes
several stages.

First, it is necessary to develop a realistic structure of an
autopoietic machine.

Second, it is necessary to specify components of the
developed structure.

Third, it is necessary to construct a physical realization
of the autopoietic machine.

To make this process constructive, we need to analyze
these stages and what they involve.

In this context, the structure can be informal or formal.
For construction, the structure must be formal and its
formalization can be mathematical or engineering. The same
is true for specifications. They can be informal or formal
while formal specifications can be mathematical or
engineering.

Some think that it is simpler to proceed from a general
idea to the engineering descriptions of the future system.

However, peoples experience shows that engineering
projects are always better when they are based on sound
mathematical theories and models. Indeed, theoretical
grounding and mathematical modeling allows evading many
mistakes in engineering development as well as obtaining a
better, e.g., more efficient or optimal, system.

One of the most transparent examples for this is the
history of the von Neumann architecture.

It tells us that the earliest computing machines had fixed
programs. Changing the program of a fixed-program
machine required rewiring, restructuring, or even redesigning
the machine. It was – when possible at all – an arduous
process. It started with producing paper notes and flowcharts,
followed by detailed engineering designs, and then the
painstaking process of physically rewiring and rebuilding the
machine. In particular, it could take up to three weeks to set
up and debug a program on one of the first computers
ENIAC.

In 1945, while consulting for the Moore School of
Electrical Engineering on the EDVAC project, von Neumann
wrote an incomplete set of notes, titled the First Draft of a
Report on the EDVAC. These notes were widely distributed
laying foundations of a novel, at that time, computer
architecture in which the data and the program are both
stored in the computer's memory. It was called later von
Neumann architecture, which became the de facto computer
standard for a long time and sometimes is still used today.

The main idea of von Neumann architecture was copied
from such a mathematical model of computation as a
universal Turing machine. Although von Neumann did not
mention this in his Report on the EDVAC, he was well
acquainted with the work of Turing, who was a graduate
student at Princeton when he published his famous paper
describing what was later called Turing machine [24].

That is why here we build a mathematical model of an
autopoietic machine using the pinnacle achievements and the
most advanced structures of computer science. It is important
to note that till now, nobody elaborated such a model
although there are some predecessors of it. In particular, self-
reproductivity was the principal feature of cellular automata
introduced by von Neumann [26].

To build an adequate mathematical model of an
autopoietic machine, we need to analyze the idea of such a
machine and the tentative informal description of its
functioning. In essence, an autopoietic machine is a technical
system capable of regenerating, reproducing and maintaining
itself by production, transformation and destruction of its
components and the network of processes in these
components.

When we have a technical (physical) information
processing system, its inner structure comprises three
components: hardware, software and infware [27].

The hardware of a system consists of all devices that
belong to the system and connections between them.

The software of a system consists of various programs
and algorithms that control its functioning.

The infware of a system consists of diverse information
carriers, e.g., data or knowledge, with which this system
works.

Triadic Automata October 19, 2020 P a g e | 6

Thus, the inner structure of an information processing
system consists of these components and relations between
them [27].

In a general situation, the hardware of an information
processing system also has three key components: the input
subsystem, output subsystem and processing subsystem. If we
want to build an adequate mathematical model of a physical
system with these components, we need to establish the
corresponding components in the model, which is an abstract
automaton or machine. However, in many theoretical models
of computation, such as finite automata or conventional
Turing machines, input and output devices are either not
specified or represented by components of the common
memory and/or of the processor. For instance, a conventional
Turing machine performs input and output operations by
writing the input to and reading the output from the working
memory, which consists of one or several tapes. In contrast
to this, any inductive Turing machine has special input and
output registers for this purpose, e.g., tapes [27].

Neural networks also have these three key components:
their input subsystem comprises all input neurons while the
output subsystem consists of all output neurons. At the same
time, it is possible to define its information processing
subsystem either as all neurons of the network or only all its
hidden neurons [28]. Some authors call input and output
neurons by the name visible neurons.

Considering infware, we see that the majority of abstract
automata (abstract computing devices) work with strings of
symbols, and thus, their infware consists of strings in some
alphabet.

Turing machines with two-dimensional tapes and two-
dimensional cellular automata work with two-dimensional
symbolic arrays. It means that their infware consists of two-
dimensional symbolic arrays. Turing machines with n-
dimensional tapes and n-dimensional cellular automata work
with n-dimensional symbolic arrays. It means that their
infware consists of n-dimensional symbolic arrays.

At the same time, such algorithms (automata) as
Kolmogorov algorithms and storage modification machines
work with arbitrary graphs [29, 30]. In addition, there are
also many concrete algorithms that work with graphs (cf., for
example, [31, 32]. Consequently, their infware also consists
of graphs.

Structural machines work with arbitrary structures [23,
18 and 19]. Consequently, their infware consists of arbitrary
structures.

Coming to software, we see that in many abstract
automata, such as finite automata, pushdown automata,
Minsky machines, timed automata, register machines,
Kolmogorov algorithms, random access machines (RAM),
and Turing machines, instructions and rules compose their
software.

Neural networks are often contrasted to other kinds of
abstract automata. However, it is possible to treat the system
of weights, activation functions, threshold functions and
output functions as the software of neural networks. It is
possible to treat these systems as algorithms although their
form is different from traditional algorithms, which are
described as sets of instructions.

Existence of three components in the automaton or
machine implies that to be autopoietic, a machine needs
ability to perform operations with these components. The
unique theoretical model of computation that can do this is a
triadic automaton or machine [23]. Let us describe this
model.

Triadic automata (machines) transform infware (for
example, data), software (for example, instructions or
programs) and hardware (for example, memory or
processors). There are different types of triadic machines
(triadic automata):

− a hardware modification machine (automaton)
transforms only infware and hardware

− a software modification or symmetric machine
(automaton) transforms only infware and
software

− a full triadic machine (automaton) transforms
infware, software and hardware

− a transducer transforms only infware and has
input and output

− a generator transforms only infware and has
only output

− an acceptor transforms only infware and only
input

− a hardware expansion machine (automaton)
only expands its hardware

− a software expansion machine (automaton) only
expands its software

− a symmetric expansion machine (automaton)
only expands its hardware and software

− a hardware alteration machine (automaton)
only updates its hardware

− a software alteration machine (automaton) only
updates its software

− a symmetric alteration machine (automaton)
only updates its hardware and software

Besides, there are different ways to perform
hardware/software modifications. With respect to the source
of modification it is possible to consider three types of
hardware/software modifications in an automaton (machine)
M:

− External modification is performed by another
system.

− Internal modification is performed by the
automaton (machine) M.

− Combined modification is performed by both the
automaton (machine) M and another system.

Taking a specific class of triadic automata (machines),
we see that what modifications are possible and permissible
in a given class depends on the structure of a triadic
machines (triadic automata) from this class. In any case,

Triadic Automata October 19, 2020 P a g e | 7

mandatory components, which make these automata efficient
for computation, include input and output systems working
together with one or more processors. Often, input and
output components of an automaton (machine) are specific
registers in the memory of the machine (automaton) [27]. At
the same time, input and output in neural networks are
organized using specified neurons [28].

At the same time, adding memory and other components
to automata allows increasing their flexibility,
interoperability and efficiency. These changes are reflected
in the structure of triadic machines (automata) of different
types. Let us consider two of such types - state and
instruction triadic automata (machines).

Definition 4.1. A state triadic machine or triadic state
automaton A with memory has seven core hardware
components:

• The control device CA , which is a finite
automaton and represents states of the machine
(automaton) A

• The data memory WA , which stores data and
includes input and output registers

• The software memory VA , which stores software
of the machine (automaton) A

• The data processor PM , which transforms
(processes) information (data) from the memory
WM

• The software processor DM , which transforms
(processes) software of A stored in the memory
VM

The metaprocessor PA , which transforms (e.g., builds or
deletes connections in) the hardware HA and/or changes the
control device CA

In the standard form, both memories consist of cells,
which are connected by transition links. Processors have
their programs of functioning, which constitute the software
of the automaton.

In the same way as state triadic machines, instruction
triadic machines constitute a special class of triadic
machines. In a general case, it is possible that the functioning
of an instruction triadic machine does depend on its state.
However, we include the state system in the general
description of instruction triadic machines because when the
functioning of an instruction triadic machine does depend on
its state, it is possible to treat this as a machine with only one
state.

Definition 4.2. A instruction triadic machine or
instruction triadic automaton H with memory has seven core
hardware components:

• The control device CH , which is a finite
automaton and represents states of the machine
(automaton) H

• The data memory WH , which stores data

• The instruction memory VH , which stores
instructions

• The data processor PM , which transforms
(processes) information (data) from the memory
WM

• The instruction processor DM , which transforms
(processes) information (instructions) from the
memory VM

• The memory processor PW , which transforms
(builds or deletes connections and/or cells in) the
memory WM

• The memory processor PV , which transforms
(e.g., builds or deletes connections and/or cells
in) the memory VM

Memory processors are hardware transformers and it is
also possible to include a control device processor in the
structure of an instruction triadic machine. This additional
processor changes the control device CA .

Many kinds of algorithms and abstract automata, such as
finite automata, pushdown automata, register machines,
Kolmogorov algorithms, random access machines (RAM),
and Turing machines, use systems of instructions, for
example, in the form of transition rules, to control
computational processes. These instructions determine
computational processes, which are controlled by algorithms
and are going in these automat and constitute the software of
these automata and machines, which form specific classes of
instruction machines.

There are different classes of instruction triadic machines
(automata). Namely, when instruction triadic machines
(automata):

− do not have processors that transform hardware,
e.g., memory or processors, they are called
symmetric instruction machines

− have only processor(s) that transform infware,
e.g., data, they are called pure instruction
machines

− have only processor(s) that transform software,
i.e., systems of instructions, they are called
translation machines or translators

− have only processor(s) that transform hardware,
i.e., memory or processors, they are called
construction machines or constructors

− do not have processors that transform infware,
e.g., data, they are called constructors
(construction machines) with translators

− do not have processors that transform software,
i.e., systems of instructions, they are called
generative instruction machines

Machines from each class have their specific functions.
For instance, construction machines (constructors) can be
used to construct memory for other machines. This technique
is employed in inductive Turing machines of the second and
higher orders use inductive Turing machines of lower orders
as their constructors [27, 33].

Besides, there are different methods to organize program
formation with the help of computing/constructing agents. If
the memory of the automaton has connections between any
pair of cells, then the program can use these connections.

Triadic Automata October 19, 2020 P a g e | 8

Thus, it is possible to organize the inductive mode of
computing by inductive computation (compilation) of the
program for the main computation.

In the simplest approach called the sequential strategy, it
is assumed that given some schema, for example, a
description of the structure of the memory E of an inductive
Turing machine M, an automaton A builds the program and
places it in the memory E before the machine M starts its
computation. When M is an inductive Turing machine of the
first order, its constructor A is a Turing machine, which, for
example, puts the names of the connections of the memory
of M into instructions (rules) of M. When M is an inductive
Turing machine of the second or higher order, its constructor
A is also an inductive Turing machine, the order of which is
less than the order of M and which modifies instructions
(rules) of M. For instance, the program of inductive Turing
machines of the second order is constructed by Turing
machines of the first order

According to another methodology called the concurrent
strategy, program formation by the automaton A and
computations of the machine M go concurrently, while the
machine M computes, the automaton A constructs the
program in the memory E.

It is also possible to use the mixed strategy when some
parts of the program E are assembled before the machine M
starts its computation, while other parts are formed parallel
to the computing process of the machine M.

These three strategies determine three kinds of the
constructed program (software):

• In the static program (static software) of the
machine M, everything is constructed before M
starts working.

• In the growing program (growing software) of the
machine M, parts are constructed while M is
working but no parts are deleted.

• In the dynamic program (growing software) of the
machine M, when it necessary, some parts are
constructed and when it necessary, some parts are
deleted while M is working.

It is possible to use similar strategies for hardware
modification. This approach determines three types of the
constructed hardware of a triadic automaton/machine:

• In the static hardware of the machine M, everything
is constructed before M starts working.

• In the growing hardware of the machine M, parts
are constructed while M is working but no parts are
deleted.

• In the dynamic hardware of the machine M, when it
necessary, some parts are constructed and some
parts are deleted while M is working.

In the next section, we discuss problems of efficiency of
information processing describing the most flexible and
efficient model of computation, which is called structural
machine.

V. TRIADIC STRUCTURAL MACHINES AS ADVANCED FORMS

OF TRIADIC AUTOMATA

Information is represented by diverse structures. Only
some of them are formalized as data structures and used in
real-life computations. However, conventional theoretical
model even do not comprise the majority of data structures
operated by contemporary computers. Indeed, programming
languages use a variety of data structures such as characters,
integers, floating-point real number values, enumerated types
(i.e., a small set of uniquely-named values), arrays, records
(also called tuples or structs), unions, lists, streams, sets,
multisets, stacks, queues, double-ended queues, trees, general
graphs, etc. In addition, word processors, such as Word or
TeX, work with various geometrical shapes, figures and
pictures.

At the same time, data structures processed by abstract
automata are more limited because they work only with
separate symbols, strings of symbols, trees and arrays. To
eliminate this limitation, the new model of computation
called structural machine was introduced [18, 19 and 23].
These machines provide means of processing arbitrary
structures. Here we introduce new forms of these machines –
triadic structural machines and autopoietic structural
machines.

An autopoietic structural machine is a technical system
capable of regenerating, reproducing and maintaining itself
by production, transformation and destruction of its
components and the network of processes in these
components by working with a variety of flexible structures.

Triadic structural machines are mathematical models of
autopoietic structural machines.

Here for simplicity, we consider only structural
machines, which work with structures of the first order.

Definition 5.1 [34]. A first-order structure is a triad of
the form

A = (A, r, R)

Here:

− A is a set, which is called the substance of the
structure A and consists of elements of the
structure A, which are called structure elements
of the structure A

− R is a set, which is called the arrangement of
the structure A and consists of relations
between elements from A in the structure A,
which have the first order and are called
structure relations of the structure A

− r is the incidence relation, which connects
groups of elements from A with the names of
relations from R

For instance, if R is an n-ary relation from R and a1 , a2 ,
a3 , … , an are elements from A, then the expression r(R; a1 ,
a2 , a3 , … , an) means that the elements a1 , a2 , a3 , … , an
belong to the relation R with the name R, i.e., the incidence
relation r connects the elements a1 , a2 , a3 , … , an with R.

It is necessary to remark that all conventional concepts of
structure include only structures of the first order (cf., for
example, [35 – 37]. Only Bourbaki go to higher structures in

Triadic Automata October 19, 2020 P a g e | 9

their formal definition but they are confined to the set-
theoretical context and use unnecessary condition making
their definition blurred and too restrictive [38, 39]. The
comprehensive definition of structures of all orders is
elaborated in the general theory of structures [34].

Describing structures, it is important to distinguish
relations and their names because when a structural machine
functions, relations, as a rule, are changing, while their
names can remain the same indicating that this relation is
dynamically the same but it statics is changing. For instance,
when a structure A on a set A has a ternary relation R with
the name R as its component and in the process of
computation, the machine connects three elements that were
not related by R by a link including this triple into the
relation R. As a result, R becomes larger but stays
dynamically the same preserving the same name R. This is
similar to the situation when a human being is changing
remaining, at the same time, the same person.

Lists, queues, arrays, words, texts, graphs, multigraphs,
directed graphs, mathematical and chemical formulas, tapes
of Turing machines and Kolmogorov complexes are
particular cases of structures of the first order that have only
unary and binary relations. Note that labels, names, types and
properties are unary relations.

In the case when the arrangement R of relations consists
of one binary and several unary relations, the first order
structure is a labeled (named) directed graph. Transition
diagrams of finite automata are examples of labeled directed
graph. When the arrangement R contains only binary and
unary relations, the first order structure is a labeled (named)
directed multigraph [40]

Definition 5.2. The type T(A) of a first-order structure A
= (A, r, R) is the set {(R, (R)); R R } of pairs (R, (R))
where (R) is the arity of the relation R with the name R.

We assume that two first-order structures A = (A, r, R)
and B = (B, p, P) have the same type if there is a one-to-one
mapping f: T(A) T(B) such that if f(R, (R)) = (P, (P)),
then (R) = (P).

For instance, all binary relations have the same type.

Definition 5.3. A structural machine M works with
structures of a given type and has three components:

• The unified control device CM regulates the
state of the machine M

• The unified processor PM performs
transformation of the processed structures and
its actions (operations) depend on the state of
the machine M and the state of the processed
structures

• The unified functional space SpM contains
input, output and processed structures and
consists of three components:

o The input space InM , which contains
the input structure.

o The output space OutM , which
contains the output structure.

o The processing space PSM , in which
the input structure(s) is transformed
into the output structure(s).

In many cases, it is assumed that all structures – the input
structure, the output structure and the processed structures –
have the same type.

Definition 5.4. A structural machine M is triadic if it is a
triadic automaton, i.e., it processes its infware, software and
hardware.

Computation of a triadic structural machine M
determines the trajectory of computation, which is a tree in
general case and a sequence when the computation is
deterministic case and is performed by a single processor
unit.

Definition 5.5. There are three forms of unified
functional spaces - CSpM , TSpM and USpM - in structural
machines in general and triadic structural machines in
particular:

• CSpM is called a categorical functional space
and is the set (category) of all structures that
can be processed by the (triadic) structural
machine M

• USpM is called a universal functional space and
is a structure for which all structures that can
be processed by the (triadic) structural machine
M are substructures of USpM

• TSpM is called a transformation functional
space and is a structure for which all structures
that can be processed by the (triadic) structural
machine M are transformations of TSpM

Definition 5.6. There are three basic types of unified
control devices:

• A central control device controls all processors
of the triadic structural machine

• A cluster control device controls a cluster of
processors in the triadic structural machine

• An individual control device controls a single
processor in the triadic structural machine

Definition 5.7. There are three basic types of unified
processors:

• A localized processor is a single abstract
device (processor unit or unit processor)

• A distributed processor, which is also called a
total processor of the first level, consists of a
system of unit processors or processor units

• A clustered processor, which is also called a
total processor of the second level, consists of a
system of total processors of the first level

Continuing this construction, we can define and build
total processors of any positive level in a triadic structural
machine.

It is possible to treat a localized processor in a triadic
structural machine as a singular unit processor although it

Triadic Automata October 19, 2020 P a g e | 10

can be constructed as a robustly tied together several
processor units.

Note that a triadic structural machine can have several
distributed and/or clustered processors.

In turn, there are three basic types of distributed
processors in a triadic structural machine:

• A homogeneous distributed processor consists
of a system of identical unit processors, i.e., all
these unit processors are copies of one
processor

• An almost homogeneous distributed processor
consists of a system in which almost all unit
processors are identical

• A heterogeneous distributed processor consists
of a system of different unit processors

As a result, we have three structural types of processors
in a triadic structural machine.

There are also three basic temporal classes of distributed
processors in a triadic structural machine:

• In a synchronous distributed processor, all unit
processors perform each operation at the same
time

• In an almost synchronous distributed
processor, almost all unit processors perform
each operation at the same time

• In an asynchronous distributed processor, unit
processors function independently

A cellular automaton is a synchronous distributed
processor, while a Petri net is an asynchronous distributed
processor [41].

Organization of control in distributed processors
determines three control categories of distributed processors
in a triadic structural machine:

• A distributed processor with the centralized
control has one control device, which controls
all its unit processors

• A distributed processor with the dispersed
control has several control devices, each of
which controls a group of its unit processors

• A distributed processor with the individualized
control has a control device for each of its unit
processors

In a general case, a unit processor moves from one topos,
e.g., a structure element of infware, software or hardware, to
another performing operations in their neighborhoods. It is
possible to assume that unit processors of a triadic structural
machine perform only local operations. As a result, it is
possible to consider a localized processor as a special type of
a distributed processor with one unit processor. A model
example of a localized processor is the head of a Turing
machine with one head or a finite automaton.

A model example of a homogeneous distributed
processor is the system of all heads in a Turing machine with
several heads. Examples of heterogeneous distributed
processors are processing devices in evolutionary automata

such as evolutionary finite automata, evolutionary Turing
machines or evolutionary inductive Turing machines [42].

In a general case, not all heterogeneous distributed
processors are the same and to discern their properties it is
possible to use measures of homogeneity [43]. These
measures can be also useful for exploring and utilizing
structures processed by computers and their models such as
structural machines.

As triadic structural machines process structures from all
its three basic components, it is natural to specialize
processors of these machines. This gives us three pure types
of processors in a triadic structural machine:

• Infware processors or I-processors PrI work
with infware

• Software processors or S-processors PrS work
with software

• Hardware processors or H-processors PrH
work with hardware

Definition 5.7. A triadic structural machine M is
stratified if all its processors are purely specialized.

There are also four general types of processors – flexible
and three types of mixed processors in a triadic structural
machine:

• Flexible processors or F-processors work with
infware, software and hardware

• IS-processors work with infware and software

• IH-processors work with infware and hardware

• SH-processors work with software and
hardware

For a general purpose processor, its specialization is the
role it plays in the computational process. Pure-type
processors can play only one role. Mixed processors can play
two roles while a flexible processor can play all three roles.

In the process of computation, a metaprogram of a triadic
structural machine determines the role of each processor
according to its restrictions and possibilities. Metaprograms
of triadic structural machines are second-level algorithms
[44, 45].

A further specialization determines the part of the system
components, with which the processor works. With respect
to this specialization, S-processors, H-processors and SH-
processors can be:

• module H-processors (S-processors), which
create/add, destroy/eliminate or
transform/change modules and elements of the
system hardware (software).

• connection H-processors (S-processors), which
create/add, destroy/eliminates open or close
connections between modules and elements of
the system hardware (software).

• module-module SH-processors, which
create/add, destroy/eliminate or
transform/change modules and elements of the
system hardware and software.

Triadic Automata October 19, 2020 P a g e | 11

• module-connection SH-processors, which
create/add, destroy/eliminates open or close
connections between modules and elements of
the system software and create/add,
destroy/eliminates open or close connections
between modules and elements of the system
hardware.

• connection-module SH-processors, which
create/add, destroy/eliminates open or close
connections between modules and elements of
the system hardware and create/add,
destroy/eliminate or transform/change modules
and elements of the system hardware .

• connection-connection SH-processors, which
create/add, destroy/eliminates open or close
connections between modules and elements of
the system hardware and software.

Note that changing connections, it is possible to add or
eliminate parts of the system hardware or software.

With respect to its orientation, there are three types of
pure processors:

• an external S-processor (H-processor)
transforms software (hardware) of another
processor from its own triadic structural
machine

• an internal S-processor (H-processor)
transforms its own software (hardware)

• an outer S-processor (H-processor) transforms
software (hardware) of another triadic
structural machine

There are also nine types of mixed processors:

• an external SH-processor transforms software
and hardware of another processor from its
own triadic structural machine

• an internal SH-processor transforms its own
software and hardware

• an outer SH-processor when it transforms
software and hardware of another triadic
structural machine

• an ex-internal SH-processor transforms
software of another processor from its own
triadic structural machine and its own hardware

• an in-external SH-processor transforms its own
software and hardware of another processor
from its own triadic structural machine

• an o-internal SH-processor transforms
software of another triadic structural machine
and its own hardware

• an o-external SH-processor transforms
software of another triadic structural machine
and hardware of another processor from its
own triadic structural machine

• an ex-outer SH-processor transforms software
of another processor from its own triadic

structural machine and hardware of another
triadic structural machine

• an in-outer SH-processor transforms its own
software and hardware of another triadic
structural machine

The developed classification of control devices and
processors of triadic structural machines is aimed at analysis,
exploration and utilization of properties of these machines
for the development of future autopoietic supercomputers
and autopoietic computer networks.

VI. CAS, DIGITAL INFORMATION PROCESSING STRUCTURES

AND CURRENT INFORMATION TECHNOLOGY (IT) EVOLUTION

In summary, complex adaptive system is a dynamic
structure which can be represented as a network of networks
connecting dynamic functional behaviors (where individual
components interact with each other and their environment)
using information processing nodes and links. The network
of network implies that nodes contain nodes and links may
contain links. The nature and strength of these interactions
define the complexity. In addition, fluctuations in these
interactions often result in the properties of emergence where
the system behavior as a whole is not just equal to the sum of
the behaviors of the individual nodes. Physical and chemical
systems process information using physical and chemical
processes obeying the laws of physics. On the other hand,
biological systems have developed cognitive apparatuses in
the form of genes and neurons to model the systemic
behaviors, monitor them and manage them using their
cognitive apparatuses with embedded, embodied, enactive
and extended (4E) cognition. Genes enable encoding the
information processing structures, their execution
mechanisms and their day to day operation. Neurons in the
nervous system or the brain provide the information
processing neural networks that assist in building cognitive
behaviors sensing, interacting and managing information
processing through memory and reasoning apparatuses.
Cognition, thus is a biological phenomenon. Biological
systems have developed ways to leverage 4E cognition to
create higher level cognitive behaviors as colonies, societies
etc., thus endowing themselves with higher degree of
resilience and efficiency at scale. It is important to note that
emergence is non-deterministic with an element of surprise,
while cognition is an instrument to control the dynamics to
reach a new state of the structure by rearranging it to meet
the goals with resiliency and efficiency.

1) Digital Computational Structures, Computing Models,

Models of Computation, Sentient Behaviors and their

resilency and efficiency optimization:

With the advent of digital genes and neurons discussed
earlier, information processing structures in the digital realm
have exploded resulting in the Internet and the current Cloud
Computing technologies [46]. They allow us to model both
the physical structures and the mental structures, reason
about them and manage them by establishing sensors and
actuators to interact with the physical world. Figure 3 depicts
the relationships between the physical, mental and cognitive
structures.

Triadic Automata October 19, 2020 P a g e | 12

Figure 3: Physical and Mental Structures, their representation in
the Digital Structures and Cognitive Modeling, Reasoning and self-

Managing Patterns with Mind-Brain-Body Embodied Cognition

In biological systems, cognition is embodied in physical
structures and is encoded in its cell that enables its functions,
structure and fluctuation management. As Waldrop Mitchell
points out in his book on complexity [10], “The DNA was
actually the foreman in charge of construction. In effect,
DNA was a kind of molecular -scale computer that directed
how the cell was to build itself and repair itself and interact
with the outside world.” Each cell can divide and
differentiate itself into muscle cells, brain cells, liver cells,
and all other kinds of cells that make up a new born. Each
different type of cell corresponds to a different pattern of
activated genes. In figure 2. We represent the embodied
cognition in the human genome that that senses, models,
reasons and manages both physical and mental structures
(using the mind, brain, and body structures).

The digital structures are made possible by the human
mind and its implementation of cognitive representations of
the physical world using physical structures such as
computers, networks and storage devices. Current
information technologies are implemented as physical
structures implementing the models of the physical and
mental structures using the digital genes and digital neurons.
They are modeled and managed by the human. Figure 4
shows the digital structures and their implementation using
physical structures such as computer, networks and storage
devices.

Figure 4: Digital Structures Modeling and Managing the
Physical Structures

. The physical and Cognitive structures are modeled as
digital information processing structures and are used to
establish sensors and actuators and manage the physical and
mental worlds. Complex mathematical problems using
digital information processing. Current enterprise business
process automation and the Internet based services have all
been made possible using both the digital genes and neurons.

Next, we discuss the limitations of current information
technologies and taking the cues from the embodied
cognition in biological systems, we propose infusion of
cognitive behavior in digital computing structures to
implement self-managing patterns that provide resiliency and
efficiency at scale. However, [16], the limitation of current
computing model is the inability of including the computing
infrastructure itself in the model of the computing structure
that models and manages the physical world.

In addition to the self-referential circularity of the Turing
computing model, the Church-Turing thesis boundaries are
challenged when rapid non-deterministic fluctuations drive
the demand for resource readjustment in real-time without
interrupting the service transactions in progress. This is more
pronounced in the case of distributed computing structures
that are composed of concurrent and asynchronous functions
contributing to a common goal as in the case of business
process automation tasks. The information processing
structure in this case utilizes software components executed
in hardware components from multiple infrastructure
providers with local management systems enabling the
deployment, operation and maintenance of the computation
workloads on their infrastructure in the form of a cloud or a
datacenter. The information processing system, in effect,
behaves as complex autonomous system and is prone to
emergent behavior in the face of strong fluctuations. For
example, when the system is subject to sudden fluctuations
in the demand for computing resources or sudden decrease
due to failure of some components, the system will
experience severe deviation from its mission unless the
resources are restored and the inconsistencies resulting from
the local components being in different states are resolved

Figure 5: Digital Computing Structures with Infused Cognition

Taking the cue from biological cognitive systems with
self-managing patterns, we assert that the digital information
processing structures must also become autonomous and
predictive by extending their cognitive apparatus to include
themselves and their behavior along with the information
processing tasks at hand. Figure 5 shows the infusion of
cognition into digital computing structures using the
structural machine approach described in this paper.

Cognitive apparatuses that sense, model and monitor,
reason and manage the digital computing structure allow
encoding the information to deploy, monitor and manage the
computing processes with local autonomy and global
coordination. True intelligence involves generalizations
from observations, creating models, deriving new insights
from the models through reasoning. In addition, human
intelligence also creates history and uses past behaviors and
experience in making the decision. The cognitive overlay we
propose in this paper provides a means to encode the

Triadic Automata October 19, 2020 P a g e | 13

information and the means to execute the processes required
to understand the goals of the computational structure,
available resources and the means to execute end to end
deployment, monitoring and management to maintain
homeostasis. In short, the new digital genome provides a
means to create an autopoietic machine. In the next section,
we discuss how the cognitive overlay allows the self-
managing properties of auto-failover, auto-scaling and live
migration of computing functions while maintaining local
autonomy and global consistency. We demonstrate the
implementation of such an autopoietic digital computing
structure in an edge cloud.

VII. STRUCTURAL MACHINE ORCHESTRATOR (SMO): AN

IMPLEMENTATION OF TRIADIC AUTOMATA WITH MANAGED

MICRO-SERVICES ORCHESTRATION AND WORKLOAD

MOBILITY

We describe here a proposed implementation of the
triadic structural machine which processes its infware,
software and hardware. We propose to use a cluster of edge
clouds at Golden Gate University to demonstrate the
autopoietic features by implementing the resiliency of a
workload as a distributed web application that provides a
specific service to many end points reached through the
Internet. Figure 6 shows the proposed autopoietic machine
configuration.

Figure 6: An Autopoietic Machine managing the resiliency of a
cluster of edge clouds offering Kubernetes orchestrated workload

(in the form of PoDs) connected to many endpoints through the
Internet. USOM infuses cognitive control overlay network
depicted by the hexagons. The data path connections are

shown connecting the PoD network.

A high-performance edge cluster [47] is used as the
hardware shown in figure 6. It provides low-latency
computing as an edge cloud using commodity off-the-shelf
computing hardware cluster connected at 100 GbE over
fiber. It eliminates the complexity of legacy networking
stacks by replacing merchant switch ASIC SDKs with a
streamlined user space driver layer and using only L3 routing
with leaf-spine topologies. In addition, it integrates low-
latency storage (SSDs with RDMA and NVMeoF). The
cluster management includes zero-touch provisioning,
monitoring and run-time management of Infrastructure as a
service (IaaS) to enable microservice or bare-metal
workloads. The software consists of Kubernetes
orchestration of a PoD network deployed in the IaaS which
executes both the middleware (PaaS components such as the
database and shared libraries/components) and specific
application workloads and data. The particular workload
shown here is a text spelling check application where various
users create text which is checked in real-time for spelling
accuracy.

The edge cluster proposed here is very typical of many
cloud systems that offer IaaS and PaaS configuration and
orchestration tools that are used to implement various
workloads. However, the distinguishing and differentiating
features of the triadic automata which infuse cognition into
workload deployment, configuration, monitoring and self-
management patterns are as follows:

1. A hierarchy of universal service orchestration
managers (USOM) infuse cognitive overlay
using the knowledge structures that model,
configure or discover, monitor and manage both
the physical and digital computing structures
downstream using various sensors and actuators.
The knowledge structures consist of the
downstream entities with various attributes with
internal relationships among them along with
behaviors that will be executed whenever a state
change occurs.

2. Each USOM is implemented as a structural
machine executing the downstream knowledge
structure evolution by synchronizing the model
with physical and digital structures being
managed using the sensors and actuators.

3. Changes in the state in downstream structure
invokes various behaviors that are encoded in
the USOM to detect the change event, reason
and determine appropriate action and act using
the sensors and actuators that manage the
downstream physical and digital structures.

VIII. COMPARISION WITH CURRENT STATE OF THE ART AND

CONCLUSION

Current state of the art that provides failover, scaling, and
reconfiguration of workloads is through the automation of
deploying, monitoring and reconfiguring either container-
based or virtual machine-based images along with associated
PoD and Virtual Machine networks. Workloads are locked
within the IaaS and PaaS components and the automation of
their management is performed by managing the IaaS and
PaaS configurations. Figure 7 shows the current state of the
art of workload deployment.

Figure 7: Current state of the art is a complex overlay of
multiple layers evolved over a long period of time and are
subject to the Church-Turing thesis boundaries in dealing

with fluctuations in resource demand or availability.

The shortcomings of current state of the art and a
potential new approach demonstrating workload mobility
across multiple IaaS and PaaS infrastructures in multiple
clouds without service disruption was published by Burgin
and Mikkilineni in 2018 [21] based on the work carried out
by one of the authors at C3DNA. In contrast to the current
approach, that implementation was based on an extension to
the Turing Machine by introducing a read/write instruction

Triadic Automata October 19, 2020 P a g e | 14

change based on an external cognizing oracle [49]. While
this approach worked, it required an intervention in the data
path and does not provide a generalized approach to infuse
cognition with its modeling, reasoning and changing the
evolution of the digital computing structure with systemic
view.

The approach using Triadic Automata described in this
paper provides a decoupling of workload orchestration from
the Iaas and PaaS infrastructure orchestration. The cognitive
layer models the IaaS and PaaS configurations, establishes
sensors and actuators to synchronize the model with its
physical structure and manages the evolution based on the
cognitive knowledge infused in the knowledge structures.
Figure 8 shows the new approach.

Figure 8: Workload orchestration using cognitive overlay
in the form of knowledge structures, cognizing agents and

structural machines.

The authors believe that the new mathematics and the
proposed implementation of Triadic Automata will pave the
way to bring a higher degree of efficiency, resiliency and
scalability to digital information processing structures. First
implementation of the Triadic Automata will be described in
detail in a following paper by the implementors using the
edge clouds described above.

We conclude this paper with the observation from von
Neumann [50]. “It is very likely that on the basis of
philosophy that every error has to be caught, explained, and
corrected, a system of the complexity of the living organism
would not last for a millisecond. Such a system is so
integrated that it can operate across errors."

The cognitive layer infused in the Triadic Automata
provides the mechanism for the system to operate across
errors in the face of nondeterministic fluctuations.

ACKNOWLEDGMENT

One of the authors Rao Mikkilineni acknowledges many
of the valuable discussions with Prof. Gordana Dodig-
Crnkovic, late Peter Wegner and Chip Ventors, who have
contributed to his understanding of complex adaptive
systems and their relevance to information technologies and
business process automation.

REFERENCES

[1] Maturana, Humberto R./Varela, Francisco J. (1980): Autopoiesis and
Cognition. The Realization of the Living. Dordrecht: Reidel, p. 13.

[2] Yang, A. & Shan, Y. (eds) (2008) Intelligent Complex Adaptive
Systems, IGI Publishing,Hershey, PA.

[3] Arthur, W.B., Durlauf, S. & Lane, D. (eds) (1997) The Economy as
an Evolving Complex System. Addison-Wesley, Reading, MA.

[4] Dooley, K., 1997. A complex adaptive systems model of
organizational change. Non-linear Dynamics, Psychology and the
Life Sciences 1, 69–97.

[5] Choi, Thomas Y., Kevin J Dooley, and Manus Rungtusanatham
(2001), "Supply Networks and Complex Adaptive Sysems: Control
Versus Emergence, "Journal of Operations Management, Vol. 19, No.
3, pp. 351-66

[6] Miller, J., & Page, S. (2007). Complex adaptive Systems: An
introduction to computational models of social life, Princeton, NJ:
Princeton University Press.

[7] Mitchell, M. Complexity : a Guided Tour. Oxford: Oxford university
press, 2009.

[8] Beinhocker, E. D. (2006). The origins of wealth: evolution,
complexity, and the radical remaking of economics. Boston: Harvard
Business School Press.

[9] Beinhocker, E. D. (2010). Evolution as computation: Implications for
economic theory and ontology. Santa Fe Working Paper 2010-12037.
Santa Fe: Santa Fe Institute.

[10] Waldrop, W. Mitchell 1992 Complexity: The Emerging Science at the
Edge of Order and Chaos. New York: Touchstone.

[11] Burgin, M. (2011). Information in the structure of the world,
International Journal “Information Theories and Applications”, Vol.
18, Number 1.

[12] Prigogine, I. Time, Structure and Fluctuations. Available online:
https://www.nobelprize.org/uploads/2018/06/prigogine-lecture.pdf
(accessed on 16 June 2020)

[13] Prigogine, I. and Stengers, I. Order out of Chaos, Bantam Books,
Toronto/New York/London,1984

[14] Burgin, Mark. 2017. "The General Theory of Information as a
Unifying Factor for Information Studies: The Noble Eight-Fold Path."
Proceedings 1, no. 3: 164.

[15] Frans de Waal, (2016) “Are We Smart Enough to Know How Smart
Animals are?” W. W. Norton, New York.

[16] P. Cockshott, L. M. MacKenzie and G. Michaelson, “Computation
and Its Limits,” Oxford University Press, Oxford, 2012.

[17] R. Mikkilineni, "Going beyond Computation and Its Limits: Injecting
Cognition into Computing," Applied Mathematics, Vol. 3 No. 11A,
2012, pp. 1826-1835. doi: 10.4236/am.2012.331248.

[18] Burgin, M.; Adamatzky, A. Structural machines and slime mold
computation. Int. J. Gen. Syst. 2017, 45, 201–224. [CrossRef] 5.

[19] Burgin, M.; Adamatzky, A. Structural Machines as a Mathematical
Model of Biological and Chemical Computers. Theory Appl. Math.
Comput. Sci. 2017, 7, 1–30.

[20] Burgin, M. 2016. Theory of Knowledge: Structures and Processes;
World Scientific Books: Singapore.

[21] Burgin, M. and Mikkilineni, R. (2018) Cloud computing based on
agent technology, super -recursive algorithms, and DNA, Int. J. Grid
and Utility Computing, v. 9, No. 2, pp.193–204.

[22] Rao Mikkilineni, Giovanni Morana and Mark Burgin, "Oracles in
Software Networks: A New Scientific and Technological Approach to
Designing Self-Managing Distributed Computing Processes",
Proceedings of the 2015 European Conference on Software
Architecture Workshops (ECSAW '15), 2015.

[23] Burgin, M. (2020) Information Processing by Structural Machines, in
Theoretical Information Studies: Information in the World, pp. 323–
371

[24] Turing, A. (1939) Systems of Logic Based on Ordinals, Proc. Lond.
Math. Soc., Ser.2, v. 45, pp. 161-228

[25] Shettleworth, S. J. (2001). Animal cognition and animal behaviour.
Animal Behaviour 61: 277–286McFarland, D., Bosser, T., 1993.
Intelligent Behavior in Animals and Robots. MIT Press, Cambridge,
MA.

[26] von Neumann, J. Theory of Self-Reproducing Automata; University
of Illinois Lectures on the Theory and Organization of Complicated
Automata, Edited and completed by Arthur W. Burks; University of
Illinois Press: Urbana, IL, USA, 1949.

[27] Burgin, M. Superrecursive Algorithms, Springer-Verlag, New York,
2005

[28] Haykin, S. Neural Networks: A Comprehensive Foundation, New
York, Macmillan, 1994.

Triadic Automata October 19, 2020 P a g e | 15

[29] Kolmogorov, A.N. (1953) On the Concept of Algorithm, Russian
Mathematical Surveys, v. 8, No. 4, pp. 175-176

[30] Shönhage, A. Storage Modification Machines, SIAM Journal on
Computing 1980, v. 9, pp. 490-508

[31] Kleinberg, J. and Tardos, E. Algorithm Design, Pearson - Addison-
Wesley, 2006

[32] Goodrich, M.T. and Tamassia, R. Algorithm Design and
Applications, Willey, Hoboken, NJ, 2015

[33] Burgin M. Nonlinear Phenomena in Spaces of Algorithms,
International Journal of Computer Mathematics, 2003a, v. 80, No.
12, pp. 1449-1476

[34] Burgin, M. Structural Reality, Nova Science Publishers, New York,
2012

[35] Robinson, A. Introduction to Model Theory and Metamathematics of
Algebra, North-Holland, Amsterdam/New York, 1963

[36] Yaglom, I.M. (1980) Mathematical Structures and Mathematical
Modeling, Sov. Radio, Moscow (in Russian)

[37] Tegmark, M. (2008) The Mathematical Universe, Foundations of
Physics , v. 38, No. 2, pp. 101–150

[38] Bourbaki, N. Structures, Hermann, Paris, 1957

[39] Bourbaki, N. Theorie des Ensembles, Hermann, Paris, 1960

[40] C. Berge, Balanced hypergraphs and some applications to graph
theory, in: J.N. Srivastava, ed., A Survey of Combinatorial Theory
(North-Holland, Amsterdam, 1973) 15-23.

[41] Petri, C.A. 1962. Kommunikation mit Automaten. English
Translation, 1966: Communication with Automata, Technical Report
RADC-TR-65-377, Rome Air Dev. Center, New York.

[42] Burgin, M. and Eberbach, E. (2009) On foundations of evolutionary
computation: an evolutionary automata approach, in Hongwei Mo
(Ed.), Handbook of Research on Artificial Immune Systems and
Natural Computing: Applying Complex Adaptive Technologies, IGI
Global, Hershey, Pennsylvania, pp. 342-360.

[43] Burgin, M. and Bratalskii, E. (1986) The principle of asymptotic
uniformity in complex system modelling, in Operation Research
and Automated Control Systems, Kiev: Institute of Cybernetics, pp.
115-122 [in Russian]

[44] Burgin, M. and Debnath, N. Reusability as Design of Second-Level
Algorithms, in Proceedings of the ISCA 25th International Conference
“Computers and their Applications” (CATA-2010), ISCA, Honolulu,
Hawaii, 2010, pp. 147-152

[45] Burgin, M. and Gupta, B. Second-level Algorithms, Superrecursivity,
and Recovery Problem in Distributed Systems, Theory of Computing
Systems, v. 50, No. 4, 2012, pp. 694-705

[46] Burgin, M., Eberbach, E., & Mikkilineni, R. (2019). Cloud
Computing and Cloud Automata as A New Paradigm for
Computation. Computer Reviews Journal, 4, 113-134. Retrieved from
https://purkh.com/index.php/tocomp/article/view/459.

[47] R. Mikkilineni and G. Morana, "Post-Turing Computing, Hierarchical
Named Networks and a New Class of Edge Computing," 2019 IEEE
28th International Conference on Enabling Technologies:
Infrastructure for Collaborative Enterprises (WETICE), Napoli, Italy,
2019, pp. 82-87, doi: 10.1109/WETICE.2019.00024.

[48] Mikkilineni, R.; Burgin, M. Structural Machines as Unconventional
Knowledge Processors. Proceedings 2020, 47, 26.

[49] Mikkilineni, R.; Comparini, A.; Morana, G. The Turing o-machine
and the DIME Network Architecture: Injecting the Architectural
Resiliency into Distributed Computing. Turing100, The Alan Turing
Centenary, EasyChair Proceedings in Computing. 2012. Available
online: https://easychair.org/publications/paper/gBD (accessed on 12
May 2020).

[50] W. Aspray and A. Burks, “Papers of John von Neumann on
Computing and Computer Theory,” MIT Press, Cambridge, 1989.

