
EasyChair Preprint
№ 6563

Self-Extensionality of Finitely-Valued Logics:
Advances

Alexej Pynko

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

October 25, 2021



SELF-EXTENSIONALITY OF FINITELY-VALUED LOGICS:
ADVANCES

ALEXEJ P. PYNKO

Abstract. We start from proving general characterizations of both self-ex-
tensionality and structural completeness of sentential logics as well as ad-

missibility of rules in them, implying the decidability of these problems for

(not necessarily uniform) finitely-valued logics. And what is more, in case
of logics defined by finitely many either implicative or both disjunctive and

conjunctive finite hereditarily simple (viz., having no non-simple submatrix)

matrices, we then derive a characterization of self-extensionality yielding a
quite effective algebraic criterion of checking their self-extensionality via ana-

lyzing homomorphisms between (viz., in the uniform case, endomorphisms of)

the underlying algebras of their defining matrices and equally being a quite
useful heuristic tool, manual applications of which are demonstrated within

the framework of  Lukasiewicz’ finitely-valued logics, unform three-valued log-

ics with subclassical negation (U3VLSN), uniform four-valued expansions of
Belnap’s “useful” four-valued logic as well as their (not necessarily uniform)

no-more-than-four-valued extensions, [uniform inferentially consistent proper
{in particular, no-more-than-three-valued} non-]classical ones proving to be
[non-]self-extensional. Likewise, within the framework of classical (not nec-

essarily functionally complete) logics and U3VLSN as well as uniform four-
valued expansions of Belnap’s logic, we obtain quite effective algebraic criteria

of structural completeness.

1. Introduction

Perhaps, the principal value of universal logical investigations consists in discov-
ering uniform points behind particular results originally proved ad hoc. This thesis
is the main paradigm of the present universal logical study.

Recall that a sentential logic (cf., e.g., [7]) is said to be self-extensional, when-
ever its inter-derivability relation is a congruence of the formula algebra (i.e. is
preserved under subformula replacement). This feature is typical of both two-
valued (in particular, classical)1 and super-intuitionistic logics as well as some in-
teresting many-valued ones (like Belnap’s “useful” four-valued one [2]). Here, we
explore self-extensionality laying a special emphasis onto the general framework
of finitely-valued logics and the decidability issue with reducing the complexity of
effective procedures of verifying self-extensionality, when restricting our consider-
ation to finitely-valued logics of special kind — namely, those defined by finitely
many either implicative or both conjunctive and disjunctive (and so having ei-
ther classical implication or both classical conjunction and classical disjunction in
Tarski’s conventional sense) hereditarily simple (viz., having no non-simple subma-
trix; i.e., having an equality determinant in a sense extending [18]) finite matrices.

2020 Mathematics Subject Classification. 03B20, 03B22, 03B50, 03B53, 03G10.
Key words and phrases. logic; matrix; model; congruence; semi-lattice; distributive lattice.
1Properly speaking, within the context of General Logic, the notorious classical logic arises

just as the clone of miscellaneous functionally complete two-valued logics with classical negation.
Here, we follow this natural paradigm, equally adopted in [23] even without the stipulation of
functional completeness, calling functionally complete classical logics genuinely so, that naturally

gives rise to the conception of subclassical logic/negation.
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We then exemplify our universal elaboration by discussing four (perhaps, most
representative) generic classes of logics of the kind involved:  Lukasiewicz’ finitely-
valued logics [8]); unform three-valued logics with subclassical negation (U3VLSN);
uniform four-valued expansions of Belnap’s “useful” four-valued logic [2] as well as
their (not necessarily uniform) no-more-than-four-valued extensions, [uniform infer-
entially consistent proper {in particular, no-more-than-three-valued} non-]classical
ones proving to be [non-]self-extensional.

Likewise, a sentential calculus/logic is said to be structurally complete, whenever
every rule, being admissible in it (i.e., retaining its theorems [viz., axioms deriv-
able/satisfied in it]), is derivable/satisfied in it. Though the problem of verifying
structural completeness of (not necessarily uniform) finitely-valued logics is decid-
able, its computational complexity is normally too large to apply it expansively.
On the other hand, within the framework of classical (not necessarily functionally
complete) logics and U3VLSN as well as uniform four-valued expansions of Belnap’s
logic, we obtain quite effective algebraic criteria of structural completeness.

The rest of the paper is as follows. The exposition of the material of the paper
is entirely self-contained (of course, modulo very basic issues concerning Set and
Lattice Theory, Universal Algebra and Logic to be found, if necessary, in standard
mathematical handbooks like [1, 4, 10, 11]). Section 2 is a concise summary of
particular basic issues underlying the paper, most of which, though having become
a part of algebraic and logical folklore, are still recalled just for the exposition
to be properly self-contained. Likewise, in Section 3, we then summarize certain
advanced generic issues concerning simple matrices, equality determinants, intrinsic
varieties as well as both disjunctivity and implicativity. Section 4 is a collection
of main general results of the paper concerning self-extensionality that are then
exemplified in Section 6 (aside from  Lukasiewicz’ finitely-valued logics, whose non-
self-extensionality has actually been due [19], as we briefly discuss within Example
4.17 — this equally concerns certain particular instances discussed in Section 6 and
summarized in Example 4.18). Likewise, in Section 5 we discuss the decidability
of the issue of structural completeness and its computational complexity, advanced
studying it within the framework of classical (not necessarily functionally complete)
logics and U3VLSN as well as uniform four-valued expansions of Belnap’s logic
being presented in Section 6. Finally, Section 7 is a brief summary of principal
contributions of the paper.

2. Basic issues

2.1. Set-theoretical background. We follow the standard set-theoretical con-
vention (cf. [11]), according to which natural numbers (including 0) are treated as
finite ordinals (viz., sets of lesser natural numbers), the ordinal of all them being de-
noted by ω. In this way, when dealing with n-tuples to be viewed as either [comma
separated] sequences of length n or functions with domain n, where n ∈ ω, πi,
where i ∈ n, denotes the i-th projection operator under enumeration started from
rather 0 than 1. (In particular, when n = 2, π0/1 denotes the left/right projection
operator, respectively.) The proper class of all ordinals is denoted by ∞. Also,
functions are viewed as binary relations (in particular, n-ary operations on a set
A, where n ∈ ω, are treated as (n + 1)-ary relations on A), while singletons (viz.,
one-element sets) are identified with their unique elements, unless any confusion
is possible. A function/mapping f /“to a set A” is said to be singular/surjective,
provided (img f) is one-element/“equal to A”, respectively.

Given a set S, let ∆S , {〈a, a〉 | a ∈ S}, relations of such a kind being referred
to as diagonal, functions with diagonal kernel being said to be injective, “bijective”
standing for “both injective and surjective”, and ℘[K](S) the set of all subsets of
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S [of cardinality ∈ K ⊆ ∞], respectively. Then, given any equivalence relation
θ on S, viz., a transitive (in the sense that (θ ◦ θ) ⊆ θ) symmetric (in the sense
that θ−1 ⊆ θ) reflexive binary relation on S (in the sense that ∆S ⊆ θ ⊆ S2),
νθ denotes the function with domain S defined by νθ(a) , θ[{a}], for all a ∈ S,
while (T/θ) , νθ[T ], for every T ⊆ S. Next, any S-tuple (viz., a function with
domain S) is often written in the sequence form t̄, its s-th component (viz., the
value under argument s), where s ∈ S, being written as ts, in that case. Given
two more sets A and B, any relation R ⊆ (A × B) (in particular, a mapping
R : A→ B) determines the equally-denoted relation R ⊆ (AS×BS) (resp., mapping
R : AS → BS) point-wise. Furthermore, any f : Sn → S, where n ∈ ω, is
said to be R-monotonic, where R ⊆ S2, provided, for all ā ∈ Rn, it holds that
〈f(ā ◦ π0), f(ā ◦ π1)〉 ∈ R. Then, Tr(R) , {〈π0(a0), π1(am−1)〉 | m ∈ (ω \ 1), ā ∈
Rm,∀i ∈ (m − 1) : π1(ai) = π0(ai+1)} is the least transitive binary relation on S
including R, called the transitive closure of R. Finally, given any T ⊆ S, we have
the characteristic function/mapping χT

S , ((T × {1})∪ ((S \ T )× {0})) ∈ 2S of T
in S.

Let A be a set. Then, a U ⊆ ℘(A) is said to be upward-directed, provided, for
every S ∈ ℘ω(U), there is some T ∈ U such that (

⋃
S) ⊆ T , in which case U 6= ∅,

when taking S = ∅. Further, a subset of ℘(A) is said to be inductive, whenever it
is closed under unions of upward-directed subsets. Further, a closure system over
A is any C ⊆ ℘(A) such that, for every S ⊆ C, it holds that (A∩

⋂
S) ∈ C. In that

case, any B ⊆ C is called a (closure) basis of C, provided C = {A ∩
⋂
S|S ⊆ B}.

Furthermore, an operator over A is any unary operation O on ℘(A). This is said
to be monotonic, whenever it is (⊆ ∩ ℘(A)2)-monotonic. Likewise, it is said to be
idempotent |transitive, provided, for all X ⊆ A, it holds that (X|O(O(X))) ⊆ O(X),
respectively. Finally, it is said to be inductive/finitary, provided, for any upward-
directed U ⊆ ℘(A), it holds that O(

⋃
U) ⊆ (

⋃
O[U ]). Then, a closure operator

over A is any monotonic idempotent transitive operator over A, in which case
imgC is a[n inductive] closure system over A [iff C is inductive], determining C
uniquely, as, for every basis B of imgC (in particular, imgC itself) and each X ⊆ A,
C(X) = (A∩

⋂
{Y ∈ B|X ⊆ Y }), C and imgC being said to be dual to one another.

2.2. Algebraic background. Unless otherwise specified, abstract algebras are de-
noted by Fraktur letters [possibly, with indices], their carriers (viz., underlying sets)
being denoted by corresponding Italic letters [with same indices, if any].

A (propositional/sentential) language|signature is any algebraic (viz., functional)
signature Σ (to be dealt with throughout the paper by default) constituted by
function (viz., operation) symbols of finite arity to be treated as (propositional/se-
ntential) [primary] connectives, the set of all nullary ones being denoted by Σ�0.

Given a Σ-algebra A, the set Con(A) of all congruences of A (viz., equivalence
relations θ on A such that primary operations of A — i.e., those of the form ςA,
where ς ∈ Σ — are θ-monotonic) is an inductive closure system over A2, the dual
closure operator (of congruence generation) being denoted by CgA. Then, a [partial]
endomorphism of A is any homomorphism from [a subalgebra of] A to A. Next,
given any function f with (dom f) = A and (ker f) ∈ Con(A), we have the Σ-
algebra f [A] with carrier f [A] and primary operations ςf [A] , f [ςA], where ς ∈ Σ.
In particular, given any θ ∈ Con(A), (A/θ) , νθ[A] is known as the quotient of A by
θ. Finally, given a class K of Σ-algebras, set hom(A,K) , (

⋃
{hom(A,B) | B ∈ K}),

in which case ker[hom(A,K)] ⊆ Con(A), so (A2 ∩
⋂

ker[hom(A,K)]) ∈ Con(A).
Given any rank, viz., α ⊆ ω, put x̄α , 〈xi〉i∈α and Varα , (img x̄α), elements of

which being viewed as (propositional/sentential) variables of rank α. (In general,
any mention of rank α within any context is normally omitted, whenever α = ω.)
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Then, providing either α 6= ∅ or Σ has a nullary connective, in which case α is
called a Σ-rank, we have the absolutely-free Σ-algebra Fmα

Σ freely-generated by the
set Varα, “its endomorphisms”/“elements of its carrier Fmα

Σ (viz., Σ-terms of rank
α)” being called (propositional |sentential) Σ-substitutions/-formulas of {Σ-}rank
α. In this way, inverse Σ-substitutions of {Σ-}rank α are functions of the form
{〈X,σ−1[X]〉 | X ⊆ Fmα

Σ}, where σ is an endomorphism of Fmα
Σ. Any homomor-

phism h from Fmα
Σ to a Σ-algebra A(= Fmα

Σ) is uniquely determined by {and so
identified with} h′ = (h�(Varα(\V ))) (where V ⊆ Varα such that h�V is diago-
nal) as well as often written in the standard assignment (resp., substitution) form
[v/h(v)]v∈(dom h′), ϕA〈[〉h〈]〉, where ϕ ∈ Fmα

Σ, standing for h(ϕ) (the algebra super-
script being normally omitted just like in denoting primary operations of A). Then,
given any n ∈ ω, a secondary n-ary connective of Σ is any Σ-formula ϕ of Σ-rank
ρΣ(n) , (n + (1 − min(1,max(n, |Σ�0|)))), in which case, given any Σ-algebra A,
an f : An → A is said to be secondary/“(term-wise) definable {by ϕ}” of/in A,
provided, for all ā ∈ AρΣ(n), it holds that f(ā�n) = ϕA[xi/ai]i∈ρΣ(n). For the sake
of formal unification, any primary n-ary connective ς ∈ Σ is identified with the
secondary one ς(x̄n). A θ ∈ Con(Fmα

Σ) is said to be fully-invariant, if, for every
Σ-substitution σ of rank α, it holds that σ[θ] ⊆ θ. Recall that, for any [surjective]
h ∈ hom(A,B), where A and B are Σ-algebras, it holds that:

(2.1) [hom(Fmα
Σ,B) ⊆]{h ◦ g | g ∈ hom(Fmα

Σ,A)}) ⊆ hom(Fmα
Σ,B).

Any 〈φ, ψ〉 ∈ Eqα
Σ , (Fmα

Σ)2 is referred to as a Σ-equation/-indentity of {Σ-
}rank α and normally written in the standard equational form φ ≈ ψ. In this
way, given any h ∈ hom(Fmα

Σ,A), kerh is the set of all Σ-identities of rank
α true/satisfied in A under h. Likewise, given a class K of Σ-algebras, θα

K ,
(Eqα

Σ ∩
⋂

ker[hom(Fmα
Σ,K)]) ∈ Con(Fmα

Σ), being fully invariant, in view of (2.1),
is the set of all all Σ-identities of rank α true/satisfied in K, in which case we
set Fα

K , (Fmα
Σ/θ

α
K). (In case α as well as both K and all elements of it are

finite, the class I = Iα
K , {〈A, h〉 | A ∈ K, h ∈ hom(Fmα

Σ,A)} is a finite set
— more precisely, |I| =

∑
A∈K |A|α, in which case, putting, for each i ∈ I,

Ai , π0(i) ∈ K, hi , π1(i) ∈ hom(Fmα
Σ,Ai) and Bi , (Ai�(img hi)), we have

hom(Fmα
Σ,

∏
i∈I Bi) 3 g : Fmα

Σ → (
∏

i∈I Bi), ϕ 7→ 〈hi(ϕ)〉i∈I with (ker g) = θ , θα
K,

and so, by the Homomorphism Theorem, e , (ν−1
θ ◦ g) is an isomorphism from Fα

K

onto the subdirect product (
∏

i∈I Bi)�(img g) of 〈Bi〉i∈I . In this way, the former
is finite, for the latter is so — more precisely, |Fα

K | 6 (max{|A| | A ∈ K}|I|.)
The class of all Σ-algebras satisfying every element of an E ⊆ Eqω

Σ is called the
variety axiomatized by E. Then, the variety V(K) axiomatized by θω

K is the least
variety including K and is said to be generated by K, in which case θα

V(K) = θα
K, and

so Fα
V(K) = Fα

K.
Given a fully invariant θ ∈ Con(Fmω

Σ), by (2.1), Fmω
Σ/θ belongs to the variety V

axiomatized by θ, in which case any Σ-identity satisfied in V belongs to θ, and so
θω
V = θ. In particular, given a variety V of Σ-algebras, we have Fα

V ∈ V.
Finally, let Var : Fmω

Σ → ℘ω(Varω) be the mapping assigning the set of all
actually occurring variables.

2.2.1. Lattice-theoretic background.
2.2.1.1. Semi-lattices. Let � be a (possibly, secondary) binary connective of Σ.

A Σ-algebra A is called a �-semi-lattice, provided it satisfies semi-lattice identities
for � (viz., idempotence (x0 � x0) ≈ x0, commutativity (x0 � x1) ≈ (x1 � x0) and
associativity (x0�(x1�x2)) ≈ ((x0�x1)�x2) ones), in which case we have the partial
ordering ≤A

� on A, given by (a ≤A
� b)

def⇐⇒ (a = (a �A b)), for all a, b ∈ A. Then, in
case the [dual] poset 〈A, (≤A

� )[−1]〉 has the least element (viz., lower bound), this is
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called the [dual] 〈�−〉bound of A and denoted by [δ]βA
� , while A is referred to as a

�-semi-lattice with [dual] bound {a, whenever a = [δ]βA
� }.

Lemma 2.1. Let A and B be �-semi-lattices with bound and h ∈ hom(A,B).
Suppose h[A] = B. Then, h(βA

� ) = βB
� .

Proof. There is some a ∈ A such that h(a) = βB
� , in which case (a �A βA

� ) = βA
� , so

h(βA
� ) = (h(a) �B h(βA

� )) = (βB
� �B h(βA

� )) = βB
� , as required. �

2.2.1.2. Lattices. Let Z and Y be (possibly, secondary) binary connectives of Σ.
A Σ-algebra A is called a [distributive] (Z,Y)-lattice, provided it satisfies [dis-

tributive] lattice identities for Z and Y (viz., semi-lattice identities for both Z and
Y as well as absorption (x0 �0 (x0 �1 x1)) ≈ x0 [and distributivity (x0 �0 (x1 �1 x2) ≈
((x0 �0 x1) �1 (x0 �0 x2))] identities for Z and Y, for all bijective �̄ : 2 → {Z,Y}),
in which case ≤A

Z and ≤A
Y are inverse/dual to one another, and so, in case A is

a Y-semi-lattice with bound (in particular, when A is finite), βA
Y is the dual Z-

bound of A (viz., the greatest element of the poset 〈A,≤A
Z 〉). Then, in case A is a

{distributive} (Z,Y)-lattice, it is said to be that with zero|unit (a), whenever it is
a (Z|Y)-semi-lattice with bound (a).
2.2.1.2.1. Bounded lattices. Let Σ〈∅〉{+}[01] , (∅{∪{∧,∨}}[∪{⊥,>}]) be the {[bo-
unded] lattice} signature {with binary ∧ (conjunction) and ∨ (disjunction)} [{as
well as} with nullary ⊥ and > (falsehood/zero and truth/unit constants, respec-
tively)]. Then, a Σ+[01]-algebra A is called a [bounded] (distributive) lattice, when-
ever it is a (distributive) (∧,∨)-lattice [with zero ⊥A and unit >A] {cf., e.g., [1]}.
Given any signature Σ′ ⊇ Σ+ and any φ, ψ ∈ Fmω

Σ′ , φ / ψ stands for φ ≈ (φ ∧ ψ).
Likewise, given any Σ′-algebra A with Σ+-reduct being a lattice, ≤A stands for ≤A

∧ .
Then, given any n ∈ (ω \ 2), Dn[01] denotes the [bounded] distributive lattice with
carrier (n÷ (n− 1)) , { m

n−1 | m ∈ n} and ≤Dn[01] , (6 ∩D2
n[01]).

2.3. Logical background.

2.3.1. Propositional calculi and logics. A (propositional‖sentential) [finitary |una-
ry |axiomatic] Σ-rule/-calculus {of 〈Σ−〉-rank α} is any element/subset of the set
℘[ω|(2\1)|1](Fmω{∩α}

Σ ) × Fmω{∩α}
Σ , any Σ-rule 〈Γ, ϕ〉 being normally written in the

standard sequent form Γ ` ϕ, “the left”/“any element of the right” component|side
of it being referred to as the/a conclusion/premise of it. Then, we set σ(Γ `
ϕ) , (σ[Γ] ` σ(ϕ)), where σ is a Σ-substitution. Axiomatic Σ-rules are called
(propositional/sentential) Σ-axioms and are identified with their conclusions.

A (propositional/sentential) Σ-logic (cf., e.g., [7]) is any closure operator C over
Fmω

Σ that is structural in the sense that σ[C(X)] ⊆ C(σ[X]), for all X ⊆ Fmω
Σ

and all σ ∈ hom(Fmω
Σ,Fmω

Σ), that is, imgC is closed under inverse Σ-substitutions.
Then, we have the equivalence relation ≡α

C , {〈φ, ψ〉 ∈ Eqα
Σ | C(φ) = C(ψ)} on

Fmα
Σ, where α is a Σ-rank, called the inter-derivablity relation of C, whenever

α = ω. A congruence of C is any θ ∈ Con(Fmω
Σ) such that θ ⊆ ≡ω

C , the set of
all them being denoted by Con(C). Then, given any θ, ϑ ∈ Con(C), Tr(θ ∪ ϑ),
being well-known to be a congruence of Fmω

Σ, is then that of C, for θω
C , being an

equivalence relation, is transitive. In particular, any maximal congruence of C (that
exists, by Zorn Lemma, because Con(C) 3 ∆Fmω

Σ
is both non-empty and inductive,

for Con(Fmω
Σ) is so) is the greatest one to be denoted by a(C). Then, C is said to

be self-extensional, whenever ≡ω
C ∈ Con(Fmω

Σ). that is, a(C) = ≡ω
C .

Definition 2.2 (cf. [16]). Given a Σ-logic C, the variety IV(C) axiomatized by
a(C) is called the intrinsic variety of C. �
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Next, a Σ-rule Γ → Φ is said to be satisfied/derivable in a Σ-logic C, provided
Φ ∈ C(Γ), Σ-axioms satisfied in C being referred to as theorems of C.

Definition 2.3. A Σ-logic C ′ is said to be a (proper) [K-]extension of a Σ-logic
C [where K ⊆ ∞], whenever (C ′ 6= C and) C(X) ⊆ C ′(X), for all X ∈ ℘[K](Fmω

Σ),
C being said to be a (proper) [K-]sublogic of C ′, in which case C ′ is said to be
axiomatized by a Σ-calculus C relatively to C, whenever C ′ is the least (w.r.t. the
extension partial ordering) extension of C satisfying every rule in C, while C ′ is said
to be ( {C-relatively} maximally)/ [inferentially] consistent/inconsistent, provided
x1 6∈ / ∈ C(∅[∪{x0}]), (and every [inferentially] consistent extension of C ′{∩C}
is a sublogic of C ′)/“in which case ≡ω

C = Eqω
Σ ∈ Con(Fmω

Σ), and so C is self-
extensional“, the only inconsistent Σ-logic being denoted by ICΣ. Likewise, C ′ and
C are said to be axiomatically-equivalent, whenever C ′(∅) = C(∅). �

Further, a Σ-rule R is said to be admissible in a Σ-logic C, provided the exten-
sion of C relatively axiomatized by R is axiomatically-equivalent to C. Clearly, R

is admissible in C, whenever it is derivable in C. If the converse holds in general,
that is, every Σ-rule is derivable in C, whenever it is admissible in C, then C is said
to be structurally/deductively/inferentially complete|maximal. Clearly, C is struc-
turally complete iff it has no proper axiomatically-equivalent extension. In general,
(
⋂

C′∈S(imgC ′)) 3 C(∅), where S 3 C is the set of all Σ-logics axiomatically-
equivalent to C, is a closure system over Fmω

Σ closed under inverse Σ-substitutions,
in which case the dual closure operator over Fmω

Σ is the greatest axiomatically-
equivalent (and so structurally complete) extension of C, called the structural com-
pletion of C.

Next, C is said to be (strongly)/weakly {classically} Z-conjunctive, provided
C({x0, x1}) = / ⊆ C(x0 Z x1). Likewise, C is said to be (strongly)/weakly {classi-
cally} Y-disjunctive, if C(X ∪ {φ Y ψ}) = / ⊆ (C(X ∪ {φ}) ∩ C(X ∪ {ψ})), where
(X ∪ {φ, ψ}) ⊆ Fmω

Σ, “in which case”/“that is, the first two — viz., (2.2) —- of”
the following four rules:

xi ` (x0 Y x1), where i ∈ 2,(2.2)
(x0 Y x1) ` (x1 Y x0),(2.3)
(x0 Y x0) ` x0(2.4)

are satisfied in C. Further, C is said to have/satisfy Deduction Theorem (DT) with
respect to a (possibly, secondary) binary connective A of Σ (fixed throughout the
paper by default), provided, for all φ ∈ X ⊆ Fmω

Σ and all ψ ∈ C(X), it holds that
(φ A ψ) ∈ C(X \ {φ}), in which case the following axioms:

x0 A x0,(2.5)

x0 A (x1 A x0)(2.6)

are satisfied in C. Then, C is said to be weakly {classically} A-implicative, if it has
DT w.r.t. A as well as satisfies the Modus Ponens rule:

(2.7) {x0, x0 A x1} ` x1,

in which case the following axiom:

(2.8) (x0 ]A (x0 A x1)),

where (x0 ]A x1) , ((x0 A x1) A x1) is the intrinsic disjunction of (implication)
A, is satisfied in C. Likewise, C is said to be (strongly) {classically} A-implicative,
whenever it is weakly so and satisfies the Peirce Law axiom (cf. [12]):

(2.9) ((x0 A x1) ]A x0).
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Furthermore, C is said to be [maximally] o-paraconsistent [cf. [15] as well as the
reference [Pyn95 b] therein], where o is a (possibly, secondary) unary connective of
Σ, tacitly fixed throughout the paper by default, provided it does not satisfy the
Ex Contradictione Quodlibet rule:

(2.10) {x0, ox0} ` x1

[and has no proper o-paraconsistent extension]. Likewise, C is said to be {maximal-
ly} [inferentially] (Y, o)-paracomplete, whenever it does not satisfy the [inferential
version of] the Excluded Middle Law axiom

(2.11) [x1 `](x0 Y ox0)

{and has no proper [inferentially] (Y, o)-paracomplete extension}. Given any Σ′ ⊆
Σ, the Σ′-logic C ′, defined by C ′(X) , (Fmω

Σ′ ∩C(X)), for all X ⊆ Fmω
Σ′ , is called

the Σ′-fragment of C, C being referred to as a ( Σ-)expansion of C ′, in which case
≡ω

C′ = (≡ω
C ∩ Eqω

Σ′), and so C ′ is self-extensional, whenever C is so. Finally, C
is said to be theorem-less/purely-inferential, whenever it has no theorem, that is,
∅ ∈ (imgC). In general, (imgC)∪ {∅} is a closure system over Fmω

Σ closed under
inverse Σ-substitutions, for imgC is so, in which case the dual closure operator
C+0 over Fmω

Σ is the greatest purely-inferential sublogic of C, called the purely-
inferential version of C and being an (∞ \ 1)-extension of C (cf. Definition 2.3),
so

(2.12) ≡ω
C = ≡ω

C+0

(in particular, C+0 is self-extensional iff C is so).

Remark 2.4. Let C be a Σ-logic and φ ∈ C(∅), in which case, by the structurality
of C, ψ , (φ[xi/x0]i∈ω) ∈ (Fm1

Σ ∩C(∅)), and so C is weakly ψ-disjunctive. �

2.3.2. Logical matrices. A (logical) Σ-matrix (cf., e.g., [7]) is any pair of the form
A = 〈A, DA〉, where A is a Σ-algebra, called the underlying algebra of A, while
A is called the carrier/“underlying set” of A, whereas DA ⊆ A is called the truth
predicate of A, elements of A[∩DA] being referred to as [distinguished] values of
A. (In general, matrices are denoted by Calligraphic letters [possibly, with indices],
their underlying algebras being denoted by corresponding capital Fraktur letters
[with same indices, if any].) This is said to be [no-more/less-than-]n-valued, where
n ∈ (ω \ 1), provided |A| = [6/>]n. Next, it is said to be [in]consistent, whenever
DA 6= [=]A, respectively. Likewise, it is is said to be truth[-non]-empty, whenever
DA = [6=]∅. Further, it is said to be truth-/false-singular, if |((DA/(A \DA))| ∈ 2.
Finally, A is said to be finite[ly generated]/“generated by B ⊆ A”, if A is so.

Given any Σ-rank α and any class M of Σ-matrices, we have the closure operator
Cnα

M over Fmα
Σ dual to the closure system with basis Bα

M , {h−1[DA] | A ∈ M, h ∈
hom(Fmα

Σ,A)}, in which case:

(2.13) Cnα
M(X) = (Fmα

Σ ∩Cnω
M(X)),

for all X ⊆ Fmα
Σ. Then, by (2.1), Cnω

M is a Σ-logic, called the logic of/“defined by”
M. A Σ-logic is said to be {“unitary‖uniform[ly]”|double|finitely} (no-more/less-
than-)n-valued, where n ∈ (ω \ 1), whenever it is defined by a {one-element|two-
element|finite} class of (no-more/less-than-)n-valued Σ-matrices /{in which case it
is finitary, as the logic of any finite set of finite Σ-matrices is so; cf. [7]}. Then,
a [uniform{ly}] n-valued Σ-logic, where n ∈ (ω \ 2), is said to be minimal(ly) so,
unless it is [uniformly] no-more-than-(n− 1)-valued.

As usual, Σ-matrices are treated as first-order model structures (viz., algebraic
systems; cf. [10]) of the first-order signature Σ ∪ {D} with unary predicate D,
in which case any [in]finitary Σ-rule Γ ` φ is viewed as the [in]finitary equality-
free basic strict Horn formula (

∧
Γ) → φ under the standard identification of any
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propositional Σ-formula ψ with the first-order atomic formula D(ψ), as well as is
true/satisfied in a class M of Σ-matrices (in the conventional model-theoretic sense;
cf., e.g., [10]) iff it is satisfied in the logic of M, theorems of which being referred to
as tautologies of M.

Remark 2.5. Since any rule with[out] premises is [not] true in any truth-empty
matrix, given any class M of Σ-matrices, the theorem-less version of the logic of M
is defined by that of the form by M∪S with only truth-empty elements of S 6= ∅. �

Let A and B be two Σ-matrices. A (strict) [surjective] {injective} homomor-
phism from A [on]to B is any {injective} h ∈ hom(A,B) such that [h[A] = B

and] DA ⊆ h−1[DB](⊆ DA), the set of all them being denoted by hom[S]
(S)(A,B), in

which case B/A is said to be a (strictly) [surjectively] {injectively} homomorphic
image/counter-image ([{as well as called an isomorphic copy}]) of A/B, respec-
tively. Then, by (2.1), we have:

(hom[S]
S (A,B) 6= ∅) ⇒ (Cnα

B(X) ⊆ Cnα
A(X)[⊆ Cnα

B(X)]),(2.14)

(homS(A,B) 6= ∅) ⇒ (Cnα
A(∅) ⊆ Cnα

B(∅)),(2.15)

for all Σ-ranks α and all X ⊆ Fmα
Σ. Further, A[6= B] is said to be a [proper]

submatrix of B, whenever ∆A ∈ homS(A,B), in which case we set (B�A) , A.
Injective/bijective strict homomorphisms from A to B are called embeddings/iso-
morphisms of/from A into/onto B, in case of existence of which A is said to be
embeddable/isomorphic into/to B.

Given a Σ-matrix A, (χA/θA) , (χDA

A )/(kerχA)) is referred to as the charac-
teristic function/relation of A. Then, any θ ∈ Con(A) such that θ ⊆ θA, in which
case νθ is a strict surjective homomorphism from A onto (A/θ) , 〈A/θ,DA/θ〉,
is called a congruence of A, the set of all them being denoted by Con(A). Given
any θ, ϑ ∈ Con(A), Tr(θ ∪ ϑ), being well-known to be a congruence of A, is then
that of A, for θA, being an equivalence relation, is transitive. In particular, any
maximal congruence of A (that exists, by Zorn Lemma, because Con(A) 3 ∆A is
both non-empty and inductive, for Con(A) is so) is the greatest one to be denoted
by a(A), that is traditionally called the Leibniz congruence of A but denoted, for
quite unclear reasons, by rather Ω(A) than, e.g., Λ(A) (here we though naturally
adapt more coherent conventions adopted in [23] to use its results immediately). Fi-
nally, A is said to be [(finitely) hereditarily] simple, whenever it has no non-diagonal
congruence [as well as no non-simple (finitely-generated) submatrix].

Remark 2.6. Let A and B be two Σ-matrices and h ∈ hom(A,B) strict [and surjec-
tive]. Then, χA = (h◦χB) (in particular, θA = h−1[θB]) and, for every θ ∈ Con(B),
h−1[θ] ∈ Con(A) [while h[h−1[θ]] = θ]. Therefore:

(i) for every θ ∈ Con(B), h−1[θ] ∈ Con(A) [while h[h−1[θ]] = θ].
In particular (when θ = ∆B), by (i), we have (kerh) = h−1[∆B ] ∈ Con(A), so:

(ii) h is injective, whenever A is simple.
[Likewise, for any θ ∈ Con(B), by (i), we have h−1[θ] ∈ Con(A), in which case we
get h−1[θ] ⊆ a(A), and so, by (i), we eventually get θ = h[h−1[θ]] ⊆ h[a(A)] (in
particular, ∆B ⊆ θ ⊆ ∆B , whenever a(A) ⊆ (kerh)).] Thus:
[(iii) B is simple, whenever A is so.]
(iv) A/a(A) is simple. �

Definition 2.7. A Σ-matrix A is said to be a [K-]model of a Σ-logic C {over A}
[where K ⊆ ∞], provided C is a [K-]sublogic the logic of A 〈cf. Definition 2.3〉, the
class of all (simple of) them being denoted by Mod(∗)

[K](C{,A}), respectively. Then,
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FiC(A) , π1[Mod(C,A)], whose elements are called filters of C over A, is a closure
system over A, FgA

C denoting the dual closure operator 〈of filter generation〉. �

A Σ-matrix A is said to be o-paraconsistent/“[inferentially] (Y, o)-paracomplete”,
whenever its logic is so. Next, A is said to be (strongly)/weakly {classically} �-
conjunctive, provided ({a, b} ⊆ DA) ⇔ / ⇐ ((a �A b) ∈ DA), for all a, b ∈ A,
that is, the logic of A is strongly/weakly �-conjunctive. Then, A is said to be
(strongly)/weakly {classically} �-disjunctive, whenever 〈A, A \DA〉 is strongly/we-
akly �-conjunctive, “in which case”/“that is,” the logic of A is strongly/weakly
�-disjunctive, and so is the logic of any class of strongly/weakly �-disjunctive Σ-
matrices. Likewise, A is said to be (weakly/strongly){classically} A-implicative,
whenever ((a ∈ DA) ⇒ (b ∈ DA)) ⇔ ((a AA b) ∈ DA), for all a, b ∈ A, in
which case it is ]A-disjunctive, while the logic of A is A-implicative, for both (2.7)
and (2.9) are true in any A-implicative (and so ]A-disjunctive) Σ-matrix, while
DT is immediate, and so is the logic of any class of A-implicative Σ-matrices.
Furthermore, given any Σ′ ⊆ Σ, A is said to be a ( Σ-)expansion of its Σ′-reduct
(A�Σ′) , 〈A�Σ′, DA〉, clearly defining the Σ′-fragment of the logic of A. Finally,
A is said to be weakly/(strongly) {classically} o-negative, provided, for all a ∈ A,
(a ∈ DA) ⇐ / ⇔ (oAa 6∈ DA), in which case it is truth-non-empty/“, and so
consistent”.

Remark 2.8. For any Σ-matrices A and B, the following hold:

(i) A is:
(a) [weakly] �-disjunctive/-conjunctive iff it is [weakly] �o-conjunctive/-dis-

junctive, respectively, whenever it is o-negative, where (x0 �ox1) , o(ox0 �
ox1) is the o-dual |De-Morgan counterpart of �;

(b) Ao
�-implicative, if it is both o-negative and �-disjunctive, where (x0 Ao

�
x1) , (ox0 �x1) is the material implication of/“defined |given by” {nega-
tion} o and {disjunction} �.

(c) not o-paraconsistent, whenever it is o-negative;
(d) not (�, o)-paracomplete, whenever it is both weakly o-negative and weakly

�-disjunctive;
(ii) for any strict [surjective] (injective) h ∈ hom(A,B), the following hold:

(a) A is {weakly} o-negative|�-conjunctive/-disjunctive/-implicative if[f] B
is so;

(b) B is consistent/truth-non-empty if[f] A is so;
(c) A is false-/truth-singular (if [and]) [only if] B is so. �

Given a set I and an I-tuple A of Σ-matrices, [any submatrix B of] the Σ-
matrix (

∏
i∈I Ai) , 〈

∏
i∈I Ai,

∏
i∈I D

Ai〉 is called the [a] [sub]direct product of A
[whenever, for each i ∈ I, πi[B] = Ai]. As usual, if (imgA) ⊆ {A}, where A is a
Σ-matrix, we set AI , (

∏
i∈I Ai).

Given a class M of Σ-matrices, the class of all “strictly surjectively homomor-
phic [counter-]images”/ “isomorphic copies”/“(consistent) submatrices” of elements
of M is denoted by (H[−1]/I/S(∗))(M), respectively. Likewise, the class of all
[sub]direct products of tuples (of cardinality ∈ K ⊆ ∞) constituted by elements of
M is denoted by P[SD]

(K) (M).
2.3.2.1. Classical matrices and logics. Σ-matrices with diagonal characteristic func-
tion (and so relation) are said to be classically-canonical, isomorphisms between
them being diagonal, in which case isomorphic ones being equal. Then, the char-
acteristic function of any Σ-matrix A with diagonal characteristic relation — viz.,
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injective characteristic function — (and so no-more-than-two-valued) is an isomor-
phism from it onto the classically-canonical Σ-matrix {(A) , 〈χA[A], {1}〉, called
the [classical] canonization of A.

A (classically-canonical) two-valued Σ-matrix A [with functionally complete un-
derlying algebra] is said to be [genuinely] (canonical{ly}) o-classical, whenever it is
o-negative, in which case it is both false- and truth-singular (and so its characteristic
relation is diagonal) but is not o-paraconsistent, by Remark 2.8(i)(c).

A Σ-logic is said to be (genuinely) o-[sub]classical, whenever it is [a sublogic
of] the logic of a (genuinely) o-classical Σ-matrix, in which case it is inferentially
consistent. Then, a Σ-matrix is said to be o-classically-defining, whenever its logic
is o-classical. Likewise, a unary ∼ ∈ Σ is called a subclassical negation for a Σ-logic
C, whenever the ∼-fragment of C is ∼-subclassical, in which case:

(2.16) ∼mx0 6∈ C(∼nx0),

for all m,n ∈ ω such that the integer m − n is odd, where the secondary unary
connective ol of Σ is defined by induction on l ∈ ω via setting o0[+l+1]x0 , [o ol]x0.

Remark 2.9. ICΣ
+0 is an inferentially inconsistent (and so not subclassical) purely-

inferential (and so both consistent and axiomatically-equivalent) extension of any
purely-inferential Σ-logic C, in which case C is structurally complete iff it is inferen-
tially inconsistent. In particular, any purely-inferential classical (and so inferentially
consistent) Σ-logic is not structurally complete. �

3. Preliminary key advanced generic issues

3.1. Equality determinants versus matrix hereditary simplicity. Following
the paradigm of the works [18] and [19], an equality determinant for a class of
Σ-matrices M is any infinitary quantifier-free equality-free formula Φ of the first-
order signature L , (Σ ∪ {D}) (that is, any equality-free formula of the infinitary
language L∞,0) with variables in Var2 such that the infinitary universal sentence
∀x0∀x1(Φ ↔ (x0 ≈ x1)) with equality is true in M, in which case Φ is an equality
determinant for I(S(M)) (cf. Lemma 3.3 of [23] for the “unitary” case discussed
in Subsubsection 3.1.1). Then, a canonical equality determinant for M is any Σ-
calculus ε of rank 2 such that

∧
ε is an equality determinant for M. The main

distinctive feature of Σ-matrices with equality determinant is as follows:

Lemma 3.1 (cf. Lemma 3.2 of [23] for the “unitary” case). Any Σ-matrix A with
equality determinant Φ is simple, and so hereditarily so.

Proof. Then, for any ā ∈ θ ∈ Con(A), and all ϕ ∈ Fm2
Σ, we have ϕA(a0, a0) θ

ϕA(a0, a1), in which case we get (ϕA(a0, a0) ∈ DA) ⇔ (ϕA(a0, a1) ∈ DA), and so
A |= Φ[xi/ai]i∈2, for A |= Φ[xi/a0]i∈2, as a0 = a0 (in particular, a0 = a1, in which
case θ = ∆A, and so A is simple). �

Conversely, we have:

Theorem 3.2. Every element of a class M of 〈implicative〉 Σ-matrices is [finitely]
hereditarily simple iff M has a ( {finitary/unary〈/axiomatic〉} canonical) equality
determinant, in which case this is so for IS({〈/PS〉})M, and so all elements of this
class are hereditarily simple.

Proof. The “if” part is by Lemma 3.1. Conversely, assume every element of M is
finitely hereditarily simple. Consider any A ∈ M. Let ε , {φi ` φ1−i | i ∈ 2, φ̄ ∈
(Fm2

Σ)2, (φ0[x1/x0]) = (φ1[x1/x0])}. Clearly, A |= (
∧
ε)[xi/a]i∈2, for all a ∈ A,

because every element of ε[x1/x0] is a first-order tautology of the form ζ ` ζ, where
ζ ∈ Fm2

Σ. Conversely, consider any ā ∈ (A2 \ ∆A). Let B be the submatrix of
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A generated by the finite set img ā. Then, it, being finitely-generated is simple,
in which case θ , CgB(ā) 3 ā 6∈ ∆B is a non-diagonal congruence of B, and so
θ * θB. On the other hand, according to Mal’cev Principal Congruence Lemma
[9] (cf. [4]), θ = Tr(∇A(ā) ∪ ∇A(ā)−1), where ∇A(ā) , {〈ϕA[xi/ci;xn/aj ]i∈n〉j∈2 |
n ∈ ω, ϕ ∈ Fmn+1

Σ , c̄ ∈ An}, in which case θB, being transitive and symmet-
ric, does not include ∇B(ā), and so there are some n ∈ ω, some ϕ ∈ Fmn+1

Σ

and some c̄ ∈ Bn such that 〈ϕB[xn/aj ;xi/ci]i∈n〉j∈2 6∈ θB. Therefore, there is
some k ∈ 2 such that ϕB[xn/ak;xi/ci]i∈n ∈ DB 63 ϕB[xn/a1−k;xi/ci]i∈n, while,
as B is generated by img ā, for each i ∈ n, there is some ψi ∈ Fm2

Σ such that
ci = ψB

i [xl/al]l∈2. Then, φB
k [xl/al]l∈2 ∈ DB 63 φB

1−k[xl/al]l∈2, where, for all
m ∈ 2, φm , (ϕ[xn/xm;xi/ψi]i∈n) ∈ Fm2

Σ. And what is more, (φ0[x1/x0]) =
(ϕ[xi/(ψi[x1/x0])]i∈n) = (φ1[x1/x0]), in which case (φk ` φ1−k) ∈ ε, and so
B 6|= (

∧
ε)[xl/al]l∈2. Hence, A 6|= (

∧
ε)[xl/al]l∈2, for

∧
ε is quantifier-free, and so

ε is a unary (in particular, finitary) canonical equality determinant for M. 〈Then,
ε , {φ A ψ | (φ ` ψ) ∈ ε} is an axiomatic canonical equality determinant for M.〉
On the other hand, any Ξ ⊆ Fm2

Σ is an axiomatic canonical equality determinant
for a class of Σ-matrices K iff the universal infinitary strict Horn sentences with
equality ∀x0∀x1((

∧
Ξ) → (x0 ≈ x1)) and ∀x0(ξ[x1/x0]), where ξ ∈ Ξ, of the first-

order signature Σ∪{D} are true in K. In this way, the well-known fact that model
classes of universal infinitary 〈strict Horn〉 theories with equality are closed under
I and S 〈as well as P〉 — cf., e.g., [10] — completes the argument. �

3.1.1. Unitary equality determinants versus matrix non-diagonal partial automor-
phisms. A [partial] (strict) endomorphism of a Σ-matrix A is any (strict) homo-
morphism from [a submatrix of] A to A ([injective ones being referred to as partial
automorphisms of A]).

A unitary equality determinant for a class M of Σ-matrices is any Υ ⊆ Fm1
Σ

such that εΥ , {(υ[x0/xi]) ` (υ[x0/x1−i]) | i ∈ 2, υ ∈ Υ} is a (unary) canonical
equality determinant for M. It is unitary equality determinants that are equality
determinants in the sense of [18].

Theorem 3.3. A Σ-matrix A has a unitary equality determinant iff it is (finitely)
hereditarily simple and has no non-diagonal [injective] partial strict endomorphism.

Proof. First, let Υ be a unitary equality determinant for A, B a submatrix of A
and h ∈ hom(B,A) strict. Then, for every b ∈ B and each υ ∈ Υ, we have
(υA(b) = υB(b) ∈ DA) ⇔ (υB(b) ∈ DB) ⇔ (υA(h(b)) = h(υB(b)) ∈ DA), in which
case we get h(b) = b, and so h is diagonal. Thus, the “only if” part is by Lemma
3.1. Conversely, assume A has no non-diagonal partial automorphism and is finitely
hereditarily simple, in which case, by Theorem 3.2, it has a unary canonical equality
determinant ε. Consider any ā ∈ A2 such that

(3.1) (ϕA(a0) ∈ DA) ⇔ (ϕA(a1) ∈ DA),

for all ϕ ∈ Fm1
Σ. Let f be the carrier of the subalgebra of A2 generated by {ā}, and,

for each i ∈ 2, Bi the submatrix of A generated by {ai}, in which case Bi = πi[f ],
for πi(ā) = ai, while πi ∈ hom(A2,A). Consider any i ∈ 2 and any b̄, c̄ ∈ f such
that bi 6= ci, in which case there are some φ, ψ ∈ Fm1

Σ such that b̄ = φA2
(ā) and

c̄ = ψA2
(ā) as well as some (ξ ` η) ∈ ε such that ξA(bi, ci) ∈ DA 63 ηA(bi, ci).

Let ($|ζ) , ((ξ|η)[x0/φ, x1/ψ]) ∈ Fm1
Σ, in which case (ξ|η)A2

(b̄, c̄) = ($|ζ)A2
(ā),

and so $A(ai) ∈ DA 63 ζA(ai). Hence, by (3.1), ξA(b1−i, c1−i) = $A(a1−i) ∈
DA 63 ζA(a1−i) = ηA(b1−i, c1−i), in which case b1−i 6= c1−i, and so f : B0 → B1 is
injective. Therefore, f , being a subalgebra of A2, is an embedding of B0 into A, in
which case, by (3.1), f is an embedding of B0 into A, and so a partial automorphism
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of A. Thus, f is diagonal, in which case a1 = f(a0) = a0, so Fm1
Σ is a unitary

equality determinant for A. �

Clearly, any consistent truth-non-empty two-valued (in particular, classical) Σ-
matrix A is both false- and truth-singular, in which case its characteristic relation
is diagonal, and so {x0} is an equality determinant for A.

3.2. Disjunctivity.

3.2.1. Disjunctivity versus multiplicativity. A Σ-logic C is said to be Y-(singularly-
)multiplicative, provided, for all X ⊆ Fmω

Σ and all φ, ψ ∈ Fmω
Σ, it holds that

(Y[C(X ∪ {φ})× {ψ}]) ⊆ C(X ∪ {φ Y ψ}).

Lemma 3.4. Any Σ-logic C is Y-disjunctive iff it is both weakly Y-disjunctive and
Y-multiplicative as well as satisfies both (2.3) and (2.4).

Proof. The “only if” part is immediate. Conversely, assume C is both weakly Y-
disjunctive and Y-multiplicative as well as satisfies both (2.3) and (2.4). Consider
any X ⊆ Fmω

Σ, any φ, ψ ∈ Fmω
Σ and any ϕ ∈ (C(X ∪{φ})∩C(X ∪{ψ})). Then, by

the Y-multiplicativity of C and (2.3), we have (ψYϕ) ∈ C(ϕYψ) ⊆ C(X∪{φYψ}).
Likewise, by the Y-multiplicativity of C and (2.4), we have ϕ ∈ C(ϕ Y ϕ) ⊆ C(X ∪
{ψ Y ϕ}). In this way, we eventually get ϕ ∈ C(X ∪ {φ Y ψ}). �

3.2.1.1. Implicativity versus intrinsic disjunctivity.

Theorem 3.5. Let C be a weakly A-implicative Σ-logic and Y , ]A. Then, the
following hold:

(i) C is both weakly Y-disjunctive and Y-multiplicative;
(ii) C is A-implicative iff it is Y-disjunctive iff it satisfies (2.3).

Proof. (i) First, (2.2) with i = 0 is by DT and (2.7). Likewise, (2.2) with i = 1
is by (2.6) and (2.7). Now, consider any X ⊆ Fmω

Σ and any φ, ψ, ϕ ∈ Fmω
Σ.

Then, by DT and (2.7), we have ((ψ ∈ C(X∪{φ}) ⇒ ((φ A ϕ) ∈ C(X∪{ψ A
ϕ}), applying which twice, the second time being with (ψ A ϕ)|(φ A ϕ)
instead of φ|ψ, respectively, we conclude that C is Y-multiplicative.

(ii) Assume C is A-implicative. Then, ((x0Yx0) A x0) = ((2.9)[x1/x0]) is satisfied
in C, for this is structural, and so is (2.4), in view of (2.7). Furthermore, by
(2.7), we have x0 ∈ C({x0 Y x1, x0 A x1, x1 A x0}), in which case, by DT,
we get ((x0 A x1) A x0) ∈ C({x0 Y x1, x1 A x0}), and so, by (2.7) and (2.9),
we eventually get x0 ∈ C({x0 Y x1, x1 A x0}) (in particular, by DT, (2.3) is
satisfied in C). Then, Lemma 3.4, (i) and (2.8) complete the argument. �

3.2.2. Disjunctive consistent finitely-generated models of finitely-valued weakly dis-
junctive logics.

Lemma 3.6. H(H−1(M)) ⊆ H−1(H(M)), for any class of Σ-matrices M.

Proof. Let A and B be Σ-matrices, C ∈ M and (h|g) ∈ homS
S(B, C|A). Then, by

Remark 2.6(i), (ker(h|g)) ∈ Con(B), in which case (ker(h|g)) ⊆ θ , a(B) ∈ Con(B),
and so, by the Homomorphism Theorem, (νθ ◦ (h|g)−1) ∈ homS

S(C|A,B/θ). �

Lemma 3.7 (cf. the proof of Lemma 2.7 of [23]). Let M be a (finite) class
of (finite) Σ-matrices and A a [non-]simple denumerably-generated (more specif-
ically, finite{ly-generated}) model of the logic of M. (Suppose A is {generated
by a set} of cardinality n ∈ ω.) Then, there are some (finite) set I (of cardinality
6

∑
B∈M n

|B|), some C ∈ S∗(A)I and some its subdirect product in H−1(A[/a(A)]).
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Lemma 3.8. Let M be a class of weakly Y-disjunctive Σ-matrices, I a finite set,
C ∈ MI , and D a consistent Y-disjunctive submatrix of

∏
C. Then, there is some

i ∈ I such that (πi�D) ∈ homS
S(D, Ci).

Proof. By contradiction. For suppose that, for every i ∈ I, (πi�D) 6∈ homS
S(D, Ci),

in which case DD ( (πi�D)−1[DCi ] = (D ∩ π−1
i [DCi ]), for (πi�D) ∈ hom(D, Ci)

is surjective, and so there is some ai ∈ (D \ DD) such that πi(ai) ∈ DCi . By
induction on the cardinality of any J ⊆ I, let us prove that there is some b ∈
(D \DD) such that πj(b) ∈ DCj , for all j ∈ J , as follows. In case J = ∅, take any
b ∈ (D \DD) 6= ∅, for D is consistent. Otherwise, take any j ∈ J , in which case
K , (J \ {j}) ⊆ I, while |K| < |J |, so, by the induction hypothesis, there is some
c ∈ (D \DD) such that πk(c) ∈ DCk , for all k ∈ K. Then, by the Y-disjunctivity of
D, b , (c YD aj) ∈ (D \DD), while πi(b) ∈ DCi , for all i ∈ J = (K ∪ {j}), because
(πi�D) ∈ hom(D,Ci), while Ci is weakly Y-disjunctive. In particular, when J = I,
there is some b ∈ (D \DD) such that πi(b) ∈ DCi , for all i ∈ I. This contradicts to
the fact that DD = (D ∩

⋂
i∈I π

−1
i [DCi ]), as required. �

By Lemmas 3.6, 3.7, 3.8 and Remark 2.8(ii), we immediately have:

Theorem 3.9. Let M be a finite class of finite weakly Y-disjunctive Σ-matrices,
C the logic of M and A a finite[ly-generated] consistent Y-disjunctive model of C.
Then, A ∈ H−1(H(S∗(M))).

3.2.2.1. Theorems of weakly disjunctive finitely-valued logics versus truth-empty
submatrices of defining matrices.

Corollary 3.10. Let C be a Σ-logic. (Suppose it is defined by a finite class M of
finite [weakly Y-disjunctive] Σ-matrices.) Then, (i)⇔(ii)⇔(iii)(⇔(iv)), where:

(i) C is purely-inferential;
(ii) C has a truth-empty model;
(iii) C has a one-valued truth-empty model;
(iv) PSD

ω[∩0](S∗(M))[∪S∗(M)] has a truth-empty element.

Proof. First, (ii)⇒(i) is immediate. The converse is by the fact that, by the struc-
turality of C, 〈Fmω

Σ, C(∅)〉 is a model of C.
Next, (ii) is a particular case of (iii). Conversely, let A ∈ Mod(C) be truth-

empty. Then, χA is singular, in which case θA = A2 ∈ Con(A), and so, by (2.14)
and Remark 2.8(ii)(b), (A/θA) ∈ Mod(C) is both one-valued and truth-empty.

(Finally, (iv)⇒(ii) is by (2.14). Conversely, (iii)⇒(iv) is by Remark 2.8(ii)(b)
and Lemma 3.7 [resp., Theorem 3.9 as well as the consistency and Y-disjunctivity
of truth-empty Σ-matrices].) �

3.2.3. Non-paraconsistency versus Resolution. Given any Σ-logic C, by CR we de-
note the extension of C relatively axiomatized by the Resolution rule (cf. [27]):

(3.2) {x0 Y x1, ox0 Y x1} ` x1.

Applying Lemma 3.4 and (2.4) to (2.10) twice, we have:

Lemma 3.11. (3.2) is satisfied in any Y-disjunctive non-o-paraconsistent Σ-logic.

Theorem 3.12. Let M be a finite class of finite Y-disjunctive Σ-matrices and
C the logic of M. Then, CR is defined by the class S of all non-o-paraconsistent
elements of S∗(M), and so is Y-disjunctive but is not o-paraconsistent.

Proof. Then, C is Y-disjunctive, while the logic of S is a both finitary, Y-disjunctive
(in view of Remark 2.8(ii)(a)) and non-o-paraconsistent extension of C, and so an
extension of CR, in view of Lemma 3.11. Conversely, consider any n ∈ (ω \ 1),
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any Γ ⊆ Fmn
Σ and any ϕ ∈ (Fmn

Σ \CR(Γ)), in which case, by (2.13) with α = n,
ϕ 6∈ C(Γ) = Cnω

M(Γ) ⊇ Cnn
M(Γ), and so T , {T ∈ Bn

M | Γ ⊆ T 63 ϕ} 6= ∅.
Then, since n as well as both M and all elements of it are finite, the class {〈A, h〉 |
A ∈ M, h ∈ hom(Fmn

Σ,A)} is finite, in which case the set Bn
M is finite, and so

is T ⊆ Bn
M. Let m , |T| ∈ (ω \ 1) and T : m → T bijective, in which case,

for each i ∈ m, there is some Ai ∈ M and some hi ∈ hom(Fmn
Σ,Ai) such that

Γ ⊆ Ti = h−1
i [DAi ] 63 ϕ, and so Bi , (img hi) forms a subalgebra of Ai, while

Bi , (Ai�Bi) ∈ S(M), whereas h−1
i [DBi ] = Ti (in particular, Bi is consistent, for

hi(ϕ) ∈ (Bi \ DBi)), as well as hi ∈ hom(Fmn
Σ,Bi) (In particular, Ti ∈ Bn

S∗(M)).
We prove, by contradiction, that, for some i ∈ m, Bi is not o-paraconsistent. For
suppose each Bi, where i ∈ m, is o-paraconsistent. By induction on any j ∈ (m+1),
we set Ξj , ({ϕ}|{okψ Y φ | k ∈ 2, ψ ∈ Tj−1 3 oψ, φ ∈ Ξj−1}) ⊆ Fmn

Σ, whenever
j = | 6= 0, respectively, and prove that

ϕ ∈ CR(Ξj),(3.3)
Ξj ⊆ (C(Ti) ∩ C(Ξi)),(3.4)

for all i ∈ j. The case, when j = 0 = ∅, is evident. Otherwise, (j − 1) ∈ (m ∩ j),
in which case Bj−1 is ∼-paraconsistent, and so there is some ψ ∈ Tj−1 such that
oψ ∈ Tj−1. In particular, for each φ ∈ Ξj−1 and every k ∈ 2, (okψ Y φ) ∈ Ξj ,
in which case, by (3.2)[x0/ψ, x1/φ] and the structurality of CR, φ ∈ CR(Ξj), and
so, by the induction hypothesis, ϕ ∈ CR(Ξj−1) ⊆ CR(Ξj). Thus, (3.3) holds.
Likewise, by the Y-disjunctivity of C, for each φ ∈ Ξj−1, every k ∈ 2 and all
ψ ∈ Tj−1 such that oψ ∈ Tj−1, we have (okψ Y φ) ∈ (C(Ξj−1) ∩ C(Tj−1)) (in
particular, (3.4) with i = (j − 1) holds), and so, by the induction hypothesis as
well as (3.4) with i = (j − 1), we get (3.4), for all i ∈ (j − 1). Thus, (3.4) holds,
for all i ∈ ({j − 1} ∪ (j − 1)) = j. In this way, by (3.3) with j = m, we have
Ξm * CR(Γ) ⊇ C(Γ) = Cnω

M(Γ), in which case, by (2.13) with α = n, we get
Ξm * Cnn

M(Γ), and so there is some T ∈ Bn
M such that Γ ⊆ T + Ξm. In that case,

if T contained ϕ, that is, included Ξ0, then, by (3.4) with j = m and i = 0 ∈ m,
for m 6= 0, we would have Ξm ⊆ C(T ), and so, by (2.13) with α = n, would get
Ξm ⊆ Cnn

M(T ) = T . Therefore, ϕ 6∈ T , in which case T ∈ T, and so T = Tl, for
some l ∈ m. Hence, by (3.4) with j = m and i = l, we have Ξm ⊆ C(T ), in which
case, by (2.13) with α = n, we get Ξm ⊆ Cnn

M(T ) = T , and so this contradiction
shows that there is some i ∈ m, such that Bi is not o-paraconsistent. In this way,
Bi ∈ S, in which case ϕ 6∈ Cnn

Bi
(Γ) ⊇ Cnn

S (Γ), and so, by (2.13) with α = n,
ϕ 6∈ Cnω

S (Γ), as required, for ℘ω(Fmω
Σ) ⊆

⋃
n∈(ω\1) ℘(Fmn

Σ). �

3.3. Some peculiarities of false-singular matrices.

3.3.1. Subdirect products of consistent submatrices of weakly conjunctive matrices.

Lemma 3.13. Let A be a false-singular weakly �-conjunctive Σ-matrix, f ∈ (A \
DA), I a finite set, B ∈ S∗(A)I and D a subdirect product of it. Then, (I ×{f}) ∈
D.

Proof. By induction on the cardinality of any J ⊆ I, let us prove that there is some
a ∈ D including (J × {f}). First, when J = ∅, take any a ∈ D 6= ∅, in which
case (J × {f}) = ∅ ⊆ a. Now, assume J 6= ∅. Take any j ∈ J ⊆ I, in which case
K , (J \ {j}) ⊆ I, while |K| < |J |, and so, as Bj is a consistent submatrix of the
false-singular Σ-matrix A, we have f ∈ Bj = πj [D]. Hence, there is some b ∈ D
such that πj(b) = f , while, by induction hypothesis, there is some c ∈ D including
(K × {f}). Therefore, since J = (K ∪ {j}), while A is both weakly �-conjunctive
and false-singular, we have D 3 a , (c �D b) ⊇ (J × {f}). Thus, when J = I, we
eventually get D 3 (I × {f}), as required. �
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3.3.2. Models of weakly implicative logics.

Lemma 3.14. Let A be a false-singular Σ-matrix. Suppose (2.5), (2.6) and (2.7)
are true in A. Then, A is A-implicative. In particular, any false-singular Σ-matrix
is A-implicative iff its logic is [weakly] so.

Proof. Then, for all a, b ∈ (A \DA), we have a = b, in which case, by (2.5), we get
(a AA b) = (a AA a) ∈ DA, and so (2.6) and (2.7) complete the argument. �

3.4. Logic versus model congruences.

Lemma 3.15. Let C be a Σ-logic, θ ∈ Con(C), A ∈ Mod(C) and h ∈ hom(Fmω
Σ,

A). Then, h[θ] ⊆ a(A).

Proof. Then, ϑ , (
⋃
{g[θ] | g ∈ hom(Fmω

Σ,A)}) is symmetric, for θ is so. And
what is more, since θ ⊆ ≡ω

C , while A ∈ Mod(C), ϑ ⊆ θA. Next, consider
any a ∈ A. Let g , [xk/a]k∈ω ∈ hom(Fmω

Σ,A). Then, since 〈x0, x0〉 ∈ θ,
〈a, a〉 = g(〈x0, x0〉) ∈ g[θ] ⊆ ϑ, and so ∆A ⊆ ϑ. Now, consider any ς ∈ Σ of
arity n ∈ ω, any i ∈ n, any 〈a, b〉 ∈ ϑ and any c̄ ∈ An−1. Then, there are some
〈φ, ψ〉 ∈ θ and some f ∈ hom(Fmω

Σ,A) such that a = f(φ) and b = f(ψ). Let
V , (Var(φ) ∪Var(ψ) ∪ {xi}) ∈ ℘ω(Varω), in which case |Varω \V | = ω > (n− 1),
for |Varω | = ω is infinite, and so there is some injective v̄ ∈ (Varω \V )n−1. Let
ϕ , (ς(x̄n)[xj/vj ;xk/vk−1]j∈i;k∈(n\(i+1))) ∈ Fmω

Σ and g ∈ hom(Fmω
Σ,A) extend

(f�(Varω \(img v̄)))∪(c̄◦ v̄−1), in which case 〈ϕ[xi/φ], ϕ[xi/ψ]〉 ∈ θ, so 〈ϕA[xi/a; vl/
cl]l∈(n−1), ϕ

A[xi/b; vl/cl]l∈(n−1)〉 = g(〈ϕ[xi/φ], ϕ[xi/ψ]〉) ∈ g[θ] ⊆ ϑ. Thus, unary
algebraic operations of A are ϑ-monotonic. Therefore, η , Tr(ϑ) is a congruence
of A. And what is more, θA ⊇ ϑ, being transitive, includes η, in which case
η ∈ Con(A), and so h[θ] ⊆ ϑ ⊆ η ⊆ a(A). �

3.4.1. Simple models versus intrinsic varieties. As a particular case of Lemma 3.15,
we first have (from now on, we follow Definition 2.2 tacitly):

Corollary 3.16. Let C be a Σ-logic. Then, π0[Mod∗(C)] ⊆ IV(C).

Corollary 3.17. Let C be a Σ-logic. Then, a(C) is fully-invariant. In particular,
a(C) = θω

IV(C).

Proof. Consider any σ ∈ hom(Fmω
Σ,Fmω

Σ) and any T ∈ (imgC), in which case, by
the structurality of C, AT , 〈Fmω

Σ, T 〉 ∈ Mod(C), so, by Lemma 3.15, σ[a(C)] ⊆
a(AT ). Then, σ[a(C)] ⊆ θ , (Eqω

Σ ∩
⋂
{a(AT ) | T ∈ (imgC)}) ⊆ (Eqω

Σ ∩
⋂
{θAT |

T ∈ (imgC)} = ≡ω
C . Moreover, for each T ∈ (imgC), a(AT ) ∈ Con(Fmω

Σ), in
which case θ ∈ Con(Fmω

Σ), and so σ[a(C)] ⊆ θ ⊆ a(C). �

Lemma 3.18. Let M be a class of Σ-matrices, K , π0[M] and C the logic of M.
Then, θω

K ⊆ ≡ω
C , in which case θω

K ⊆ a(C), and so IV(C) ⊆ V(K).

Proof. Then, for any 〈φ, ψ〉 ∈ θω
K , A ∈ M and h ∈ hom(Fmω

Σ,A), A ∈ K, in which
case 〈h(φ), h(ψ)〉 ∈ ∆A ⊆ θA, and so φ ≡ω

C ψ. �

By Corollary 3.16 and Lemma 3.18, we then have:

Corollary 3.19. Let M be a class of Σ-matrices, K , π0[M] and C the logic of
M. Then, π0[Mod∗(C)] ⊆ V(K).

Theorem 3.20. Let M be a class of simple Σ-matrices, K , π0[M] and C the logic
of M. Then, IV(C) = V(K).
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4. Self-extensional logics versus simple matrices

Theorem 4.1. Let C be a Σ-logic and V , IV(C) (as well as M a class of simple
Σ-matrices, K , π0[M] and α , ([1∪](ω ∩

⋃
{|A| | A ∈ M}))). (Suppose C is

defined by M.) Then, (i)⇔(ii)⇔(iii)(⇒(iv)⇒(v)⇒)(vi)⇒(i), where:

(i) C is self-extensional;
(ii) ≡ω

C ⊆ θω
V ;

(iii) ≡ω
C = θω

V ;
(iv) for all distinct a, b ∈ Fα

V , there are some A ∈ M and some h ∈ hom(Fα
V,A)

such that χA(h(a)) 6= χA(h(b));
(v) there is some class C of Σ-algebras such that K ⊆ V(C) and, for each A ∈ C

and all distinct a, b ∈ A, there are some B ∈ M and some h ∈ hom(A,B)
such that χB(h(a)) 6= χB(h(b));

(vi) there is some S ⊆ Mod(C) such that V ⊆ V(π0[S]) and, for each A ∈ S, it
holds that (A2 ∩

⋂
{θB | B ∈ S,B = A}) ⊆ ∆A.

Proof. In that case, by Corollary 3.17 (and Theorem 3.20), a(C) = θω
V (as well as

V = V(K), and so θω
V = θω

K). Then, (i)⇔(iii) is immediate, while (ii) is a particular
case of (iii), whereas the converse is by the inclusion a(C) ⊆ ≡ω

C .
(Next, assume (iii) holds. Then, θα′ , ≡α′

C = θα′

K = θα′

V ∈ Con(Fmα′

Σ ), for all
Σ-ranks α′. Furthermore, consider any distinct a, b ∈ Fα

V . Then, there are some
φ, ψ ∈ Fmα

Σ such that νθα(φ) = a 6= b = νθα(φ), in which case, by (2.13), Cnα
M(φ) 6=

Cnα
M(ψ), and so there are some A ∈ M and some g ∈ hom(Fmα

Σ,A) such that
χA(g(φ)) 6= χA(g(φ)). In that case, θα ⊆ (ker g), and so, by the Homomorphism
Theorem, h , (g ◦ ν−1

θα ) ∈ hom(Fα
V,A). Then, h(a/b) = g(φ/ψ), in which case

χA(h(a)) 6= χA(h(b)), and so (iv) holds.
Now, assume (iv) holds. Consider any A ∈ K and the following cases:

• |A| 6 α. Let h ∈ hom(Fmα
Σ,A) extend any surjection from Varα onto A, in which

case it is surjective, while θ , θα
V = θα

K ⊆ (kerh), and so, by the Homomorphism
Theorem, g , (h ◦ ν−1

θ ) ∈ hom(Fα
V,A) is surjective. Thus, A ∈ V(Fα

V).
• |A| 
 α. Then, α = ω. Consider any Σ-identity φ ≈ ψ true in Fω

V and any
h ∈ hom(Fmω

Σ,A), in which case, we have θ , θω
V = θω

K ⊆ (kerh), and so, since
νθ ∈ hom(Fmω

Σ,F
ω
V), we get 〈φ, ψ〉 ∈ (ker νθ) ⊆ (kerh). Thus, A ∈ V(Fα

V).

In this way, (v) with C , {Fα
V} holds.

Further, assume (v) holds. Let C′ , {A ∈ C | |A| > 1} and S , {〈A, h−1[DB]〉 |
A ∈ C′,B ∈ M, h ∈ hom(A,B)}. Then, for all A ∈ C′, each B ∈ M and every
h ∈ hom(A,B), h is a strict homomorphism from C , 〈A, h−1[DB]〉 to B, in which
case, by (2.14), C ∈ Mod(C), and so S ⊆ Mod(C), while χC = (h ◦ χB), whereas
π0[S] = C′ generates the variety V(C). In this way, (vi) holds.)

Finally, assume (vi) holds. Consider any φ, ψ ∈ Fmω
Σ such that φ ≡ω

C ψ, any
A ∈ S and any h ∈ hom(Fmω

Σ,A). Then, for each B ∈ S with B = A, h(φ) θB h(ψ),
in which case h(φ) = h(ψ), so A |= (φ ≈ ψ). Thus, V ⊆ V(π0[S]) |= (φ ≈ ψ), so (ii)
holds. �

When both M and all elements of it are finite, α is finite, in which case Fα
V is

finite and can be found effectively, and so, taking (2.14) and Remark 2.6(iv) into
account, the item (iv) of Theorem 4.1 yields an effective procedure of checking the
self-extensionality of any logic defined by a finite class of finite matrices. However,
its computational complexity may be too large to count it practically applicable.
For instance, in the unitary n-valued case, where n ∈ (ω \1), the upper limit nnn

of
|Fα

V | as well as the predetermined computational complexity nnnn

of the procedure
involved become too large even in the three-/four-valued case. And, though, in
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the two-valued case, this limit — 16 — as well as the respective complexity —
216 = 65536 — are reasonably acceptable, this is no longer matter in view of:

Example 4.2. LetA be a Σ-matrix. Suppose it is both false- and truth-singular (in
particular, two-valued as well as both consistent and truth-non-empty [in particu-
lar, classical]), in which case θA = ∆A, for χA is injective, and so A is simple. Then,
by Theorems 3.20 and 4.1(vi)⇒(i) with S = {A}, the logic of A is self-extensional,
its intrinsic variety being generated by A. Thus, by the self-extensionality of infer-
entially inconsistent logics, any two-valued logic is self-extensional. �

Nevertheless, the procedure involved is simplified much under hereditary simplic-
ity as well as either implicativity or both conjunctivity and disjunctivity of finitely
many finite defining matrices upon the basis of the item (v) of Theorem 4.1.

4.1. Self-extensionality of conjunctive disjunctive logics versus distribu-
tive lattices.

Remark 4.3. Let C be a Z-conjunctive or/and Y-disjunctive Σ-logic and φ ≈ ψ a
semi-lattice/“distributive lattice” identity for Z or/and Y. Then, φ ≡ω

C ψ. �

Theorem 4.4. Let C be a �-conjunctive/-disjunctive Σ-logic (defined by a class
M of simple Σ-matrices) and i = (0/1) (as well as K , π0[M]). Then, C is self-
extensional iff the following hold:

(i) each element of IV(C)(= V(K)) is a �-semi-lattice;
(ii) for all ϕ̄ ∈ (Fmω

Σ)2, (ϕ1 ∈ C(ϕ0))⇔|⇒(IV(C) |= (ϕi ≈ (ϕ0 � ϕ1)).

Proof. The ”if” part is by Theorem 4.1(ii)⇒(i) and semi-lattice identities (more
specifically, the commutativity one) for �. Conversely, if C is self-extensional,
then, by Theorem 4.1(i)⇒(iii), we have ≡ω

C = θω
IV(C), in which case, since C is

�-conjunctive/-disjunctive, (i) is by Remark 4.3 (and Theorem 3.20), while, for all
ϕ̄ ∈ (Fmω

Σ)2, (ϕ1 ∈ C(ϕ0)) ⇔ (ϕi ≡ω
C (ϕ0 � ϕ1)), so (ii) holds. �

Lemma 4.5. A [truth-non-empty Z-conjunctive] Σ-matrix A is a (2 \ 1)-model of
a [finitary Z-conjunctive] Σ-logic C if[f ] A ∈ Mod(C) (cf. Definition 2.7).

Proof. The “if” part is trivial. [Conversely, assume A ∈ Mod2\1(C). Consider any
ϕ ∈ C(∅) and any h ∈ hom(Fmω

Σ,A), in which case V , Var(ϕ) ∈ ℘ω(Varω),
and so (Varω \V ) 6= ∅, for, otherwise, we would have V = Varω, and so would
get ω = |Varω | = |V | ∈ ω. Take any v ∈ (Varω \V ) and any a ∈ DA 6= ∅. Let
g ∈ hom(Fmω

Σ,A) extend (h�(V \ {v})) ∪ [v/a]. Then, ϕ ∈ C(v), {v} ∈ ℘2\1(Fmω
Σ)

and g(v) = a ∈ DA, in which case h(ϕ) = g(ϕ) ∈ DA, for A ∈ Mod2\1(C), and so
A ∈ Mod2(C). By induction on any n ∈ ω, let us prove that A ∈ Modn(C). For
consider any X ∈ ℘n(Fmω

Σ), in which case n 6= 0. In case |X| ∈ 2, X ∈ ℘2(Fmω
Σ),

and so C(X) ⊆ Cnω
A(X), for A ∈ Mod2(C). Otherwise, |X| > 2, in which case there

are some distinct φ, ψ ∈ X, and so Y , ((X\{φ, ψ})∪{φZψ}) ∈ ℘n−1(Fmω
Σ). Then,

by the induction hypothesis and the Z-conjunctivity of both C and A, C(X) =
C(Y ) ⊆ Cnω

A(Y ) = Cnω
A(X). So, A ∈ Mod(C), as ω = (

⋃
ω), and C is finitary.] �

Theorem 4.6. Let C be a Z-conjunctive [ Y-disjunctive] Σ-logic and V , IV(C)
(as well as M a class of simple Σ-matrices defining C, and K , π0[M]). {Suppose
C is finitary (in particular, both M and all elements of it are finite).} Then,
(i)⇔(ii){⇒}(iii)(⇒(iv))⇒(i), where:

(i) C is self-extensional;
(ii) for all φ, ψ ∈ Fmω

Σ, it holds that (ψ ∈ C(φ)) ⇔ | ⇒ (V |= (φ ≈ (φ Z ψ))),
while every element of V is a Z-semi-lattice [resp., distributive (Z,Y)-lattice];
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(iii) every truth-non-empty Z-conjunctive [consistent Y- disjunctive] Σ-matrix
with underlying algebra in V is a model of C, while every element of V is a
Z-semi-lattice [resp., distributive (Z,Y)-lattice];

(iv) any truth-non-empty Z-conjunctive [consistent Y- disjunctive] Σ-matrix with
underlying algebra in K is a model of C, while every element of K is a Z-
semi-lattice [resp., distributive (Z,Y)-lattice].

{(In particular, (i–iv) are equivalent.)}

Proof. First, (i)⇔(ii) is by Remark 4.3 and Theorem 4.4 with i = 0 and � = Z.
{Next, (ii)⇒(iii) is by Lemma 4.5.} (Further, (iv) is a particular case of (iii), in
view of Theorem 3.20.) Finally, assume (iii) (resp., (iv)) holds. Let S be the class
of all truth-non-empty Z-conjunctive [consistent Y- disjunctive] Σ-matrices with
underlying algebra in V (resp., in K). Consider any A ∈ S and any ā ∈ (A2\∆A), in
which case, by the semi-lattice identities 〈more specifically, the commutativity one〉
for Z, ai 6= (ai ZA a1−i), for some i ∈ 2, and so B , 〈A, {b ∈ A | ai = (ai ZA b)}〉 ∈ S
[resp., by the Prime Ideal Theorem, there is some B ∈ S] such that B = A and
ai ∈ DB 63 a1−i. In this way, (i) is by Theorem(s) 4.1(vi)⇒(i) (and 3.20). �

Theorem 4.7. Let M be a [finite] class of [finite hereditarily] simple [ Z-conjunctive
Y-disjunctive] Σ-matrices, K , π0[M] and C the logic of M. Then, C is self-
extensional if[f ], for each A ∈ K and all distinct a, b ∈ A, there are some B ∈ M
and some h ∈ hom(A,B) such that χB(h(a)) 6= χB(h(b)).

Proof. The “if” part is by Theorem 4.1(v)⇒(i) with C = K. [Conversely, assume C
is self-extensional. Consider any A ∈ K and any ā ∈ (A2 \∆A). Then, by Theorem
4.6(i)⇒(iv), A is a distributive (Z,Y)-lattice, in which case, by the commutativity
identity for Z, ai 6= (ai ZA a1−i), for some i ∈ 2, and so, by the Prime Ideal
Theorem, there is some Z-conjunctive Y-disjunctive Σ-matrix D with D = A such
that ai ∈ DD 63 a1−i, in which case D is both consistent and truth-non-empty, and
so is a model of C. Hence, by Theorem 3.9 and Remark 2.6(ii), there are some B ∈ M
and some strict h ∈ hom(D,B) ⊆ hom(A,B), in which case h(ai) ∈ DB 63 h(a1−i),
so χB(h(ai)) = 1 6= 0 = χB(h(a1−i)).] �

4.2. Self-extensionality of implicative logics versus implicative intrinsic
semi-lattices. A Σ-algebra A is called an A-implicative intrinsic semi-lattice [with
bound (a)], provided it is a ]A-semi-lattice [with bound (a)] and satisfies:

(x0 A x0) ≈ (x1 A x1),(4.1)
((x0 A x0) A x1) ≈ x1,(4.2)

in which case it is that with bound a AA a, for any a ∈ A.

Remark 4.8. Let C be a [self-extensional] Σ-logic and φ, ψ ∈ C(∅), in which case
φ ≡ω

C ψ [and so IV(C) |= (φ ≈ ψ)]. �

Theorem 4.9. Let M be an A-implicative Σ-logic C (defined by a class M of simple
Σ-matrices and K , π0[M]). Then, C is self-extensional iff, for all φ, ψ ∈ Fmω

Σ,
it holds that (ψ ∈ C(φ))⇔|⇒(IV(C) |= (ψ ≈ (φ ]A ψ))), while each element of
IV(C)(= V(K)) is an A-implicative intrinsic semi-lattice.

Proof. First, by (2.5), Remark 4.8 and the strucuruality of C, (4.1) ∈ ≡ω
C . Likewise,

by (2.5), (2.6) and (2.7), (4.2) ∈ ≡ω
C . Then, Theorems 3.5(ii) and 4.4 with i = 1

and � = ]A complete the argument. �

Lemma 4.10. Let C ′ be a finitary Σ-logic and C ′′ a 1-extension of C ′ (cf. Def-
inition 2.3). Suppose C ′ has DT with respect to A, while (2.7) is satisfied in C ′′.
Then, C ′′ is an extension of C ′.
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Proof. By induction on any n ∈ ω, we prove that C ′′ is an n-extension of C ′. For
consider any X ∈ ℘n(Fmω

Σ), in which case n 6= 0, and any ψ ∈ C ′(X). Then, in case
X = ∅, we have X ∈ ℘1(Fmω

Σ), and so ψ ∈ C ′(X) ⊆ C ′′(X), for C ′′ is a 1-extension
of C ′. Otherwise, take any φ ∈ X, in which case Y , (X \ {φ}) ∈ ℘n−1(Fmω

Σ),
and so, by DT with respect to A, that C ′ has, and the induction hypothesis, we
have (φ A ψ) ∈ C ′(Y ) ⊆ C ′′(Y ). Therefore, by (2.7)[x0/φ, x1/ψ] satisfied in C ′′, in
view of its structurality, we eventually get ψ ∈ C ′′(Y ∪ {φ}) = C ′′(X). Hence, as
ω = (

⋃
ω), we conclude that C ′′ is an extension of C ′, for this is finitary. �

Theorem 4.11. Let M be a [finite] class of [finite hereditarily] simple [ A-impli-
cative] Σ-matrices, K , π0[M] and C the logic of M. Then, C is self-extensional
if[f ], for each A ∈ K and all distinct a, b ∈ A, there are some B ∈ M and some
h ∈ hom(A,B) such that χB(h(a)) 6= χB(h(b)).

Proof. The “if” part is by Theorem 4.1(v)⇒(i) with C = K. [Conversely, assume
C is self-extensional. Consider any A ∈ K and any ā ∈ (A2 \ ∆A). Then, by
Theorem 4.9, A ∈ IV(C) is an A-implicative intrinsic semi-lattice, in which case,
by the commutativity identity for ]A, a1−i 6= (ai ]A

A a1−i), for some i ∈ 2. Let
n , |A| ∈ (ω \ 1). Take any bijective c̄ : n → A. Let g ∈ hom(Fmω

Σ,A) extend
[xj/cj ;xk/c0]j∈n;k∈(ω\n), in which case A = (img c̄) ⊆ (img g) ⊆ A, and so there
is some ϕ̄ ∈ (Fmω

Σ)2 such that g(ϕ̄) = ā. Then, by (2.14), S , g−1[FgA
C(∅)] ∈

FiC(Fmω
Σ). Let us prove, by contradiction, that ϕ1−i 6∈ T , C(S ∪ {ϕi}). For

suppose ϕ1−i ∈ T , in which case, by DT, (ϕi A ϕ1−i) ∈ C(S), and so (ϕi A ϕ1−i) =
σ(ϕi A ϕ1−i) ∈ S, for σ[S] = S ⊆ S, where σ is the diagonal Σ-substitution.
Then, (ai AA a1−i) ∈ FgA

C(∅). Clearly, by (2.5), F , {ai AA ai} ⊆ FgA
C(∅).

Conversely, consider any φ ∈ C(∅) and any e ∈ hom(Fmω
Σ,A), in which case, by

the structurality of C, σ′(φ) ∈ C(∅), where σ′ is the Σ-substitution extending
[xl/xl+1]l∈ω, and so, by (2.5) and Remark 4.8, e(φ) = e′(σ′(φ)) = e′(x0 A x0) =
(ai AA ai) ∈ F , where e′ ∈ hom(Fmω

Σ,A) extends [x0/ai;xm+1/e(xm)]m∈ω (in
particular, D , 〈A, F 〉 ∈ Mod1(C); cf. Definition 2.7). And what is more, by (4.2),
(2.7) is true in D, in which case, by Lemma 4.10, F ∈ FiC(A), and so FgA

C(∅) ⊆ F

(in particular, FgA
C(∅) = F ). In this way, (ai AA a1−i) = (ai AA ai), in which case,

by (4.2), (ai ]A
A a1−i) = ((ai AA ai) AA a1−i) = a1−i, and so this contradiction

shows that ϕ1−i 6∈ T . Hence, there are some B ∈ M and some f ∈ hom(Fmω
Σ,B)

such that (S ∪ {ϕi}) ⊆ f−1[DB] 63 ϕ1−i. Consider any ψ̄ ∈ (ker g). Let E ,
〈A,FgA

C(∅)〉 ∈ Mod(C), θ , a(E) ∈ Con(A) and g′ , (g ◦ νθ) ∈ hom(Fmω
Σ,A/θ),

in which case ψ̄ ∈ (ker g′), while νθ ∈ homS
S(E , E/θ), and so S = g′

−1[DE/θ]. Then,
by (2.14), Remark 2.6(ii,iv), Lemma 3.7 and Theorem 3.2, there is an axiomatic
canonical equality determinant Ξ ⊆ Fm2

Σ for (M ∪ (ISPSM)) ⊇ {B, E/θ}, in which
case (Ξ[xl/ψl]l∈2) ⊆ S ⊆ f−1[DB], and so ψ̄ ∈ (ker f). Thus, (ker g) ⊆ (ker f), in
which case, by the Homomorphism Theorem, h , (g−1 ◦ f) ∈ hom(A,B), and so
h(ai) = f(ϕi) ∈ DB 63 f(ϕ1−i) = h(a1−i), as required. �

4.3. Self-extensionality of uniform finitely-valued logics versus truth dis-
criminators. A truth discriminator for/of a Σ-matrix A is any h̄ : img[θA\∆A] →
hom(A,A) such that, for every {a, b} ∈ (dom h̄), 〈a, b〉 6∈ ker(h{a,b} ◦ χA). Then,
since ∆A ∈ hom(A,A), by Theorems 4.7 and 4.11, we have:

Corollary 4.12. Let A be a [finite hereditarily] simple [either implicative or both
conjunctive and disjunctive] Σ-matrix and C the logic of A. Then, C is self-
extensional if[f ] A has a truth discriminator.

The effective procedure of verifying the self-extensionality of the logic of an n-
valued, where n ∈ (ω \1), hereditarily simple either implicative or both conjunctive
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and disjunctive Σ-matrix resulted from Corollary 4.12 has the computational com-
plexity nn+2 that is quite acceptable for (3|4)-valued logics. And what is more,
it provides a quite useful heuristic tool of doing it, manual applications of which
(suppressing the factor nn+2 at all) are presented below. First, we have:

Corollary 4.13. The logic of any no-less-than-three-valued hereditarily simple
either implicative or both conjunctive and disjunctive Σ-matrix A without non-
diagonal non-singular endomorphism of A (cf. pp. 2,3) is not self-extensional.

Proof. By contradiction. For suppose the logic of A is self-extensional, in which
case, as |A| > 3 
 2, χA is not injective, and so there are some distinct a, b ∈ A such
that χA(a) = χA(b). Then, by Corollary 4.12, there is some h ∈ hom(A,A) such
that χA(h(a)) 6= χA(h(b)), in which case h(a) 6= h(b), and so h is not singular (in
particular, diagonal). Hence, χA(a) = χA(h(a)) 6= χA(h(b)) = χA(b) = χA(a). �

4.3.1. Self-extensionality versus equational implications and unitary equality deter-
minants. According to [19], given any m,n ∈ ω, a [finitary] ( Σ-)equational `m

n -
{sequent }definition for/of a Σ-matrix A is any f ∈ ℘[ω](Eqm+n

Σ ) such that, for all
ā ∈ Am and all b̄ ∈ An, it holds that (((img a) ⊆ DA) ⇒ (((img b) ∩DA) 6= ∅)) ⇔
(A |= (

∧
f)[xi/ai;xm+j/bj ]i∈m;j∈n). Equational `0/1

1 -definitions are also referred
to as equational “truth [predicate] definitions”/implications /(cf. [21]). Some kinds
of equational sequent definitions are equivalent for implicative matrices, in view of:

Remark 4.14. Given a(n A-implicative) Σ-matrix A, (i) holds (as well as (ii–iv) do
so), where:

(i) given a [finitary] equational `2
2-definition f for A, f[x(2·i)+j/xi]i,j∈2 is a

[finitary] equational implication for A (cf. Theorems 10 and 12(ii)⇒(iii) of
[19]);

(ii) given any [finitary] equational implication f for A, f[x0/(x0 A x0), x1/x0] is
a [finitary] equational truth definition for A;

(iii) given any [finitary] equational truth definition f for A, f[x0/(x0 A (x1 A
(x2 ]A x3)))] is a [finitary] equational `2

2-definition for A;
(iv) in case A is truth-singular, {x0 ≈ (x0 A x0)} is a finitary equational truth

definition for it. �

In this way, taking Theorems 10, 12(i)⇔(ii) and 13 of [19] as well as Remark
4.14 into account, an either implicative or both conjunctive and disjunctive no-less-
than-two-valued finite Σ-matrix M with unitary equality determinant has a finitary
equational implication iff the multi-conclusion two-side sequent calculus S̃(k,l)

M,T (cf.
[18] as well as the paragraph -2 on p. 294 of [19] for more detail) is algebraizable
(in the sense of [17, 16]). Then, by Lemma 9 and Theorem 10 of [19] as well as
Corollary 4.13, we immediately get:

Corollary 4.15. The logic of any no-less-than-tree-valued either implicative or
both conjunctive and disjunctive Σ-matrix with unitary equality determinant and
equational implication is not self-extensional.

As a first generic application of the “implicative” parts of Remark 4.14 and
Corollary 4.15, we have:

Corollary 4.16. The logic of any no-less-than-tree-valued implicative truth-singu-
lar Σ-matrix with unitary equality determinant is not self-extensional.

Example 4.17 ( Lukasiewicz’ finitely-valued logics; cf. [8]). Let n ∈ (ω \ 2), Σ ,
(Σ+ ∪ {∼,⊃}) with binary ⊃ (implication) and unary ∼ (negation) and A the Σ-
matrix with (A�Σ+) , Dn (cf. Subparagraph 2.2.1.2.1), DA , {1}, ∼A , (1 − a)
and (a ⊃A b) , min(1, 1−a+b), for all a, b ∈ A, in which case A is both consistent,
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truth-non-empty, ∧-conjunctive and ∨-disjunctive as well as has both an equational
implication, by Example 7 of [19], and a unitary equality determinant, by Example
3 of [18] (cf. Proposition 6.10 of [20] for a constructive proof of it). Hence, by
Corollary 4.15, the logic of A is not self-extensional, unless n = 2. On the other
hand, by induction on any m ∈ (ω \ 1), define the secondary unary connective
m⊗ x0 of Σ setting ((1[+m])⊗ x0) , ([∼x0 ⊃ (m⊗]x0), in which case (m⊗A a) =
min(1,m · a), for all a ∈ A, and so A is ((n − 1) ⊗ ∼x0)-negative (in particular,
is implicative, for it is disjunctive; cf. Remark 2.8(i)(b)). In this way, the above
negative result equally ensues from Example 3 of [18] and Corollary 4.16. �

This provides one of most representative applications of Corollary 4.16, another
being discussed in Subparagraph 6.2.2.3.3 below (cf. Corollary 6.67 therein). On
the other hand, in view of Theorem 10 and Lemma 8 of [19], Example(s) 4.2 [with
Σ = Σ+,01 and A = D2,01; cf. Subparagraph 2.2.1.2.1] (and 4.17 with n = 2)
as well as the self-extensionality of inferentially inconsistent {in particular, one-
valued} logics, the stipulation “no-less-than-tree-valued” cannot be omitted in the
formulation of Corollary 4.15 [4.13] (4.16).

Example 4.18. By Example 2 of [18], Remark 1 as well as Theorem 10 and
Lemma 9 of [19] and Corollaries 4.13 and 4.15, arbitrary three-valued expansions of
both the logic of paradox LP [13] and Kleene’s three-valued logic KL3 [6] are not
self-extensional, for the matrix defining the former has the equational implication
(x0 ∧ (x1 ∨ ∼x1)) ≈ (x0 ∧ x1), discovered in [15], while the matrix defining the
latter has the same underlying algebra as that defining the former. Likewise, by
“both Lemma 4.1 of [14] and Remark 4.14(i,iii)”/“Proposition 5.7 of [21]” as well
as Corollary 4.15, arbitrary three-valued expansions of P 1/HZ [28]/[5] are not self-
extensional, for their being defined by implicative/ matrices with equational “truth
definition”/implication. �

Other generic applications of our universal elaboration presented in this section
are discussed in Section 6.

5. Structural completions versus free models

Let M be a [finite] class of [finite] Σ-matrices, C the logic of M, K , π0[M] and α
a [finite] Σ-rank. Then, for any A ∈ M and any h ∈ hom(Fmα

Σ,A), h ∈ homS(B,A),
where B , 〈Fmα

Σ, h
−1[DA]〉, in which case, by Remark 2.6, we have θα

K ⊆ (kerh) =
h−1[∆A] ⊆ h−1[θA] = θB, and so θα

K ⊆ θD, where D , 〈Fmα
Σ,Cnα

M(∅)〉 ∈ Mod(C),
in view of the structurality of C. Thus, θα

K ∈ Con(D), in which case, by (2.14),
Fα

M , (D/θα
K) ∈ Mod(C), while Fα

M = Fα
K [in particular, Fα

M is finite], whereas
I[= Iα

M] , ((Bα
M[∩∅])[∪{〈A, f〉 | A ∈ M, f : Varα → A}]) is a [finite] set [more

precisely, |Iα
M| 6 (

∑
A∈M α

|A|)], and so choosing [resp., setting], for each i ∈ I,
such Ai[, π0(i)] ∈ M and hi[, π1(i)] ∈ hom(Fmα

Σ,Ai) that h−1
i [DAi ] = i[∈ Bα

M],
respectively, and then setting Ei , (Ai�(img hi)), being the submatrix of Ai gen-
erated by hi[Varα][= (img hi) to be found effectively], we eventually conclude that
θ , θα

K = (Eqα
Σ ∩

⋂
i∈I(kerhi)), g : Fmα

Σ → (
∏

i∈I Ei), ϕ 7→ 〈hi(ϕ)〉i∈I is a strict sur-
jective homomorphism from D onto the subdirect product Gα

M , ((
∏

i∈I Ei)�(img g))
of 〈Ei〉i∈I , being the submatrix of

∏
i∈I Ei generated by g[Varα] [to be found effec-

tively], (ker g) = θ, and thus, by the Homomorphism Theorem, e , (ν−1
θ ◦ g) is an

isomorphism from Fα
M onto Gα

M.

Theorem 5.1. Let Σ be a signature [with(out) nullary symbols], M a [finite] class
of {denumerably-generated [more specifically, finite]} 〈weakly Y-disjunctive〉 Σ-
matrices, C the logic of M, [f ∈

∏
A∈M ℘ω(\1)(A),] α , (ω[∩((1∪)

⋃
A∈M |f(A)|])
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and B a submatrix of Gα
M. Suppose every A ∈ M is a surjectively homomorphic

image of B, unless B = Gα
M, [and is generated by f(A)]. Then, the structural

completion of C is defined by B. In particular, C is structurally complete iff,
for each denumerably-generated {non-proper} dnon-esimple consistent submatrix
E of any 〈Y-disjunctive〉 element of M, there are some [finite] 〈one-element〉 set
I[∈ (α|B|+1)], some C ∈ S∗(A)I and some its subdirect product in H−1(Ed/a(E)e).

Proof. First, by (2.14), the logic C ′ of Gω[/α]
M is defined by Dω[/α] , 〈Fm

ω[/α]
Σ ,

Cnω[/α]
M (∅)〉 ∈ Mod(C), in view of the structurality of C [/and (2.13)], in which

case it is an extension of C, and so C(∅) ⊆ C ′(∅). For proving the converse
inclusion, consider the following complementary cases:

• α = ω.
Then, applying the diagonal Σ-substitution, we get C ′(∅) ⊆ DDω = C(∅).

• α 6= ω.
Consider any A ∈ M, in which case it is generated by f(A) of cardinality
6 α, and so there is some surjective h ∈ hom(Fmα

Σ,A). Then, DDα =
Cnα

M(∅) ⊆ h−1[DA], in which case h ∈ homS(Dα,A), and so, by (2.15),
C ′(∅) ⊆ C(∅).

Next, Dω is a model of any extension C ′′ of C ′ such that C ′′(∅) = C(∅), in view of
its structurality [and so is its submatrix Dα, in view of (2.13) and (2.14)], in which
case C ′ is the structural completion of C. Further, by (2.14), B is a model of C ′.
Conversely, if B = {6=}Gα

M, then {each A ∈ M is a surjective homomorphic image
of B, in which case, by (2.15)} CnB(∅) = C ′(∅), and so C ′, being structurally
complete, is defined by B. Finally, as |Varω | = ω, any Σ-matrix is a model of a Σ-
logic iff each denumerably-generated submatrix of it is so. In this way, (2.14) as well
as Lemma 3.7 〈resp., Remarks 2.6(ii,iv), 2.8(ii)(a,b) and Theorem 3.9〉 complete the
argument. �

This provides [effective] algebraic criteria of admissibility of [finitary] rules in
and structural completeness of [finitely-valued] logics [so implying the decidability
of this problem]. [On the other hand, the computational complexity of resulting
effective procedures may be to large to count them practically applicable. For in-
stance, when M consists of a single (without loss of generality, simple; cf. (2.14) and
Remark 2.6(iv)) consistent truth-non-empty (cf. Remarks 2.9 and 2.5) n-valued Σ-
matrix, where n ∈ (ω \ 2), n is the upper limit of α, in which case nn is the upper
limit of |Iα

M|, and so the upper limit of |B| is n(nn). In particular, the procedure of
verifying admissibility of finitary Σ-rules of rank m ∈ ω in C has the computational
complexity (n(nn))m, being relatively acceptable, only if either n = 2 and m 6 26
or n = 3 and m 6 2. Likewise, in case the unique element of M is disjunctive, the
computational complexity of the procedure of verifying structural completeness of
C is (n(nn))n, being relatively acceptable, only if n = 2. Otherwise, the situation is
even much worse (more, precisely, the computational complexity of the procedure of

verifying structural completeness of C is n((n(nn))(n(n(nn)))), being absolutely unac-
ceptable, even if n = 2, especially taking refusal of Windows calculator to compute
even its degree even in advanced mode into account). These general evaluations
make the quite effective algebraic criteria of structural completeness to be obtained
in the next section and suppressing such hyper-combinatorial factors at all more
than acute.]

6. Applications to no-more-than-four-valued logics

All along throughout this section, ([o =]∼)/ ⊃ is supposed to be a primary
unary/binary connective of Σ viewed as negation/implication [unless otherwise
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specified]. Let Σ〈⊃〉{ς̄}
∼(+)[01] , ({∼}(∪Σ+)[∪Σ01]〈∪{⊃}〉{∪(img ς̄)}) [(cf. Subpara-

graph 2.2.1.2.1)] {where ς̄ is a finite sequence of primary connectives not belonging
to Σ〈⊃〉

∼(+)[01]}.

6.1. Uniform four-valued expansions of Belnap’s four-valued logic. A [bo-
unded] De Morgan lattice [17] is any Σ∼,+[01]-algebra, with [bounded] distributive
lattice Σ+[01]-reduct satisfying:

∼∼x0 ≈ x0,(6.1)
∼(x0 ∨ x1) ≈ (∼x0 ∧ ∼x1),(6.2)

By DM4[01] we denote the non-Boolean diamond [bounded] De Morgan lattice
with (DM4[01]�Σ+[01]) , D2

2[01] and ∼DM4[01]〈i, j〉 , 〈1 − j, 1 − i〉, for all i, j ∈ 2.
In this connection, we use standard abbreviations going back to [2]:

t , 〈1, 1〉, f , 〈0, 0〉, b , 〈1, 0〉, n , 〈0, 1〉,

Here, it is supposed that Σ ⊇ Σ∼,+[01] and (Z|Y) = (∧|∨). Fix a Σ-matrix
A with (A�Σ∼,+[01]) , DM4[01] and DA , (22 ∩ π−1

0 [{1}]). Then, A as well as
its submatrices are both ∧-conjunctive and ∨-disjunctive as well as both consistent
and truth-non-empty (cf. Remark 2.8(ii)(a,b)), while {x0,∼x0} is a unitary equality
determinant for them (cf. Example 2 of [18]), so they are hereditarily simple (cf.
Lemma 3.1). Let C be the logic of A. Then, since DM4[01] , (A�Σ∼,+[01]) defines
[the bounded version/expansion of] Belnap’s four-valued logic B4[01] [2] (cf. [17,
23, 22, 25]), C is a uniform four-valued expansion of B4[01]. Conversely, according
to Corollary 4.9 of [23], any uniform four-valued expansion of B4[01] is defined by
a unique expansion of DM4[01], in which case A is uniquely determined by C,
and so is said to be characteristic for/of C. Moreover, by (2.14), Remark 2.6(ii)
and Theorem 3.9, C is ∼-subclassical iff ∆2 forms a subalgebra of A, in which case
A�2 is isomorphic to any ∼-classical model of C, and so defines a unique ∼-classical
extension of C (cf. Theorem 4.20 of [23]), in its turn, denoted by CPC and relatively
axiomatized according to Corollary 6.3 below.

Lemma 6.1. C is A-implicative iff A is so.

Proof. The “if” part is immediate. Conversely, assume C is A-implicative, in which
case, by Theorem 3.5, it is ]A-disjunctive, and so, by the ∨-disjunctivity of A (in
particular, of C), we have C(x0 ∨ x1) = (C(x0) ∩C(x1)) = C(x0 ]A x1). Then, by
(2.9), C(∅) = C((x0 A x1) ]A x0)) = C((x0 A x1) ∨ x0)), in which case the axiom
(x0 A x1)∨ x0 is true in A as well as both (2.7) and (2.6), being satisfied in C, are
so, and so, A, being ∨-disjunctive, is A-implicative. �

Given any i ∈ 2, put DM3,−,i , (22 \ {〈i, 1− i〉}). Then, we have the submatrix
A3,i generated by DM3,−,i with carrier (not) distinct from the generating set (in
particular, when, e.g., Σ = Σ∼,+[,01]), taking (2.14) into account, the logic C3,i

of which is a both ∨-disjunctive and ∧-conjunctive {for its defining matrix is so}
as well as inferentially consistent {for its defining matrix is both consistent and
truth-non-empty} uniform no-more-than-four-valued extension of C (and a three-
valued expansion of [the bounded version/expansion LP01|KL3,01 of] “the logic
of paradox”|“Kleene’s three-valued logic” LP |KL3 [13]|[6], whenever i = (0|1),
for DM3,i[01] , (A3,i�Σ∼,+[01]) defines LP[01]|KL3[01]), in which case it is ∼-
paraconsistent|(∨,∼)-paracomplete, and so is not ∼-classical, in view of Remark
2.8(i)(c|d).

6.1.1. Miscellaneous expansions.
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6.1.1.1. Classically-negative expansions. Next, C is referred to as a (purely) classi-
cal〈ly-negative〉 {uniform four-valued} expansion of B4[,01], provided (Σ ⊆)Σ¬

∼,+[,01]

⊆ Σ, where ¬ — classical negation — is unary, and ¬A〈i, j〉 , 〈1− i, 1− j〉, for
all i, j ∈ 2, in which case (we set DMB4[,01] , A, while) A is ¬-negative, and so,
being ∨-disjunctive, is A¬

∨-implicative (in particular, C is so), in view of Remark
2.8(i)(a).
6.1.1.2. Bilattice expansions. Likewise, C is referred to as a (purely) bilattice {uni-
form four-valued} expansion of B4[,01], provided (Σ ⊆)Σu,t

∼,+[,01] ⊆ Σ, where u
and t — knowledge/information conjunction and disjunction — are binary, and
(〈i, j〉(u|t)A〈k, l〉) , 〈(min |max)(i, k), (max |min)(j, l)〉, for all i, j, k, l ∈ 2.
6.1.1.3. Implicative expansions. Finally, C is referred to as a (purely) 〈canonically〉
implicative {uniform four-valued} expansion of B4[,01], provided (Σ ⊆)Σ⊃

∼,+[,01] ⊆
Σ and (〈i, j〉 ⊃A 〈k, l〉) , 〈max(1− i, k),max(1− i, l)〉, for all i, j, k, l ∈ 2, in which
case A is ⊃-implicative, and so is C.

6.1.2. Structural completeness versus maximal paracompleteness, paraconsistency
and consistency as well as inconsistency of resolutional extensions.

Lemma 6.2. The following are equivalent:
(i) D3,−,1 does not form a subalgebra of A2;
(ii) A3,1 = A;
(iii) A3,1 is ∼-paraconsistent;
(iv) CR is not defined by A3,1;
(v) providing C does [not] have theorems, CR is not [inferentially] (∨,∼)-para-

complete;
(vi) providing C does [not] have theorems, CR = CPC

[+0], if C is ∼-subclassical
(i.e., {f, t} forms a subalgebra of A2), and CR is [inferentially] inconsistent,
otherwise;

(vii) CR is not an expansion of KL3.

Proof. First, (i)⇔(ii)⇔(iii) are immediate. Next, by Theorem 3.12, CR is not ∼-
paraconsistent, so (iii)⇒(iv) holds. Likewise, as A3,1|KL3 is (inferentially) (∨,∼)-
paracomplete, (iv|vii) is a particular case of (v). Furthermore, (iv/vii)⇒(i) is by
(2.14) and Theorem 3.12. Further, (vi)⇒(v) is by [(2.12) and] the structurality of
CR as well as Remark 2.8(i)(d). Finally, (i)⇒(vi) is by Theorem 3.12 and Corollary
3.10(i)⇔(iv) [as well as Remark 2.5]. �

Then, by Corollary 2.9 of [23], Remarks 2.5, 2.8(i)(d), Lemma 6.2(iv)⇒(i)⇒(vi)
and the (∨,∼)-paracompleteness of A3,1, we immediately have:

Corollary 6.3. If C is ∼-classical (i.e., {f, t} forms a subalgebra of A2), then
CPC is relatively axiomatized by {x0 ∨ ∼x0, (3.2)}.

Lemma 6.4. Let B ∈ S∗(A) and h ∈ homS(A,B). Then, h is diagonal. In
particular, B = A.

Proof. First, for every a ∈ 22, (a ∈ {b, n}) ⇔ (∼Aa = a), in which case ∼A[{b, n}] ⊆
{b, n}, and so, as b ∈ DA, h(b) = b. Then, since (f|t) = (b(∧|∨)An), h(f|t) =
(b(∧|∨)Ah(n)). Therefore, if h(n) was not equal to n, then it would be equal to b,
in which case B = h[A] would be equal to {b}, and so B would be inconsistent.
Thus, h(n) = n, in which case h(f|t) = (f|t), and so h is diagonal, as required. �

Corollary 6.5. Let B be a [consistent] (truth-non-empty) submatrix of A. [Suppose
A 6= B has no inconsistent submatrix, whenever B is ∼-paraconsistent.] Then, the
logic C ′ of D = (A × B) is an axiomatically-equivalent {and so (inferentially)
(∨,∼)-paracomplete} [proper] extension of C.
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Proof. As (π0�D) ∈ homS(D,A), the []-non-optional version is by (2.14,2.15) {for A
is (both truth-non-empty and) (∨,∼)-paracomplete, and so is D (as B is truth-non-
empty)}. [Finally, we prove that C ′ 6= C, by contradiction. For suppose C ′ = C, in
which case D is ∼-paraconsistent, for A is so, and so there is some a ∈ DD such that
∼Da ∈ DA. Then, (2.10) is not true in B under [x0/π1(a), x1/b], where b ∈ (B \
DB) 6= ∅, for B is consistent, in which case B is ∼-paraconsistent, and so A 6= B has
no inconsistent submatrix. Moreover, A is a finite consistent ∨-disjunctive model of
C = C ′, being defined by D, in which case D ∈ Mod(C) is weakly ∨-disjunctive, for
A is so, and so, by Theorem 3.9, there is some h ∈ homS(A,D). Then, g , (h ◦π1)
is a surjective homomorphism from A onto E , (B�(img g)) ∈ S(A) = S∗(A), in
which case, by Lemma 6.4, A = E ⊆ B ⊆ A, and so B = A. This contradiction
completes the argument.] �

Theorem 6.6. The following are equivalent:
(i) C is maximally inferentially (∨,∼)-paracomplete;
(ii) the following hold:

(a) A has no non-∼-paraconsistent truth-non-empty consistent submatrix
(viz., neither {f, t} nor DM3,−,1 forms a subalgebra of A [i.e., neither
C is ∼-subclassical nor CR is inferentially (∨,∼)-paracomplete {that is,
CR is inferentially inconsistent}; cf. Lemma 6.2(i)⇔(v){⇔(vi)}]);

(b) A has no non-(∨,∼)-paracomplete truth-non-empty consistent submatrix
(viz., in view of (a), DM3,−,0 does not form a subalgebra of A [i.e., C is
maximally ∼-paraconsistent; cf. Theorem 4.31(i)⇔(iv) of [23]]), unless
it has an inconsistent submatrix {i.e., {b} forms a subalgebra of A};

(iii) the following hold:
(a) (ii)(a) holds;
(b) A has no proper truth-non-empty consistent submatrix (viz., A has no

proper non-one-element subalgebra [i.e., C is maximally inferentially
consistent; cf. Theorem 4.16 of [23]]), unless it has an inconsistent
submatrix {i.e., {b} forms a subalgebra of A}.

Proof. First, (i)⇒(iii) is by Corollary 6.5. Next, (ii) is a particular case of (iii),
in view of the inferential (∨,∼)-paracompleteness of A. Finally, assume (ii) holds.
Consider any inferentially (∨,∼)-paracomplete extension C ′ of C, in which case
(x0 ∨ ∼x0) 6∈ T , C ′(x1) 3 x1, while by the strucuturality of C ′, 〈Fmω

Σ, T 〉 is
a model of C ′ (in particular, of its sublogic C), and so is its finitely-generated
(∨,∼)-paracomplete truth-non-empty submatrix B , 〈Fm2

Σ, T ∩ Fm2
Σ〉, in view of

(2.14). Then, by Lemma 3.7, there are some finite set I, some C ∈ S∗∗(A)I and
some subdirect product D ∈ H−1(B/a(B)) of it, in which case, by (2.14) and
Remark 2.8(ii)(b), D is a (∨,∼)-paracomplete model of C ′, for B is so, and so
there is some a ∈ D such that {t, b, n}I 3 b , (a ∨D ∼Da) 6∈ DA (in particular,
J , {i ∈ I | πi(a) = n} 6= ∅, because, for any c ∈ {t, b, f}, (c ∨A ∼Ac) ∈ DA).
Furthermore, by Claim 4.17 of [23], f , (I×{f}) ∈ D 3 t , (I×{t}). On the other
hand, by (ii)(a), the submatrix E of A generated by {f, t}, being both consistent
and truth-non-empty, is ∼-paraconsistent, in which case b ∈ E, and so there is
some φ ∈ Fm2

Σ such that φA(f, t) = b. Hence, D 3 d , φD(f, t) = (I × {b}).
Consider, the following complementary cases:

• {b} forms a subalgebra of A. Then, as J 6= ∅, e : A → AI , c 7→ ((J ×
{c}) ∪ ((I \ J) × {b})) is injective, in which case D 3 d = e(b), and so
D 3 ((d ∨D ∼Db) ∧D b) = e(n). Therefore, since A is generated by {b, n},
e is an embedding of A into D.

• {b} does not form a subalgebra of A, in which case A has no inconsistent
submatrix, and so no non-(∨,∼)-paracomplete truth-non-empty consistent
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submatrix, in view of (ii)(b). Then, E , being a both consistent and truth-
non-empty submatrix of A, is (∨,∼)-paracomplete, in which case n ∈ E,
and so there is some ψ ∈ Fm2

Σ such that ψA(f, t) = n (in particular, D 3
ψD(f, t) = (I × {n})). Therefore, since I ⊇ J 6= ∅, {〈c, I × {c}〉 | c ∈ A} is
an embedding of A into D.

Thus, anyway, A is embeddable into D ∈ Mod(C ′), and so, by (2.14), C ′ = C. �

Since any Σ-logic with theorems is [in]consistent/(∨,∼)-paracomplete iff it is
inferentially so, while any Σ-logic axiomatically-equivalent to a (∨,∼)-paracomplete
one is (∨,∼)-paracomplete, whereas any ∼-paraconsistent Σ-matrix is truth-non-
empty, by Remark 2.9, Corollaries 3.10(i)⇔(iv), 6.5 and Theorem 6.6, we eventually
get:

Corollary 6.7. The following are equivalent:
(i) C is structurally complete;
(ii) C is maximally (∨,∼)-paracomplete;
(iii) the following hold:

(a) A has no non-∼-paraconsistent consistent submatrix (viz., neither {f, t}
nor DM3,−,1 nor {n} forms a subalgebra of A [i.e., neither C is ∼-
subclassical nor C is purely-inferential nor CR is (∨,∼)-paracomplete
{that is, CR is inconsistent}]);

(b) A has no non-(∨,∼)-paracomplete consistent submatrix (viz., in view of
(a), DM3,−,0 does not form a subalgebra of A [i.e., C is maximally ∼-
paraconsistent]), unless it has an inconsistent submatrix {i.e., {b} forms
a subalgebra of A};

(iv) the following hold:
(a) (ii)(a) holds;
(b) A has no proper consistent submatrix (viz., in view of (a), A has no

proper non-one-element subalgebra [i.e., C is maximally consistent; cf.
Theorem 4.16 of [23]]), unless it has an inconsistent submatrix {i.e., {b}
forms a subalgebra of A}.

Theorem/Corollary 6.6/6.7 provides an effective algebraic criterion of maximal
inferential/ (∨,∼)-paracompleteness /(viz., structural completeness) positively cov-
ering arbitrary bilattice uniform four-valued expansions of B4/,01 (cf. Corollary
5.2 of [23]) as well as non-∼-subclassical classically-negative uniform four-valued
expansions of B4[,01] (cf. Corollary 5.1(i) therein) but negatively covering /both
∼-subclassical {in particular, purely} classically-negative uniform four-valued ex-
pansions of B4[,01] /“and purely-inferential {in particular, purely} bilattice uniform
four-valued expansions of B4” as well as (purely implicative uniform four-valued
expansions of) B4[,01], because they are ∼-subclassical (cf. Corollary 5.3 therein).

6.1.3. No-more-than-four-valued extensions and their self-extensionality.

Lemma 6.8 (Key 4-valued Lemma). Let B ∈ Mod(C). Then, the following hold:
(i) B is ∨-disjunctive, whenever it is either inconsistent or truth-empty or ∼-

negative or [non-∼-classically-defining or] no-more-than-(4[−1])-valued;
(ii) providing B is ∨-disjunctive [and (not) truth-empty |“either ∼-negative or ∼-

classically-defining”‖ ∼-paraconsistent/ (∨,∼)-paracomplete], it is a strictly
surjectively homomorphic counter-image of a submatrix of A with carrier in
S4[+(−)∅|C‖P/PC] , (({{01},∆2, 22} ∪ {D3,−,l | l ∈ 2})[∩(\)({{01}|∆2}‖{22,
DM3,−,0/1})]).

Proof. (i) By contradiction. For suppose B is not ∨-disjunctive. Then, tak-
ing Remarks 2.6(iv), 2.8(ii)(a,b) and (2.14) into account, without loss of
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generality, one can assume that B is simple, in which case, by Corollary
3.16 and Theorem 3.20, B belongs to the variety generated by A, and so
B�Σ∼,+ is a De Morgan lattice (in particular, B�Σ+ is a distributive lat-
tice), for (A�Σ∼,+) = DM4 is so. And what is more, B ∈ Mod(C) is both
∧-conjunctive and weakly ∨-disjunctive, for C is so. Hence, since B is not ∨-
disjunctive, there are some a, b ∈ (D \DB), in which case c , (a∧B b) 6∈ DB,
such that d , (a ∨B b) ∈ DB (in particular, B is both consistent and truth-
non-empty), in which case d 6∈ {a, b, c}, and so |{a, b, c, d}| = 4. There-
fore, if B was ∼-negative, then, by its ∧-conjunctivity and (6.2), we would
have DB 63 ∼Bd = (∼Ba ∧B ∼Bb) ∈ DB. Thus, |B| 6 4, in which case
B = {a, b, c, d} (in particular, |B| = 4 
 3), and so B is not ∼-classically-
defining. In this way, B is a distributive (∧,∨)-lattice with zero c and unit
d, in which case, by (6.1) and (6.2), ∼B(c|d) = (d|c), and so, by (6.1),
∼B[{a, b}] ⊆ {a, b}, for ({a, b} ∩ {c, d}) = ∅. Consider the following cases:
• ∼Ba = a, in which case, by (6.1), ∼Bb = b, and so e , {〈a, 10〉, 〈b, 01〉, 〈c,

00〉, 〈d, 11〉} is an isomorphism from B�Σ∼,+ onto DM4. Furthermore,
by Lemma 3.7, there are some finite set I, some C ∈ S∗(A)I , some
subdirect product D of it and some h ∈ homS

S(D,B), in which case,
({h ◦ e} ∪ {πi�D | i ∈ I} ∈ ℘ω(hom(D�Σ∼,+,DM4)), while, by Remark
2.8(ii)(b), D is consistent (in particular, I 6= ∅), for B is so, whereas
(
⋂

i∈I ker(πi�D)) = ∆D ⊆ ker(h◦e) 6= D2, for img(h◦e) = DM4 = 22 is
not a singleton, and so, by Theorem 3.8 of [23], there is some i ∈ I such
that ker(πi�D) = ker(h ◦ e) = (kerh), for e is injective. Therefore, by
the Homomorphism Theorem, as (img h) = B, h−1 ◦πi is an embedding
of B into A, in which case, by Remark 2.8(ii)(a), B is ∨-disjunctive.

• ∼Ba 6= a, in which case ∼Ba = b, and so, by (6.1), ∼Bb = a. Then,
for each e′ ∈ B, (e′(∧|∨)B∼Be′) = (c|d) 6∈ | ∈ DB, in which case B,
being ∧-conjunctive, satisfies both x0 ∨ ∼x0 and (3.2). And what is
more, {c, d} forms a subalgebra of B, in which case, by (2.14), B�{c, d}
is a ∼-classical model of C, and so this is ∼-subclassical. Then, by
Corollary 6.3, B ∈ Mod(CPC). Conversely, the logic of the consistent
truth-non-empty model B of C is an inferentially consistent extension of
C, in which case, by Theorem 4.21 of [23], B is ∼-classically-defining.

(ii) Since S4[+(−)∅|C‖P/PC] is the set of the carriers of all [those] elements of S∗(A)
[which are (not) truth-empty|“either ∼-negative or ∼-classically-defining”‖∼-
paraconsistent/(∨,∼)-paracomplete], (2.14), Remarks 2.6 (ii), 2.8(ii)(a,b) and
Theorem 3.9 complete the argument. �

By Theorem 4.10 of [23], (2.14), Examples 4.2, 4.18, Lemma 6.8 and the self-ex-
tensionality of inferentially inconsistent logics, we first have:

Theorem 6.9. Let C ′ be a uniform no-more-than-four-valued proper (in particular,
no-more-than-three-valued) extension of C. Then, the following are equivalent:

(i) C ′ is self-extensional;
(ii) C ′ is either inferentially inconsistent or ∼-classical;
(iii) for each i ∈ 2, if DM3,−,i forms a subalgebra of A, then C ′ 6= C3,i.

Since DM4�{01} is the only truth-empty submatrix of DM4, while {01} ⊆ [*
]DM3,−,1[−1] ⊇ ∆2, by Theorem 4.10 of [23], (2.14) and Lemma 6.8, we also get:

Theorem 6.10. Let M be a class of no-more-than-four-valued models of C, C ′

the logic of M, M
(∗)[∼/ 6∼]
{0|1} the class of all (truth-non-empty) [∼-classicaly-/non-

∼-classically-defining] {∼-paraconsistent |(∨,∼)-paracomplete} consistent elements
of M and M2 = (M0 ∩ M1). Then, C ′ is defined by {A | M2 6= ∅} ∪ {A�{01} |
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(M\M∗) 6= ∅ = M∗, 6∼
1 = M2}∪{A�∆2 | (

⋃
i∈2 M∗, 6∼

i ) = M2 = ∅ 6= M∼}∪
⋃

i∈2{A3,i |
M∗, 6∼

i 6= ∅ = M2}. In particular, C is defined by any both ∼-paraconsistent
and (∨,∼)-paracomplete no-more-than-four-valued model, so it has no both ∼-
paraconsistent and (∨,∼)-paracomplete no-more-than-three-valued model.

Taking (2.12), Theorems 6.9, 6.10, Remark 2.5 and Example 4.2 into account, it
only remains to study the following no-more-than-four-valued extensions of C.
6.1.3.1. Double three-valued non-iniform and non-proper extensions. By (2.14),
(providing, for each i ∈ 2, DM3,i forms a subalgebra of A) the logic C3 of {A3,i | i ∈
2} is a both ∨-disjunctive and ∧-disjunctive {for its defining matrices are so} as well
as inferentially-consistent {for its defining matrices are both consistent and truth-
non-empty} (proper) extension of C (for this is minimally four-valued; cf. Theorem
4.10 of [23]). Let µ : 22 → 22, 〈i, j〉 7→ 〈j, i〉 be the mirror/specular function.

Theorem 6.11 (cf. [22, 25]). It does hold that (v)⇐(i)⇔(ii)⇔(iii)⇒(iv)[⇒(iii)],
where:

(i) C[3] is self-extensional;
(ii) [for each/some i ∈ 2] (µ[�A3,i]) ∈ hom(A[3,i],A);
(iii) A has a(n injective) non-singular non-diagonal [partial] endomorphism — cf.

pp. 2,3;
(iv) A has no equational implication — cf. Subsubsection 4.3.1;
(v) C〈3〉 is ∼-subclassical.

In particular, C3 is self-extensional, whenever C is so.

Proof. First, the fact that (iv) is equivalent to the ()-non-optional []-optional version
of (iii) is due to Theorems 10, 13 and 15 of [19], while the []-optional version of (iii)
is a particular case of the []-non-optional one, whereas the ()-non-optional version of
(iii) is a particular case of the ()-optional one, being, in its turn, a particular case of
(ii), for µ is injective. Next, the fact that (i) implies the ()-non-optional version of
(iii) is by Theorem 4.7, for DA[∩DM3,−,0] has two distinct elements. [Furthermore,
by the injectivity of µ and the fact that, for any i ∈ 2, µ[DM3,−,i] = DM3,−,1−i,
while 2 = {i, 1 − i}, the alternatives in (ii) are equivalent.] Further, assume (ii)
holds. Consider [any i ∈ 2 and] any distinct a, b ∈ A[3,i], in which case there is some
j ∈ 2 such that πj(a) 6= πj(b), and so χA[3,kj ](hj(a)) 6= χA[3,kj ](hj(b)), where [k0|1 ,
(i|(1 − i)) and] h0|1 , (∆A[3,i] |(µ[�A3,i])) ∈ hom(A[3,i],A). In this way, Theorem
4.7 yields (i). Now, assume the ()-non-optional version of (iii) holds. Then, there is
some non-diagonal homomorphism h from [a subalgebra of] A to A withB , (img h)
not being a singleton, in which case B forms a non-one-element subalgebra of A, and
so does D , (domh). Hence, ∆2 ⊆ (B∩D). Then, both of (B|D) , (A�(B|D)) are
(∧,∨)-lattices with zero/unit 〈0/1, 0/1〉, for A is so, in which case, as h ∈ hom(D,B)
is surjective, by Lemma 2.1, h�∆2 is diagonal, and so, since h is not so, there is
some i ∈ 2 such that DM3,−,i ⊆ D {in particular, A[3,i] ⊆ D}, while h(〈1− i, i〉) 6=
〈1− i, i〉. On the other hand, for all a ∈ A, it holds that (∼Aa = a) ⇔ (a 6∈ ∆2), in
which case ∼Ah(〈1− i, i〉) = h(∼A〈1− i, i〉) = h(〈1− i, i〉), and so h(〈1− i, i〉) =
〈i, 1− i〉. And what is more, [if A3,i = A, then] 〈i, 1− i〉 ∈ D, in which case we have
(〈i, 1− i〉(∧|∨)D〈1− i, i〉) = 〈0|1, 0|1〉, and so, by the diagonality of h�∆2, we get
(h(〈i, 1− i〉)(∧|∨)A〈i, 1− i〉) = (h(〈i, 1− i〉)(∧|∨)Ah(〈1− i, i〉)) = h(〈0|1, 0|1〉) =
〈0|1, 0|1〉 (in particular, h(〈i, 1− i〉) = 〈1− i, i〉). In this way, hom(D,A) 3 h =
(µ�D), in which case, as A[3,i] ⊆ D, (µ[�A3,i]) ∈ hom(A[3,i],A), and so (ii) holds.
Finally, if ∆2〈= (

⋂
i∈2DM3,−,i) ⊆ (

⋂
i∈2A3,i)〉 does not form a subalgebra of A,

then there are some ς ∈ Σ of arity n ∈ ω and some ā ∈ ∆n
2 such that b , ςA(ā) ∈

(A[3,i] \ ∆2) [where i , π1(b) ∈ 2], in which case µ(b) 6= b = ςA(µ ◦ ā), and so
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(µ[�A3,i]) 6∈ hom(A[3,i],A). Thus, (ii)⇒(v) is by (2.14), so, as the []-optional version
of (ii) is a particular case of the non-[]-optional one, (i)⇔(ii) ends the proof. �

As µ is not diagonal, according to Example 11 of [19], the optional and non-
optional versions of the item (ii) of Theorem 6.11 are non-equivalent to one an-
other, and so are those of (i/iii) (in particular, the converse of the final asser-
tion of Theorem 6.11 does not hold). Theorem 6.11(ii)⇒(i) positively covers both
B4{01}[3] and the purely classically-negative expansion of B4{01}, the underlying al-
gebra DMB4{01} of the characteristic matrix of which though has no three-element
subalgebra. In view of Theorem 6.11(i)⇒(iv), the self-extensionality of these three
instances of uniform four-valued expansions of B4 provides a new insight and a
new proof (convergent with those given by [19]) to the non-algebraizability of the
sequent calculi associated (according to [18]) with their characteristic matrices,
proved originally in [17] by a quite different (though equally generic) method based
upon universal tools elaborated in [16]. This well justifies the thesis of the first
paragraph of Section 1. Conversely, using Theorem 6.11(i)⇒(iv) /“and Remark
4.14”, we immediately conclude that arbitrary bilattice/implicative uniform four-
valued expansions of B4 /“as well as their double three-valued extensions in the
purely implicative case” are not self-extensional, for their /⊃-implicative charac-
teristic matrices have equational “implication {(((x0 t ∼x0) t (x1 t ∼x1)) ∧ x0) /
(((x0t∼x0)t(x1t∼x1))∨x1)}, in view of the proof of Theorem 4.30 of [17]”/“truth
definition {x0 ≈ (x0 ⊃ x0)}”. According to Corollary 5.2/5.3 of [23], this does
equally/not ensue from Theorem 6.11(i)⇒(v)/“, so refuting the inverse”.

Finally, since inferentially inconsistent logics are self-extensional, by (2.12), The-
orems 6.9, 6.10, 6.11(i)⇔(iii)⇒(iv)[⇒(iii)], Remark 2.5 and Example 4.2, we get:

Theorem 6.12. Let M be a class of no-more-than-four-valued models of C and
C ′ the logic of M. Then, C ′ is self-extensional iff either M contains no non-∼-
classically-defining truth-non-empty consistent element or there are a non-diagonal
non-singular homomorphism from [a subalgebra of] A to A [i.e., A has no equa-
tional implication] as well as both ∼-paraconsistent and [truth-non-empty] (∨,∼)-
paracomplete [distinct] element[s] of M. In particular, any inferentially consistent
non-∼-classical no-more-than-four-valued extension of C is self-extensional only if
it is both ∼-paraconsistent and (∨,∼)-paracomplete.

6.1.3.1.1. Theorems versus bounds.

Corollary 6.13. Suppose C is self-extensional (i.e., µ is an endomorphism of A;
cf. Theorem 6.11(i)⇔(ii)). Then, the following are equivalent:

(i) C has a theorem (in particular, is implicative; cf. (2.5));
(ii) >DM4,01 is term-wise definable in A;
(iii) ⊥DM4,01 is term-wise definable in A.

Proof. First, assume (i) holds. Then, by Remark 2.4, there is some φ ∈ (C(∅) ∩
Fm1

Σ), in which case, by the structurality of C, for each i ∈ 2, ψi , φ(xi) ∈ C(∅),
and so, by Remark 4.8 and Theorem 6.11(i)⇒(v), for all a ∈ A, we have ψA

0 (a) =
ψA

0 [x0/a, x1/1] = ψA
1 [x0/a, x1/1] = ψA

1 [x1/1] ∈ (∆2 ∩DA) = {t}. Thus, (ii) holds.
Next, (ii)⇔(iii) is by the fact that ∼A(kk) = ((1− k)(1− k)), for all k ∈ 2. Finally,
(ii)⇒(i) is by the fact that t ∈ DA. �

6.1.3.1.2. Implicativity versus maximal paraconsistency.

Theorem 6.14. Suppose C is self-extensional (i.e., µ is an endomorphism of A;
cf. Theorem 6.11(i)⇔(ii)). Then, the following are equivalent:

(i) A is implicative (viz., C is so; cf. Lemma 6.1);
(ii) A is negative;
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(iii) ¬DMB4 is term-wise definable in A;
(iv) DM3,0 does not form a subalgebra of A, and C has a theorem;
(v) DM3,1 does not form a subalgebra of A, and C has a theorem;
(vi) C is maximally ∼-paraconsistent and has a theorem;

In particular, C is maximally ∼-paraconsistent, whenever it is both implicative and
self-extensional.

Proof. First, (ii)⇒(i) is by Remark 2.8(i)(b) and the ∨-disjunctivity of A. Con-
versely, if A is A-implicative, then, by Corollary 6.13(i)⇒(iii), there is some ϕ ∈
Fm1

Σ such that ϕA(a) = (00), for all a ∈ A, in which case A is o-negative, where
(ox0) , (x0 A ϕ), and so (ii) holds.

Next, (ii) is a particular case of (iii). Conversely, assume A is o-negative. Then,
by Theorem 6.11(i)⇒(v), oA(ii) = ((1 − i)(1 − i)), for each i ∈ 2. And what is
more, if, for any j ∈ 2, oA(j(1 − j)) was not equal to ((1 − j)j), then it would
be equal to ((1 − j)(1 − j)), in which case we would have ((1 − j)(1 − j)) =
µ((1− j)(1− j)) = µ(oA(j(1− j))) = oAµ(j(1− j)) = oA((1− j)j), and so would get
(1− j) = π0(oA((1− j)j) = (1− (1− j)) = j. In this way, (iii) holds.

Further, (iii)⇒(v) is by (iii)⇒(i), (2.5) and the fact that ¬DMB4n = b 6∈
DM3,1 3 n. Conversely, assume (v) holds. Then, there is some φ ∈ Fm3

Σ such
that φA(n, t, f) = b. Moreover, by Corollary 6.13(i)⇒(ii), there is some ψ ∈ Fm1

Σ

such that ψA(a) = t, for all a ∈ A. Let ξ , (φ[xi+1/∼iψ]i∈2) ∈ Fm1
Σ, in

which case ξA(n) = b, and so n = µ(b) = ξA(µ(n)) = ξA(b). And what is
more, by Theorem 6.11(i)⇒(v), ξA[∆2] ⊆ ∆2. Let k , π0(ψA(f)) ∈ 2 and
ϕ , ((∼kξ ∨ ∼x0) ∧ ∼1−kξ) ∈ Fm1

Σ, in which case ϕA = ¬DMB4 , and so (iii)
holds.

Furthermore, (iv)⇔(v) is by the fact that µ[DM3,l] = DM3,1−l, for all l ∈ 2.
Finally, (iv)⇔(vi) is due to Theorem 4.31(vi)⇔(i) of [23]. �

6.2. Uniform three-valued logics with subclassical negation.

6.2.1. U3VLSN versus super-classical matrices. Σ-matrices with ∼-reduct having
a (canonical) ∼-classical submatrix {and so being both consistent and truth-non-
empty, for latter ones are so; cf. Remark 2.8(ii)(b)} (and carrier 3÷2; cf. Subpara-
graph 2.2.1.2.1) are said to be ([3-]canonical〈ly〉) ∼-super-classical, in which case,
by (2.14), ∼ is a subclassical negation for their logics {cf. Paragraph 2.3.2.1}, and
so we have the “if” part of the following marking the framework of this subsection:

Theorem 6.15. Let A be a (no-more-than-(2[+1])-valued) Σ-matrix. Then, ∼ is a
subclassical negation for the logic of A if(f) A is ∼-[super-]classical. In particular,
any uniform three-valued Σ-logic with subclassical negation ∼ is minimally so iff it
is not ∼-classical.

Proof. (Assume ∼ is a subclassical negation for the logic of A. First, by (2.16) with
m = 1 and n = 0, there is some a ∈ DA such that ∼Aa 6∈ DA. Likewise, by (2.16)
with m = 0 and n = 1, there is some b ∈ (A \DA) such that ∼Ab ∈ DA, in which
case a 6= b, and so |A| 6= 1. Then, if |A| = 2, we have A = {a, b}, in which case A
is ∼-classical, and so ∼-super-classical. [Now, assume |A| = 3.

Claim 6.16. Let A be a three-valued Σ-matrix, ā ∈ A2 and i ∈ 2. Suppose ∼ is a
subclassical negation for the logic of A, and, for each j ∈ 2, (aj ∈ DA) ⇔ (∼Aaj 6∈
DA) ⇔ (a1−j 6∈ DA). Then, either ∼Aai = a1−i or ∼A∼Aai = ai.

Proof. By contradiction. For suppose both ∼Aai 6= a1−i and ∼A∼Aai 6= ai. Then,
in case ai ∈ / 6∈ DA, as |A| = 3, we have both (DA/(A \ DA)) = {ai}, in which
case ∼Aa1−i = ai, and ((A \DA)/DA) = {a1−i,∼Aai}, respectively. Consider the
following exhaustive cases:
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• ∼A∼Aai = a1−i. Then, ∼A∼A∼Aai = ai. This contradicts to (2.16) with
(n/m) = 0 and (m/n) = 3, respectively.

• ∼A∼Aai = ∼Aai. Then, for each c ∈ ((A\DA)/DA), ∼A∼A∼Ac = ∼Aai 6∈
/ ∈ DA. This contradicts to (2.16) with (n/m) = 3 and (m/n) = 0.

Thus, in any case, we come to a contradiction, as required. �

Set d0 , a and d1 , b. Consider the following complementary cases:
• for each k ∈ 2, ∼Adk = d1−k. Then, {a, b} forms a subalgebra of A�{∼},

(A�{∼})�{a, b} being a ∼-classical submatrix of A�{∼}, as required.
• for some k ∈ 2, ∼Adk 6= d1−k, in which case, by Claim 6.16, ∼A∼Adk = dk,

so {dk,∼Adk} forms a subalgebra of A�{∼}, (A�{∼})�{dk,∼Adk} being a
∼-classical submatrix of A�{∼}, as required.]) �

The “only if” part of Theorem 6.15 does not, generally speaking, hold for no-
less-than-four-valued logics, in view of:

Example 6.17. Let n ∈ ω and A any Σ-matrix with A , (n ∪ (2 × 2)), DA ,
{〈1, 0〉, 〈1, 1〉}, ∼A〈i, j〉 , 〈1− i, (1− i+ j) mod 2〉, for all i, j ∈ 2, and ∼Ak ,
〈1, 0〉, for all k ∈ n. Then, for any subalgebra B of A�{∼}, we have (2× 2) ⊆ B, in
which case 4 6 |B|, and so A is not ∼-super-classical, for 4 
 2. On the other hand,
2×2 forms a subalgebra of A�{∼}, while B , (A�{∼})�(2×2) is∼-negative, in which
case θB ∈ Con(B), and so h , χB is a surjective strict homomorphism from B onto
the classically-canonical (in particular, two-valued) {∼}-matrix C , 〈h[B], {1}〉, (in
particular, by Remark 2.8(ii)(a), C is ∼-classical, so, by (2.14), ∼ is a subclassical
negation for the logic of A). �

Likewise, U3VLSN need not be minimally so, in view of Example 6.21 below.
In general, given any three-valued ∼-super-classical Σ-matrix A with ∼-classical

submatrix B of its ∼-reduct, the bijective mapping e , (χB∪ ((A\B)×{ 1
2}) : A→

(3 ÷ 2) is an isomorphism from A onto the canonical ∼-super-classical Σ-matrix
{[3](A) , 〈e[A], e[DA]〉, called the [ 3-]canonization of A.

Throughout the rest of this subsection, unless otherwise specified, C is supposed
to be the logic of an arbitrary but fixed canonical ∼-super-classical Σ-matrix A
(that exhausts all uniform three-valued Σ-logics with subclassical negation ∼, in
view of Theorem 6.15 and (2.14)), in which case this is false-singular iff it is not
truth-singular iff kA , χA( 1

2 ) = 1, and so is false-/truth-singular, whenever it is ∼-
paraconsistent/“both weakly Y-disjunctive and (Y,∼)-paracomplete”, respectively,
in which case C is not ∼-classical, in view of Remark 2.8(i)(c)/(d). And what is
more, any proper submatrix B of A is either ∼-classical or one-valued, in which
case B is simple, and so A is simple iff it is hereditarily so. Also, A is [weakly]
�-conjunctive/-disjunctive/-implicative iff C is so, in view of the following results:

Lemma 6.18. Let B be a Σ-matrix and C ′ the logic of B. Suppose B is [not] false-
singular [as well as both no-more-than-three-valued and ∼-super-classical]. Then,
the following are equivalent:

(i) C ′ is Y-disjunctive;
(ii) B is Y-disjunctive;
(iii) (2.2) with i = 0, (2.3) and (2.4) [as well as (3.2)] are satisfied in C ′.

Proof. First, (ii)⇒(i) is immediate. Next, assume (i) holds. Then, (2.2) with i = 0,
(2.3) and (2.4) are immediate. [And what is more, once B is not false-singular,
it is both no-more-than-three-valued (and so truth-singular) and ∼-super-classical,
in which case it is not ∼-paraconsistent, and so is C ′. Then, by (i) and Lemma
3.11, (3.2) is satisfied in C ′.] Thus, (iii) holds. Finally, assume (iii) holds. Consider
any a, b ∈ B. Then, by (2.2) with i = 0 and (2.3), C ′ is weakly Y-disjunctive,
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and so is B, in which case (a YB b) ∈ DB, whenever either a or b is in DB. Now,
assume ({a, b} ∩DB) = ∅. Then, in case a = b (in particular, B is false-singular),
by (2.4), we get DB 63 (a YB a) = (a YB b). [Otherwise, B is not false-singular,
in which case it is no-more-than-three-valued (in particular, truth-singular) and
∼-super-classical, while (3.2) is true in B, and so, for some c ∈ (B \DB) = {a, b},
it holds that ∼Bc ∈ DB, while ∼B∼Bc = c. Let d be the unique element of
{a, b} \ {c}, in which case {a, b} = {c, d}. Then, since ∼Bc ∈ DB, we conclude that
(c YB d) = (∼B∼Bc YB d) 6∈ DB, for, otherwise, by (2.2) with i = 0 and (3.2), we
would get d ∈ DB. Hence, by (2.3), we eventually get (a YB b) 6∈ DB.] �

Corollary 6.19. [Providing A is false-singular (in particular, ∼-paraconsistent)]
A is A-implicative iff C is [weakly] so.

Proof. By (2.6), (2.7), (2.9), Theorem 3.5(ii) and Lemma[s 3.14 and] 6.18. �

Remark 6.20. A is not ∼-negative iff it has unitary equality determinant {x0,∼x0}.

Next, A is said to be (∼-)involutive, provided ∼A 1
2 = 1

2 , that is, the Σ-identity
∼∼x0 ≈ x0 is true in A, in which case A is not ∼-negative. Further, A is
said to be [extra-]classically-hereditary, provided [A\]2 forms a subalgebra of A
[in which case A is involutive]. Then, A, being classically-hereditary, is said to
be genuinely |“[weakly] �-conjunctively/-disjunctively/-implicatively” so, whenever
A�2 is “genuinely ∼-classical”|“[weakly] �-conjunctive/-disjunctive/-implicative”,
respectively. Likewise, A is said to be quadro-classically hereditary, whenever
L4 , (A2 \ (22 ∪ ∆A)) forms a subalgebra of A2, in which case A is involutive,
and so A2�L4 is ∼-negative, whenever A is false-singular. Finally, A is said to be
classically-valued, provided, for all ς ∈ Σ, (img ςA) ⊆ 2, in which case A is [not
extra-]classically-hereditary [more specifically, not involutive].
6.2.1.1. Examples.
6.2.1.1.1. Kleene-style logics. Let Σ , Σ∼,+[01] and A both involutive and truth-
/false-singular with (A�Σ+[01]) , D3[01]. Then, A is both ∧-conjunctive, ∨-disjun-
ctive and non-∼-negative, in which case it is (∨,∼)-paracomplete/∼-paraconsistent,
and so, by Remark 2.8(i)(c)/(d), C is not ∼-classical, as well as both classically-
hereditary and [not] extra-classically-hereditary, while A is a distributive (∧,∨)-
lattice with zero 0 and unit 1, whereas C is [the bounded version|expansion KL3,01/
LP01 of ] “Kleene’s three-valued logic”/“the logic of paradox” KL3/LP [6]/[13].
6.2.1.1.2. Gödel-style logics. Let Σ , Σ/⊃

∼,+,01 and A [not] truth-singular as well
as neither ∼-negative nor involutive with (A�Σ+,01) , D3,01 (in which case ∼A is
the [dual] pseudo-complement operation)/“ as well as ⊃A being the [dual] relative
pseudo-complement operation”. Then, A is both ∧-conjunctive, ∨-disjunctive and
[not] (∨,∼)-paracomplete as well as [not] non-∼-paraconsistent, and so, by Remark
2.8(i)(c,(d)), C is not ∼-classical, while A is classically-hereditary but not extra-
classically-hereditary, whereas C is [the (∼-)paraconsistent counterpart PG∗/

3 of ]
“the implication-less fragment G∗

3 of”/ Gödel’s three-valued logic G3 [3].
6.2.1.1.3. Ha lkowska-Zajac’ logic. Let Σ , Σ∼,+ and A both false-singular and
involutive with A being the distributive (∧,∨)-lattice with zero 1

2 and unit 1. Then,
A is ∼-paraconsistent (in particular, C is not ∼-classical; cf. Remark 2.8(i)(c))
as well as both classically- and extra-classically-hereditary but weakly neither ∧-
conjunctive nor ∨-disjunctive, C being the logic HZ [5]. On the other hand, since
the identity ∼∼x0 ≈ x0 is true in A, A is a distributive (∨∼,∧∼)-lattice (cf. Remark
2.8(i)(a) for definition of these secondary binary connectives) with zero ∼A1 = 0
and unit ∼A 1

2 = 1
2 . Then, A is both ∨∼-conjunctive and ∧∼-disjunctive.

6.2.1.1.4. Sette-style logics. Let Σ , Σ⊃
∼ and A classically-valued, non-∼-negative,

⊃-implicative (in particular, ]⊃-disjunctive) and [not] false-singular. Then, A is
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[not] ∼-paraconsistent as well as [not] non-(]⊃,∼)-paracomplete, and so, by Re-
mark 2.8(i)(c,d), C, being [the intuitionistic/( (]⊃,∼)-)paracomplete counterpart
IP 1 of ] P 1 [28], is not ∼-classical.

6.2.2. Minimal U3VLSN. Let ∆+
2 , ∆2 ∈ 22 and ∆−

2 , (A2 \∆2) ∈ 22.
Generally speaking, C, though being three-valued, need not be minimally uni-

formly three-valued (viz., non-∼-classical), in view of:

Example 6.21. Let Σ , Σ∼[,+,01] and (B/D)|E the [∧-conjunctive ∨-disjunctive]
canonical “∼-negative false-/truth-singular ∼-super-classical”|∼-classical Σ-matrix
[with (((B/D)|E)�Σ+) , D3|2 (cf. Subparagraph 2.2.1.2.1), ⊥((B/D)|E , ((0/ 1

2 )|0)
and >((B/D)|E , (( 1

2/1)|1), respectively, in which case (B/D)|E has tautology >
and, in view of Remark 2.8(i)(b), is A∼

∨ -implicative]. On the other hand, in the
non-optional case, ∆−

2 forms a subalgebra of (B/D)2, in which case, by (2.14),
(B/D)2�∆−

2 is a truth-empty model of the logic of B/D, and so, by Corollary
3.10(ii)⇒(i), this has no tautology. Then, χB/D ∈ homS

S(B/D, E). Therefore, by
(2.14), B/D define the same ∼-classical Σ-logic of E , in which case, by Remark
2.8(i)(c), this is non-∼-paraconsistent, and so is any extension of it. And what is
more, by Remark 2.8(ii)(c), B and D are non-isomorphic [as well as B and D are so,
because the Σ-identity (x0 ∧ ∼x0) ≈ ∼∼⊥, being true in B, is not so in D under
[x0/

1
2 ]], while h : (B/D) → (B/D) : a 7→ (max min)(0/1, χB/D(a) − / + 1

2 ) is a
non-diagonal (for h(1/0) = 1

2 6= (1/0)) strict homomorphism from B/D to itself, so
this does not have a unitary equality determinant, in view of Theorem 3.3, whereas
[(>/⊥)B/D = 1

2 6∈ 2, in which case] B/D, being ∼-negative (and so non-involutive),
is not quadro-classically hereditary [as well as not classically so]. �

On the other hand, ∼-classical Σ-logics are self-extensional, in view of Example
4.2. This makes the purely algebraic criterion of the minimality of U3VLSN to be
obtained here especially acute.

Lemma 6.22 (Key 3-valued Lemma). Let B be a canonical ∼-super-classical Σ-
matrix, D a submatrix of A and h ∈ hom(D,B). Then, providing A is invo-
lutive, whenever both B is so and 1

2 ∈ (img h) (in particular, either A = B or
hom(B�(img h),A) 6= ∅), the following hold {cf. p. 2}:

(i) providing h is not singular, 2 ⊆ D, while h[2] = 2, in which case h�2 is
injective, and so belongs to {∆+

2 ,∆
−
2 };

(ii) providing h + ∆−
2 [in particular, h ∈ hom(D,B)] is injective, it is diagonal.

In particular, the following hold:
(a) any partial automorphism {cf. Subsubsection 3.1.1} of A is diagonal;
(b) any isomorphism from A onto B is diagonal, in which case A = B, and so A

and B are equal, whenever they are isomorphic.

Proof. First, note that the carrier of any subalgebra of (A|B)�{∼} (in particular,
D|(img h)) belongs to {A|B, 2, { 1

2}}. And what is more, for each a ∈ (A|B), we
have (∼A|Ba = a) ⇒ (a = 1

2 ). In particular, for any g ∈ hom(D|(B�(img h)),B|A)
with 1

2 ∈ (dom g), providing ∼A|B 1
2 = 1

2 , we have ∼B|Ag( 1
2 ) = g( 1

2 ), in which case
we get g( 1

2 ) = 1
2 , and so ∼B|A 1

2 = 1
2 . While proving (i,ii), assume (∼B 1

2 = 1
2 ) ⇒

(∼A 1
2 = 1

2 ), whenever 1
2 ∈ (img h).

(i) Assume h is not singular, in which case 1 < | img h| 6 |D|, and so D ⊇
2 ⊆ (img h). Then, as 2 forms a subalgebra of A�{∼}, h[2] forms a no-more-
than-two-element subalgebra of B�{∼}, in which case h[2] ∈ {2, { 1

2}}, and
so h[2] = 2, for, otherwise, we would have both (img h) = h[D] ⊇ h[2] =
{ 1

2} 3
1
2 and ∼B 1

2 = 1
2 , in which case we would get ∼A 1

2 = 1
2 as well as, since
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| img h| 6= 1, both 1
2 ∈ D = (domh) and h( 1

2 ) ∈ 2, and so would eventually
get 2 3 h( 1

2 ) = 1
2 .

(ii) Assume h is injective, while {h ∈ hom(D,B), in which case ∆−
2 3 〈1, 0〉 6∈ h,

for (1|0) ∈ | 6∈ DA|B, and so} ∆−
2 * h. Then, h : D → (img h) is bijective.

Therefore, in case h is singular, we have (img h) = { 1
2} = D, and so h =

{〈 1
2 ,

1
2 〉} is diagonal. Otherwise, by (i), 2 ⊆ D, while (h�2) ⊆ h is diagonal.

In particular, h = (h�2) is diagonal, whenever D = 2. Otherwise, D = A,
while 1

2 6∈ 2, in which case, by the injectivity of h, we have h( 1
2 ) 6∈ h[2] = 2,

and so we get h( 1
2 ) = 1

2 (in particular, h is diagonal).
Then, (a/b) is by (ii) with (B/D) = A and and /bijective h ∈ hom(D,B) /“as well
as h−1 ∈ hom(B,A)”. �

Corollary 6.23. The following are equivalent:
(i) A has no [unitary] equality determinant;
(ii) A is a strictly (surjectively) homomorphic counter-image of a ∼-classical Σ-

matrix;
(iii) A is not {hereditarily} simple;
(iv) θA ∈ Con(A) 〈in which case χA is a strict surjective homomorphism from A

onto CA , 〈χA[A], {1}〉, being, in its turn, canonically ∼-classical〉.

Proof. First, (i)⇔(iii) is by Lemmas 3.1, 6.22(a) and Theorem 3.3.
Next, (ii)⇒(iii) is by Remark 2.6(i,ii), for |A| = 3 
 2.
Further, (iii)⇒“θA ∈ Con(A)” is by the fact img[θA \ ∆A] = {{ 1

2 ,k
A}} is a

singleton.
Finally, assume θA ∈ Con(A), in which case h , χA is a strict surjective ho-

momorphism from A onto the classically-canonical (in particular, two-valued) Σ-
matrix CA, and so h�2, being diagonal, is a strict surjective homomorphism from
the ∼-negative Σ-matrix (A�{∼})�2 onto CA�{∼}. Then, by Remark 2.8(ii)(a),
CA�{∼} is ∼-negative, and so is CA, in which case this is canonically ∼-classical.
Thus, the optional part of (iv) holds, and so does (ii). �

Next, a (2([+1]))-ary semi-conjunction for/of a canonical ∼-(super-)classical Σ-
matrix B is any ϕ ∈ Fm2([+1])

Σ such that ϕB(0|1, 1|0([, 1
2 ])) = | 6= (0|1). (Clearly, any

binary semi-conjunction for A is a ternary one. Likewise, providing A is classically
hereditary, any binary semi-conjunction for A�2 is that for A.) Further, a ternary
[anti-]equalizer for/of A is any τ ∈ Fm3

Σ such that τA2
(〈0, 1[−1]〉, 〈1, 0[+1]〉, 〈1, 1

2 〉)
∈ ([22\]∆A). (Clearly, any binary semi-conjunction for A is a ternary equalizer for
it. Likewise, ∼x2 is a ternary equalizer for A, whenever ∼A 1

2 = 0. Furthermore, if
A is both truth-singular, classically hereditary and A-implicative, then x2 A x0 is
a ternary anti-equalizer for it.) Finally, a quasi-negation for/of A is any κ ∈ Fm1

Σ

such that κA[{ 1
2 , 1}] ⊆ {0, 1

2}. (Clearly, ∼x0 is a quasi-negation for A, whenever
this is either involutive or both false-singular and ∼-negative.)

Lemma 6.24. Let B be a canonically ∼-[super-]classical Σ-matrix, I a finite set,
C ∈ S∗(B)I and D a subdirect product of it. Then, the following hold:

(i) providing [in case B is ∼-paraconsistent but not weakly conjunctive, both B
is classically hereditary but not extra-classically hereditary, and either D is
∼-negative or either B has a binary semi-conjunction or both D is truth-non-
empty and B has either a quasi-negation or ternary equalizer, as well as] D is
truth-non-empty [unless B is ∼-paraconsistent], (I×{j}) ∈ D, for some/each
j ∈ 2;

(ii) providing I 6= ∅ (in particular, D is consistent) as well as, for some j ∈
2, (I × {j}) ∈ D, for each Σ′ ⊆ Σ, {〈a, I × {a}〉 | a = ϕB(0, 1), ϕ ∈
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(Var2[∪Fm2
Σ′ ])} is an embedding of [the submatrix of ] B�Σ′ [generated by

2] into D�Σ′.

Proof. Clearly, if (I × {j}) ∈ D, for some j ∈ 2, then, D 3 ∼D(I × {j}) =
(I ×{1− j}), in which case, as 2 = {j, 1− j}, (I ×{k}) ∈ D, for each k ∈ 2, and so
(ii) as well as, since 2 6= ∅, the equivalence of alternatives in (i) hold. For proving
the former alternative in (i), consider the following complementary cases with using
Remark 2.8(i)(c) tacitly:

• B is ∼-paraconsistent, in which case it is false-singular, and so DA = { 1
2 , 1}.

Consider the following complementary subcases:
– B is weakly conjunctive, in which case, by Lemma 3.13, (I×{0}) ∈ D.
– B is not weakly conjunctive, in which case it is classically hereditary

but not extra-classically hereditary, and so there is some ψ ∈ Fm1
Σ

such that ψB : B → 2, while either D is ∼-negative or B has a binary
semi-conjunction or both D is truth-non-empty and B has either a
quasi-negation or a ternary equalizer. Take any b ∈ D 6= ∅, in which
case c , ψD(b) ∈ (D ∩ 2I). Let J , {i ∈ I | πi(c) = 1} and (l|m|n) ,
ψB(0|1| 12 ) ∈ 2. Consider the following complementary subsubcases:

∗ B has a binary semi-conjunction φ, in which caseD 3 φD(c,∼Dc)
= (I × {0}).

∗ B has no binary semi-conjunction, in which case l 6= m, for, oth-
erwise, ∼lψ would be a binary semi-conjunction for B, and so
{l,m} = 2 3 n. Consider the following complementary subsub-
subcases:

· either of J/(I \ J) is empty, in which case D 3 c = (I ×
{0/1}).

· J 6= ∅ 6= (I \ J), in which case, as 0 6∈ DB, D 3 c 6∈
DD 63 ∼Dc ∈ D, and so D is not ∼-negative. Then, D is
truth-non-empty, while B has either a quasi-negation or a
ternary equalizer. Take any d ∈ DD = (D ∩ { 1

2 , 1}
I) 6= ∅.

Consider the following complementary (for n ∈ 2 = {l,m})
subsubsubsubcases:
? n = m, in which case D 3 ψD(d) = (I × {n}).
? n = l. Consider the following complementary subsub-

subsubsubcases:
◦ B has a quasi-negation κ. Then, D 3 ψD(κD(d)) =

(I × {n}).
◦ B has no quasi-negation, in which case it has a ternary

equalizer τ , and so D 3 e , τD(c,∼Dc, d) = (I ×{[}),
for some [ ∈ B. Let ` , ψB([) ∈ 2. Then, D 3
ψD(e) = (I × {`}).

• B is not ∼-paraconsistent, in which case D is truth-non-empty, and so
there is some e ∈ DD = (D∩ (DB)I). Consider any i ∈ I and the following
complementary subcases:

– B is truth-singular, in which case πi(e) = 1, and so πi(∼De) = ∼Bπi(e)
= 0.

– B is not truth-singular, in which case it is false-singular, and so, as
πi(∼De) = ∼Bπi(e) 6∈ DB, for, otherwise, (2.10) would not be true in
B under [x0/πi(e), x1/0], we have πi(∼De) = 0.

Thus, in any case, πi(∼De) = 0, and so D 3 ∼De = (I × {0}). �

Let h+/2 : 22 → A, 〈i, j〉 7→ i+j
2 .
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Theorem 6.25. C is ∼-classical (viz., non-minimally uniformly three-valued; cf.
Theorem 6.15) iff either of the following holds:

(i) θA ∈ Con(A) (i.e., A ”has no {unitary} equality determinant”|“is not 〈he-
reditarily〉 simple”|“is a strictly dsurjectivelye homomorphic counter-image
of a ∼-classical Σ-matrix) [in which case CA , 〈χA[A], {1}〉 is a canonical
∼-classical Σ-matrix, being a strictly surjectively homomorphic image of A,
and so defines C];

(ii) A is both truth-singular and classically hereditary, while h+/2 ∈ hom((A�2)2,
A) [in which case h+/2 ∈ homS

S((A�2)2,A), and so A�2 is a canonical ∼-
classical Σ-matrix defining C, whereas A is neither conjunctive nor disjunc-
tive].

Proof. Assume both C is ∼-classical, in which case, by (2.14), C is defined by a
canonical ∼-classical (and so both simple and having no proper submatrix) Σ-
matrix B, and θA 6∈ Con(A), in which case, by Corollary 6.23(iii)⇒(iv), A is
hereditarily simple, and so, by Lemma 3.7 with M = {B|A}, there is some fi-
nite set I|J , some C|D ∈ S∗(B|A)I|J some subirect product E|F of it and some
(h|g) ∈ homS

S(E|F ,A|B) (in particular, A|B belongs to the variety generated by
B|A). Then, A is truth-singular (in particular, non-∼-paraconsistent), for B is so,
while truth-singularity is clearly preserved under P as well as under both S and
H, in view of Remark 2.8(ii)(c). And what is more, by Remark 2.8(ii)(b), E|F is
both truth-non-empty and consistent, for A|B is so. Then, by Lemma 6.24(i) with
j = (0[+1]), (E|F ) 3 (a|b)[′] , ((I|J)×{j}). Let G be the submatrix of A generated
by 2, in which case it is simple, for A is hereditarily so, and so, by Remark 2.6(ii)
and Lemma 6.24(ii), e◦ g, where e is an embedding of G into F , is an embedding of
G into B (in particular, is an isomorphism from G onto B, for this has no proper sub-
matrix). Thus, |G| = |B| = |2| = 2, in which case G ⊇ 2 is equal to 2, and so 2 = G
forms a subalgebra of A, while (A�2) = G is canonically ∼-classical and isomorphic
(and so equal) to B. And what is more, by the truth-singularity of A, h(a′) = 1,
for (a′|1) ∈ DE|A, in which case h(a) = h(∼Ea′) = ∼A1 = 0, and so there is some
c ∈ (E \ {a, a′}) such that h(c) = 1

2 . Then, I 6= K , {i ∈ I | πi(c) = 1} 6= ∅,
in which case f , {〈〈k, l〉, (K × {k}) ∪ ((I \K)× {l})〉 | k, l ∈ 2} is an embedding
of B2 into E , and so (f ◦ h) ∈ hom(B2,A). Clearly, f(〈1, 1〉) = a′, f(〈0, 0〉) = a,
f(〈1, 0〉) = c, and so f(〈0, 1〉) = f(∼B2〈1, 0〉) = ∼Ec. Furthermore, the Σ-identity
∼∼x0 ≈ x0, being true in B, is so in A, for this belongs to the variety generated by
B, in which case ∼A∼A 1

2 = 1
2 6∈ 2, and so ∼A 1

2 = 1
2 . Thus, (f ◦h) = h+/2. Finally,

if A was �-conjunctive/-disjunctive, then, by Remark 2.8(ii)(a), (i)(a) and Lemma
6.18, it would be Y-disjunctive, where Y , �∼/, for B would be so, in which case,
by Theorem 3.9, A would be a strictly homomorphic counter-image of B, and so,
by Corollary 6.23(ii)⇒(iv), θA would be a congruence of A. In this way, (2.14) and
Corollary 6.23 complete the argument. �

In view of Example 1 of [18], this implies that U3VLSN are covered by the
universal sequent approach elaborated therein and recently advanced in [24, 26]
towards Hilbert-style axiomatizations. On the other hand, the item (ii) cannot be
omitted in the formulation of Theorem 6.25, even if C is both weakly conjunctive
and weakly disjunctive, in view of Remark 6.20 and:

Example 6.26. Let Σ , Σ∼,01 and A both truth-singular and involutive (in
particular, non-∼-negative) with (⊥/>)A , (0/1). Then, A is both weakly ⊥-
conjunctive and weakly >-disjunctive. Though, 2 forms a subalgebra of A, while
h+/2 ∈ hom((A�2)2,A), in which case, by Theorem 6.25, C is ∼-classical. �

Perhaps, a most remarkable peculiarity of non-classical U3VLSN is as follows.
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6.2.2.1. Characteristic matrices.

Theorem 6.27. Let B be a [canonical] ∼-super-classical Σ-matrix. Suppose C is
non-∼-classical and defined by B. Then, B is isomorphic [and so equal] to A. In
particular, any uniform three-valued expansion of C is defined by a unique expan-
sion of A, unless C is ∼-classical.

Proof. Then, the canonization D of B is isomorphic to B, in which case, by (2.14),
C is defined by D, and so, by Theorem 6.25, both A and D are simple. Hence,
by Remark 2.6(ii) and Lemma 3.7, (A|D) ∈ H(PSD(S(D|A))) (in particular, A
is truth-singular iff D is so, for truth-singularity is preserved under P as well as
both S and H; cf. Remark 2.8(ii)(c)). Therefore, there are some finite set I, some
C ∈ S(A)I , some subdirect product E of it and some h ∈ homS

S(E ,D), in which
case, by (2.14) and Remark 2.8(ii)(b), E is a both consistent and truth-non-empty
model of C, for D is so, and so I 6= ∅. Consider the following complementary cases:

• (I×{j}) ∈ E, for some j ∈ 2, in which case E 3 ∼E(I×{j}) = (I×{1−j}),
and so, as 2 = {j, 1− j}, E contains both of (a|b) , (I × {1|0}). Consider
the following complementary subcases:

– (I × { 1
2}) ∈ E, in which case, as I 6= ∅, g , {〈a′, I × {a′}〉 | a′ ∈ A}

is an embedding of A into E , and so, by Remark 2.6(ii), g ◦ h is an
embedding of A into D (in particular, is an isomorphism from A onto
D, because |A| = 3 6 l, for no l ∈ 3 = |D|).

– (I×{ 1
2}) 6∈ E, in which case E is non-∼-paraconsistent, and so is B, in

view of (2.14) (in particular, A is so). Then, 2 forms a subalgebra of A,
for, otherwise, there would be some φ ∈ Fm2

Σ such that φA(1, 0) = 1
2 ,

in which case E would contain φE(a, b) = (I×{ 1
2}), and so, by (2.14),

F , (A�2) is a canonical∼-classical model of C (in particular, the logic
C ′ of F is a ∼-classical extension of C). Moreover, as a ∈ DE 63 b,
for I 6= ∅, h(a) ∈ DD 63 h(b), in which case h(b/a) = (0/1), whenever
D is false-/truth-singular, respectively, and so (1/0) = ∼D(0/1) =
h(∼E(b/a)) = h(a/b) (in particular, h[{a, b}] = 2). And what is more,
as h[E] = D, there is some c ∈ E such that h(c) = 1

2 . Let G be
the submatrix of E generated by {a, b, c}, in which case h′ , (h�G) ∈
homS

S(G,D), for h[{a, b, c}] = A, and so, by (2.14), C, being defined by
D, is defined by G. Hence, J , {i ∈ I | πi(c) = 1

2} 6= ∅, for, otherwise,
2I ⊇ {a, b} would contain c, in which case it, forming a subalgebra of
AI , would include G, and so G, being a submatrix of AI , would be
a submatrix of FI ∈ Mod(C ′) (in particular, by (2.14), C, being a
sublogic of C ′, would be equal to C ′, and so would be ∼-classical, for
C ′ is so). Take any  ∈ J 6= ∅, in which case π(a|b|c) = (1|0| 12 ), and
so g′ , (π�G) ∈ hom(G,A) is surjective, for {a, b, c} ⊆ G. We prove,
by contradiction, that g′ ∈ homS

S(G,A). For suppose g′ 6∈ homS
S(G,A),

in which case there is some d ∈ (G\DG) such that π(d) ∈ DA, and so
π(∼Gd) = ∼Aπ(d) 6∈ DA, for, otherwise, (2.10) would not be true in
A under [x0/π(d), x1/0]. Then, ∼Dd 6∈ DG , in which case ∼Dh′(d) =
h′(∼Gd) 6∈ DD 63 h′(d), and so DD 63 h′(d) = 1

2 (in particular, D
is truth-singular, that is, A is so). Let H be the submatrix of G
generated by {a, b, d}, in which case h′′ , (h′�H) ∈ homS

S(H,D), for
h′[{a, b, d}] = A, since h′(a|b|d) = (1|0| 12 ), respectively, and so, by
(2.14), C, being defined by D, is defined by H. Then, as A is truth-
singular, π(d) = 1, in which case, for each i ∈ J , we get πi(d) =
π(d) = 1, because πi(a|b|c) = (1|0| 12 ) = π(a|b|c), respectively, and so
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d ∈ 2I ⊇ {a, b}. Therefore, 2I , forming a subalgebra of AI , includes H,
in which caseH, being a submatrix ofAI , is that of FI ∈ Mod(C ′), and
so, by (2.14), C, being a sublogic of C ′, is equal to C ′ (in particular,
C is ∼-classical, for C ′ is so). This contradiction shows that g′ ∈
homS

S(G,A). In this way, since both A and D are simple, while h′ ∈
homS

S(G,D), by Remark 2.6(ii) and Lemma 3.6 with M = {A}, we
eventually conclude that A is isomorphic to D.

• (I × {j}) 6∈ E, for each j ∈ 2, in which case, by Lemma 6.24(i), A is ∼-
paraconsistent (in particular, false-singular, i.e., non-truth-singular), that
is, B is so, and so E is ∼-paraconsistent, in view of (2.14), as well as is
not truth-singular, in view Remark 2.8(ii)(c). Then, first, there is some
e ∈ DE such that ∼Ee ∈ DE , in which case E 3 e , (I × { 1

2}), and so A is
extra-classically hereditary, for, otherwise, there would be some ψ ∈ Fm1

Σ

such that j , ψA( 1
2 ) ∈ 2, in which case E would contain ψE(e) = (I×{j}).

Second, there is some f ∈ DE ⊆ { 1
2 , 1}

I distinct from e, in which case K ,
{i ∈ I | πi(f) = 1} 6= ∅, and so, since A is extra-classically hereditary and
generated by A \ {0}, g′′ , {〈b′, (K × {b′}) ∪ ((I \K)× { 1

2})〉 | b
′ ∈ A} is

an embedding of A into E . Hence, by Remark 2.6(ii), g′′◦h is an embedding
of A into D, and so is an isomorphism from A onto D, for |A| = 3 = |D|.

Thus, anyway, A is isomorphic to D, and so to B [in which case, by Lemma 6.22(b),
A = B]. Then, as ∼ is a subclassical negation for any expansion of C, (2.14) and
Theorem 6.15 end the proof. �

In view of Theorem 6.27, A, being uniquely determined by C, unless this is
∼-classical, is said to be characteristic for/of C. In view of Example 6.21, the
stipulation of C’s being non-∼-classical cannot be omitted in the formulation of
Theorem 6.27, even if C is both conjunctive and implicative (in particular, disjunc-
tive).

Finally, Theorems 6.11(i)⇒(v) and 6.14 make the next paragraph equally acute.
6.2.2.2. Classical versus paraconsistent models and extensions.

Lemma 6.28. Let B be a [classically hereditary {/weakly Y-disjunctive ∼-paracon-
sistent/ (Y,∼)-paracomplete}] canonically ∼-[super-]classical Σ-matrix, C ′ the logic
of B and D a consistent truth-non-empty [non-∼-paraconsistent] (more specifically,
∼-classical; cf. Remark 2.8(i)(c)) model of C ′. [Suppose either D is ∼-negative or
B either is weakly conjunctive or is non-∼-paraconsistent or has a ternary equalizer
or has a quasi-negation.] Then, B[�2] is is a canonical ∼-classical model of C ′,
embeddable into a strictly surjectively homomorphic image of a submatrix of (and
so isomorphic to) D, in which case it defines a unique ∼-classical extension of C ′

[ {in its turn, relatively axiomatized by (3.2)/ (x0 Y∼x0)}].

Proof. We use Remark 2.8(i)(c/d) tacitly. Take any a ∈ (D \ DD) 6= ∅ and b ∈
DD 6= ∅. Then, by (2.14), the submatrix E of D generated by {a, b} is a finitely-
generated, consistent, truth-non-empty [non-∼-paraconsistent] model of C ′ (equal
to D, for any ∼-classical Σ-matrix has no proper submatrix), an so, by Remarks
2.6(ii) and 2.8(ii)(b), F , (E/θ), where θ , a(E) ∈ Con(E), is a simple one (νθ

being an isomorphism from E = D onto F , for any ∼-classical Σ-matrix is simple).
Hence, by Lemma 3.7, there are some finite set I, some C ∈ S∗(B[�2])I , some
subdirect product G of it and some h ∈ homS

S(G,F), in which case, by [(2.14) and]
Remark 2.8(ii)(b), G is both consistent and truth-non-empty [as well as non-∼-
paraconsistent]. Consider the following complementary cases:

• B is both ∼-paraconsistent and extra-classically hereditary, in which case
it is involutive and classically hereditary, while { 1

2 ,∼
A 1

2} ⊆ DA 6= A, and



SELF-EXTENSIONALITY OF FINITELY-VALUED LOGICS 39

so DA = { 1
2 , 1}. Take any c ∈ DG = (G∩ (DA)I) 6= ∅ and d ∈ (G \DG) 6=

∅, in which case c 6= (I × { 1
2}), for, otherwise, (2.10) would not be true

in G under [x0/c;x1/d], and so J , {i ∈ I | πi(c) = 1} 6= ∅. Then,
{〈j, (I × {j}) ∪ ((I \ J)× { 1

2})〉 | j ∈ 2} is an embedding of B�2 into G.
• B is not both ∼-paraconsistent and extra-classically hereditary, in which

case, by Lemma 6.24(i,ii), B[�2] is embeddable into G.
Thus, anyway, there is some embedding e of B[�2] into G, in which case, as B[�2],
being ∼-classical, is simple, by Remark 2.6(ii), f , (e ◦ h) is am embedding of
B[�2] into F (and so f ◦ ν−1

θ is an isomorphism from B[�2] onto D, for this, be-
ing ∼-classical, has no proper submatrix). In this way, (2.14) [{and “Theorem
3.12”/“Corollary 2.9 of [23]”}] end the proof. �

Lemma 6.29. Suppose A is false-singular (in particular, ∼-paraconsistent) [while
C is ∼-subclassical]. Then, the following are equivalent:

(i) C has no proper ([non-]non-∼-subclassical) ∼-paraconsistent extension;
(ii) A either has a ternary {in particular, binary} semi-conjunction or is not

extra-classically hereditary {in particular, not involutive};
(iii) L3 , (∆−

2 ∪ {〈 1
2 ,

1
2 〉}) does not form a subalgebra of A2;

(iv) A 1
2

, 〈A, { 1
2}〉 is not a ∼-paraconsistent model of C;

(v) C has no truth-singular ∼-paraconsistent model,
in which case any three-valued expansion of C is maximally ∼-paraconsistent.

Proof. First, assume (ii) holds. Consider, any ∼-paraconsistent extension C ′ of
C, in which case x1 6∈ T , C ′({x0,∼x0}), and so, by the structurality of C ′,
〈Fmω

Σ, T 〉 ∈ Mod(C ′). Then, by (2.14), B , 〈Fm2
Σ, T ∩ Fm2

Σ〉 is a finitely-generated
∼-paraconsistent model of C ′ {in particular, of C}, in which case, by Lemma 3.7,
there are some finite set I, some C ∈ S∗(A)I and some subdirect product D ∈
H−1(B/a(B)), and so D is a ∼-paraconsistent model of C ′. Hence, there are some
a ∈ DD and some b ∈ D such that ∼Da ∈ DD 63 b, in which case a = (I × { 1

2}),
while I ⊇ J , {i ∈ I | πi(b) = 0} 6= ∅, whereas D is consistent. Consider the
following complementary cases:

• A is extra-classically hereditary, in which case it is involutive. Then, A
has a ternary semi-conjunction ϕ, in which case c , ϕD(b,∼Db, a) ∈
(D ∩ {0, 1

2}
I), and so ∅ 6= J ⊆ K , {i ∈ I | πi(c) = 0} {in particu-

lar, {〈0, c〉, 〈 1
2 , a〉, 〈1,∼

Dc〉} is an embedding of A into D}.
• A is not extra-classically hereditary, in which case there is some ψ ∈ Fm1

Σ

such that j , ψA( 1
2 ) ∈ 2 {in particular, D 3 d , ψD(a) = (I × {j})}.

Therefore, as 2 = {j, 1− j}, while I 6= ∅, {〈j, d〉, 〈 1
2 , a〉, 〈1− j,∼Dd〉} is an

embedding of A into D.
Thus, anyway, A is embeddable into D ∈ Mod(C ′), in which case, by (2.14), A ∈
Mod(C ′), and C ′ = C. In this way, (i) holds.

Next, assume (iii) holds, while A is extra-classically hereditary, in which case it
is involutive. Then, there is some φ ∈ Fm3

Σ such that ā , φA2
(〈0, 1〉, 〈1, 0〉, 〈 1

2 ,
1
2 〉) 6∈

L3, in which case { 1
2} 6= S , (img ā) 6= 2, and so ∅ 6= N , (S ∩ 2) ( 2 ⊇ M ,

{i ∈ 2 | ai ∈ 2} 6= ∅ (in particular, N is a singleton). Let n be the unique element
of N ⊆ 2, m , min(M) ∈ M ⊆ 2 and f : 22 → 2, 〈j, k〉 7→ |j − k|, in which case
∼n(φ[xl/xf(m,l)]l∈2) is a ternary semi-conjunction for A, and so (iii)⇒(ii) holds.

Conversely, assume (iii) does not hold, in which case, by (2.14), E , (A2�L3)
is a model of C, and so is A 1

2
, for (π0�L3) ∈ homS

S(E ,A 1
2
), as A is false-singular.

Then, A is extra-classically hereditary (in particular, involutive), for L3 3 〈 1
2 ,

1
2 〉 is

disjoint with ∆2, in which case A 1
2

is ∼-paraconsistent, and so (iv) does not hold.
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Furthermore, (iv) is a particular case of (v).
Further, assume (v) does not hold, that is, C has a truth-singular ∼-paracon-

sistent model F . [Take any ∼-classical G ∈ Mod(C).] Then, x0 ` ∼x0, not being
true in any ∼-{super-}classical Σ-matrix, in view of (2.16) with (m|n) = (1|0)
{and (2.14) 〈in particular, in A〉}, is true in F , and so is its logical consequence
{x1,∼x1, x0} ` ∼x0 that, being a logical consequence of (2.10)[xk/∼kx1−k]k∈2,
is true in any non-∼-paraconsistent Σ-matrix [in particular, in G; cf. Remark
2.8(i)(c)], in which case the logic of {F [,G]} is a [non]-non-∼-subclassical ∼-para-
consistent proper extension of C {in particular, (i) does not hold}.

Finally, Remark 2.8(i)(c), Theorem 6.27 and the fact that expansions of A retain
ternary semi-conjunctions {if any} complete the argument. �

This {more precisely, its non-optional version} provides a purely-algebraic effec-
tive criterion of maximal paraconsistency of pararaconsistent U3VLSN.

Lemma 6.30. Let B and D be Σ-matrices and h ∈ hom(B,D). Suppose B is
weakly Y-disjunctive, while h[B] = D, whereas h[DB] = DD. Then, D is weakly
Y-disjunctive.

Proof. Consider any a ∈ DD and any b ∈ D. Then, there are some c ∈ DB and
some d ∈ B such that h(c|d) = (a|b), in which case (cYBd) ∈ DB 3 (dYB c), for B is
weakly Y-disjunctive, and so {aYDb, bYBa} = h[{cYBd, dYBc}] ⊆ h[DB] = DD. �

Corollary 6.31. Suppose A is both ∼-paraconsistent and quadro-classically hered-
itary, while B , (A2�L4) is Y-disjunctive. Then, A is classically hereditary.

Proof. In that case, by (2.14), B is a ∼-negative model of C, while both π0[L4] = A
and π0[DB] = DA, whereas (π0�L4) ∈ hom(B,A), so, by Lemma 6.30, A is weakly
Y-disjunctive. Then, by Remark 2.8(ii)(a),(i)(c) and Theorem 3.9, A has a ∼-
negative (in particular, proper) submatrix D, in which case it is both consistent
and truth-non-empty, and so is not one-valued. On the other hand, the carriers
of proper submatrices of A belong to {2, { 1

2}}, in which case D = 2, and so A is
classically hereditary. �

Theorem 6.32. Let B ∈ Mod(C) and C ′ the logic of B. Suppose B is both truth-
non-empty and consistent but not ∼-paraconsistent (more specifically, ∼-classical;
cf. Remark 2.8(i)(c)), while either A 6∈ Mod(C ′) or B is two-valued, whereas either
B is ∼-negative or A either has a ternary equalizer or is weakly conjunctive or
is non-∼-paraconsistent or both has a quasi-negation and is either classically or
quadro-classically hereditary. Then, there is some (non-proper) submatrix D of B
such that the following hold:

(i) if A is classically hereditary, then (A�2) ∈ Mod(C) is both canonically ∼-
classical and embeddable into D/a(D) (and so isomorphic to B, in which case
it defines a unique ∼-classical extension of C);

(ii) if θA ∈ Con(A) but A is not classically hereditary, then 〈χA[A], {1}〉 ∈
Mod(C) is both canonically ∼-classical and embeddable into D/a(D) (and so
isomorphic to B, in which case it defines a unique ∼-classical extension of
C);

(iii) if neither θA ∈ Con(A) nor A is classically hereditary, then A is both ∼-
paraconsistent and quadro-classically hereditary {in particular, involutive,
while B is not disjunctive} but is neither weakly conjunctive nor extra-classi-
cally hereditary {in particular, C is maximally ∼-paraconsistent} as well as
A2�L4 is a strictly homomorphic counter-image of D/a(D) (whereas θA

2�L4 ∈
Con(A2�L4), in which case 〈χA2�L4 [A2�L4], {1}〉 ∈ Mod(C) is a canonically
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∼-classical strictly surjectively homomorphic image of A2�L4 isomorphic to
B, and so defines a unique ∼-classical extension of C).

In particular, [providing C is not ∼-classical] C is [genuinely] ∼-subclassical if[f ] A
is [genuinely/conjunctively/disjunctively/implicatively] classically hereditary. Like-
wise, [providing C is not ∼-classical and (either disjunctive|“weakly conjuncti-
ve/implicative” or) non-∼-paraconsistent] C is ∼-subclassical if[f ] A is [(disjunc-
tively |“weakly conjunctively/implicatively”)] classically hereditary.

Proof. Take any d ∈ DB 6= ∅ and any b ∈ (B \ DB) 6= ∅. Then, by (2.14),
the submatrix D of B generated by {b, d} is a finitely-generated as well as non-∼-
paraconsistent (and equal to B, for this has no proper submatrix) both consistent
{for b ∈ D} and truth-non-empty {for d ∈ D} model of C ′ {in particular, of C},
and so E , (D/a(D)) is a simple one, in view of Remarks 2.6(iv) and (2.8)(ii)(b)
(while ν−1

a(B) is an isomorphism from E onto B, for this is simple). Assume both θA 6∈
Con(A), in which case A is hereditarily simple, in view of Corollary 6.23(iii)⇒(iv),
and A is not classically hereditary, in which case it is generated by 2, and so there is
some ϕ ∈ Fm2

Σ such that ϕA(1, 0) = 1
2 . Then, by Lemma 3.7, there are some finite

set I, some C ∈ S∗(A)I , some subdirect product F of it and some h ∈ homS
S(F , E),

in which case, by (2.14) and Remark 2.8(ii)(b), F is non-∼-paraconsistent as well as
both consistent and truth-non-empty, for E is so, and so is any Σ-matrix embeddable
into F . Therefore,

(6.3) (I × {j}) 6∈ F,
for all j ∈ 2, because, otherwise, by Lemma 6.24(ii), there would be some embedding
e of A, being generated by 2, into F , in which case, by Remark 2.6(ii), e ◦ h would
be an embedding of A into E , and so, by (2.14), A would be a model of C ′, while
B would not be two-valued, as 2 � 3 = |A| 6 |E| 6 |D| 6 |B|. Hence, by (6.3) and
Lemma 6.24(i), A is not weakly conjunctive but is ∼-paraconsistent, in which case
{ 1

2 ,∼
A 1

2} ⊆ DA {in particular, DA = { 1
2 , 1}}, and so

(6.4) (I × { 1
2}) 6∈ F,

for F is consistent but not ∼-paraconsistent. Take any a ∈ DF 6= ∅, in which case
a ∈ { 1

2 , 1}
I , and so, by (6.3) with j = 1 and (6.4), I 6= J , {i ∈ I | πi(a) = 1} 6= ∅.

Let G be the submatrix of A2 generated by {〈1, 1
2 〉}. Given any x, y ∈ A, set

(x G y) , ((J × {x}) ∪ ((I \ J) × {y})) ∈ AI , in which case a = (1 G 1
2 ), and

so g , {〈〈x, y〉, (x G y)〉 | 〈x, y〉 ∈ G} is an embedding of G into F {in particular,
(g ◦h) ∈ hom(G, E) is strict}, for I 6= J 6= ∅. Then, by (6.3) and (6.4), G is disjoint
with ∆A. Let us prove, by contradiction, that G is disjoint with ∆−

2 . For suppose
there is some k ∈ 2 such that b , 〈k, 1− k〉 ∈ G, in which case, as {k, 1 − k} =
2 3 0 6∈ DA, G 3 b 6∈ DG 63 〈1− k, k〉 = ∼Gb ∈ G, while ∆−

2 ⊆ G, and so G is
non-∼-negative {in particular, B is so, in view of Remark 2.8(ii)(a)}, while, if A had
a ternary equalizer τ , then G would contain τG(〈0, 1〉, 〈1, 0〉, 〈1, 1

2 〉) ∈ ∆A, contrary
to its being disjoint with ∆A {in particular, A is quadro-classically hereditary, for it
is neither classically hereditary, nor weakly conjunctive nor non-∼-paraconsistent}.
Hence, L4 3 〈1, 1

2 〉 includes G, in which case this is disjoint with ∆−
2 , for this is

disjoint with L4. This contradiction shows G is disjoint with ∆−
2 , in which case

G ⊆ L4, and so A is involutive, for, otherwise, as ∼A 1
2 ∈ DA = { 1

2 , 1}, we would
have ∼A 1

2 = 1, in which case G 3 〈1, 1
2 〉 would contain ∼G〈1, 1

2 〉 = 〈0, 1〉 6∈ L4, and
so would not be a subset of L4. Let ψ , (ϕ[x1/∼x0]) ∈ Fm1

Σ, in which case ψA(1) =
ϕA(1, 0) = 1

2 , and so ψA( 1
2 ) ∈ 2 {in particular, A is not extra-classically hereditary},

for, otherwise, G 3 〈1, 1
2 〉 would contain ψA2

(〈1, 1
2 〉) = 〈 1

2 ,
1
2 〉 ∈ ∆A. Therefore,

〈 1
2 , 1〉 ∈ {ψ

G(〈1, 1
2 〉),∼

GψG(〈1, 1
2 〉)} ⊆ G, in which caseG ⊇ {〈1, 1

2 〉, 〈
1
2 , 1〉} includes
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∼A2
[{〈1, 1

2 〉, 〈
1
2 , 1〉}] = {〈0, 1

2 〉, 〈
1
2 , 0〉}, and so G = L4 {in particular, A is quadro-

classically hereditary, for G forms a subalgebra of A2}. (Furthermore, χB, being
injective, is an isomorphism from B onto H , 〈χB[B], {1}〉, being thus canonically
∼-classical {in particular, simple}, in view of Remark 2.8(ii)(a), in which case
f , (((g ◦ h) ◦ ν−1

a(B)) ◦ χ
B) ∈ homS

S(G,H) {in particular, H = f [G]}, for H has
no proper submatrix, and so χG = (f ◦ χH) = (f ◦ ∆2) = f {in particular, θG =
(ker f) ∈ Con(G)}. Then, by Remark 2.6(ii), f is injective.) Thus, (2.14), Remark
2.8(ii)(a), Corollaries 6.19, 6.31, Lemmas 6.18, 6.28, 6.29(ii)⇒(i) and Theorem 6.25
complete the argument. �

This {more precisely, its ()-optional version} provides an effective algebraic cri-
terion of C’s being ∼-subclassical, according to which C, being ∼-subclassical,
has a unique /canonical ∼-classical extension/model to be denoted by CPC/APC

/“and constructed effectively from A”. Its item (ii) cannot be omitted, even if C
is both conjunctive and implicative (and so disjunctive), in view of Example 6.21
and Corollary 6.23(iv)⇒(ii). Likewise, its item (iii) cannot be omitted, even if C is
weakly disjunctive, in view of:

Example 6.33. Let Σ , {∨,∼}, B the canonically ∼-classical Σ-matrix with
(i∨B j) , 1, for all i, j ∈ 2, and A both false-singular and involutive (in particular,
∼-paraconsistent) with (a ∨A b) , (min(a, 1 − a) + 1

2 ), for all a, b ∈ A, in which
case, as (img∨A/B) ⊆ DA/B, A/B is weakly ∨-disjunctive, and so C/B is weakly ∨-
disjunctive/“∨∼-conjunctive (cf. Remark 2.8(i)(a))”, respectively. Then, we have
(〈 1

2 |a, a|
1
2 〉 ∨

A2
b) = 〈1| 12 ,

1
2 |1〉 ∈ (L4 ∩ DA2

), for all a ∈ 2 and all b ∈ A2. Hence,
A is quadro-classically hereditary, while χA

2�L4 ∈ homS
S(A2�L4,B), in which case,

by (2.14), B ∈ Mod(C), and so C is ∼-subclassical but is not ∼-classical in view of
Remark 2.8(i)(c), whereas (1∨A 0) = (0∨A 1) = 1

2 , in which case x0∨x1 is a ternary
equalizer for A, as well as A is not classically hereditary, and so, by Theorems
6.25 and 6.32(iii), C is maximally ∼-paraconsistent but neither disjunctive nor
weakly conjunctive nor genuinely ∼-subclassical (in particular, B is not genuinely
∼-classical, and so neither conjunctive nor disjunctive nor implicative). �

Finally, since A is weakly ∼-negative, whenever it is false-singular (in particular,
∼-paraconsistent), Remarks 2.4, 2.8(i)(a,c,d), Corollary 6.19, Theorems 6.25, 6.27,
6.32 and Lemma 6.29(ii)⇒(i) immediately yield:

Corollary 6.34. (x0 Z x1) is a binary semi-conjunction of any [false-singular]
canonical weakly Z-conjunctive[(ly classically hereditary {in particular, genuinely/
“weakly disjunctively 〈more specifically, implicatively〉” classically hereditary})] ∼-
[super-]classical Σ-matrix [in which case its logic has no proper ∼-paraconsistent
extension], and so C has no proper ∼-paraconsistent extension, whenever either of
the following holds:

(i) A is not extra-classically hereditary (in particular, non-involutive {more spe-
cifically, classically-valued});

(ii) C is weakly conjunctive;
(iii) C is non-purely-inferential/“weakly disjunctive (in particular, implicative)”

and is ∼-subclassical.

This subsumes both the reference [Pyn95 b] in [15], going far beyond this, and
all the ∼-paraconsistent inctances of U3VLSN summarized in Paragraph 6.2.1.1.
Generally speaking, even ∼-subclassical maximally ∼-paraconsistent U3VLSN need
not have theorems/“weakly conjunctive[ly classically hereditary] characteristic ma-
trices”, in view of Example 6.39 below /“as well as 6.33”. On the other hand, the
stipulation of C’s being non-purely-inferential/∼-subclassical cannot be omitted
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in Corollary 6.34(iii) /“, even if C is strongly disjunctive”, in view of the non-
optional/optional version of:

Example 6.35. Let Σ , (Σ∼[∪{∨}]) andA both false-singular and involutive {and
so ∼-paraconsistent, ∼x0 being a quasi-negation for it} [with ∨A , ((π0�∆A) ∪
((A2 \∆A)×{ 1

2}))], in which case [C satisfies (2.2) with i = 0 {for 1
2 ∈ D

A} as well
as both (2.3) and (2.4) {since both the commutativity and idempotence identities
for ∨ are true in A}, and so, by Lemma 6.18, C/A is ∨-disjunctive, while x0 ∨ x1 a
ternary equalizer for A, whereas] A is [neither] classically hereditary [nor quadro-
classically hereditary, for both (0 ∨A 1) = 1

2 6∈ 2 and (〈 1
2 , 0〉 YA2 〈0, 1

2 〉) = 〈 1
2 ,

1
2 〉 6∈

L4 ⊇ {〈1
2 , 0〉, 〈0,

1
2 〉}]. Then, L3 forms a subalgebra of A2, in which case, by Lemma

6.29(i/ii)⇒(iii), C/A has “a proper ∼-paraconsistent extension”/“no binary semi-
conjunction”, and so C is “[not] ∼-subclassical”/“not weakly conjunctive”, in view
of Theorem/Corollary 6.32/6.34. And what is more, in the non-optional case,
∆−

2 forms a subalgebra of (A(�2))2, and so, by (2.14), (A(�2))2�∆−
2 is a truth-

empty model of C(PC) (cf. Theorem 6.32(i)) {in particular, this has no theorem; cf.
Corollary 3.10(ii)⇒(i)}. [On the other hand, A, being false-singular and ∼-super-
classical, is weakly ∼-negative, in which case it, being ∨-disjunctive, is not (∨,∼)-
paracomplete, in view of Remark 2.8(i)(d), and so x0∨∼x0 is a tautology/theorem
of A/C.] �

6.2.2.2.1. Maximal inferential consistency of non-subclassical non-paraconsistent
U3VLSN.

Theorem 6.36. Let B be a canonically ∼-[super-]classical Σ-matrix and C ′ the
logic of B. [Suppose B is either weakly conjunctive or non-∼-paraconsistent.] Then,
C ′ is maximally inferentially consistent [iff it is either ∼-classical or not ∼-sub-
classical], in which case it is “maximally consistent”/“structurally complete” iff it
has theorems (i.e., the submatrix of B2[+1] generated by {〈0, 1[, 1

2 ]〉} is truth-non-
empty).

Proof. [The ”only if” part is by the inferential consistency of classical logics. Con-
versely, assume C ′ is not ∼-subclassical (the case, when C ′ is ∼-classical, is sub-
sumed by the non-optional version), in which case, by (2.14), A is not classically
hereditary, and so is generated by 2.] Consider any inferentially consistent extension
C ′′ of C ′, in which case x1 6∈ T , C ′′(x0) 3 x0, while, by the structurality of C ′′,
〈Fmω

Σ, T 〉 is a model of C ′′ (in particular, of C ′), and so is its finitely-generated con-
sistent truth-non-empty submatrix D , 〈Fm2

Σ, T ∩ Fm2
Σ〉, in view of (2.14). Then,

by Lemma 3.7, there are some finite set I, some C ∈ S∗(B)I and some subdirect
product E ∈ H−1(H(D)), in which case, by (2.14) and Remark 2.8(ii)(b), E is a
consistent truth-non-empty model of C ′′, for D is so, and so, by Lemma 6.24(i,ii), B
[being generated by 2] is embeddable into E (in particular, by (2.14), C ′′ = C ′). In
this way, Remark 2.9 and the inferential consistency of both C ′ and any consistent
logic with theorems complete the argument. �

This (more precisely, its non-optional version) subsumes both a quite effective
algebraic criterion of structural completeness of classical logics and the maximal
{inferential} consistency of classical logics with{out} theorems. In the {after} next
subparagraph, we study the relative one of unique classical extensions of subclassical
U3VLSN.
6.2.2.2.2. Relative maximal consistency of classical extensions versus theorems and
binary semi-conjunctions.

Lemma 6.37. Let B be a canonically ∼-[super-]classical Σ-matrix and ϕ a binary
semi-conjunction for it. [Suppose B is either false-singular or not simple or both
classically hereditary and not extra-classically hereditary.] Then, it has a tautology.
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Proof. Then, φ , ∼(ϕ[x1/∼x0]) ∈ Fm1
Σ is a tautology of B, whenever this is two-

valued. [Otherwise, consider the following exhaustive cases:

• B is false-singular, in which case DB = { 1
2 , 1}, and so φ(φ) is a tautology

of B.
• B is not simple, in which case, by Corollary 6.23(iii)⇒(iv), θB ∈ Con(B),

while h , χB is a strict surjective homomorphism from B onto the canon-
ically ∼-classical Σ-matrix D , 〈h[B], {1}〉, and so, by (2.14), D and B
define the same logic. Then, h�2 is diagonal, in which case ϕ is a binary
semi-conjunction for D, and so φ is a tautology of D (in particular, of B).

• B is both classically hereditary and not extra-classically hereditary, in which
case there is some ψ ∈ Fm1

Σ such that ψB( 1
2 ) ∈ 2, and so φ(ψ) is a tautology

of B.] �

Theorem 6.38. Suppose C is ∼-suclassical, while A is [not] false-singular. Then,
the following are equivalent:

(i) A has a tautology (in particular, is weakly disjunctive [but is not extra-
classically hereditary]);

(ii) CPC has a theorem [while A is not extra-classically hereditary];
(iii) A has a binary semi-conjunction (in particular, is weakly conjunctive{ly/dis-

junctively classically hereditary}) [but is not extra-classically hereditary];
(iv) CPC is C-relatively maximally consistent.

Proof. First, (i)⇒(ii) is by the inclusion C(∅) ⊆ CPC(∅) [and Corollary 3.10(iv)⇒
(i)], while (iii)⇒(i) is by [Theorems 6.25, 6.32(iii) and Corollary 6.23(iv)⇒(iii) as
well as] Lemma 6.37, whereas (iv)⇒(i) is by Remark 2.9.

Next, assume CPC has a theorem, in which case, by Remark 2.4, there is some
ϕ ∈ (Fm1

Σ ∩CPC(∅)), and so this is a tautology of APC. Consider the following
complementary cases:

• A is classically hereditary, in which case, by Theorem 6.32(i), APC = (A�2),
and so ∼ϕ is a semi-conjunction for A�2 (in particular, a binary one for
A).

• A is not classically hereditary. Consider the following complementary sub-
cases:

– θA ∈ Con(A), in which case, by Theorem 6.32(ii), APC = B ,
〈χA[A], {1}〉, and so h , χA ∈ homS

S(A,B). Consider the following
complementary subsubcases:

∗ A is truth-singular, in which case, by (2.14), ϕ is a tautology of
A, and so ∼ϕ is a binary semi-conjunction for A.

∗ A is false-singular, in which case, for each i ∈ 2, ∼BϕB(i) = 0 6∈
DB, and so ∼AϕA(i) = 0, for h�2 is diagonal (in particular, ∼ϕ
is a binary semi-conjunction for A).

– θA 6∈ Con(A), in which case, by Theorem 6.32(iii), A is ∼-paracon-
sistent (in particular, false-singular) and quadro-classically hereditary,
while D , (A2�L4) is a strictly surjectively homomorphic counter-
image of APC, and so, by (2.14), ϕ is a tautology of D. Then, for
each i ∈ 2, ϕD(〈 1

2 , i〉) ∈ D
D = {〈 1

2 , 1〉, 〈1,
1
2 〉}. Consider the following

complementary subsubcases:
∗ ϕA( 1

2 ) = 1
2 , in which case ϕD(〈 1

2 , i〉) = 〈 1
2 , 1〉, and so ∼ϕ is a

binary semi-conjunction for A.
∗ ϕA( 1

2 ) 6= 1
2 , in which case ϕD(〈 1

2 , i〉) = 〈1, 1
2 〉, and so ∼ϕ(ϕ) is a

binary semi-conjunction for A.

Thus, (ii)⇒(iii) holds.
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Further, assume (iii) holds, in which case (i) does so, and so C(∅) 6= ∅. Consider
any consistent extension C ′ of C. If C ′ = C, then it is clearly a sublogic of CPC.
Now, assume C ′ 6= C, in which case, by (iii) and Lemma 6.29(iii)⇒(i), C ′ is non-
∼-paraconsistent, and so is any model of it. Then, x0 6∈ T , C ′(∅) ⊇ C(∅) 6= ∅,
in which case, by the structurality of C ′, D , 〈Fmω

Σ, T 〉 is a consistent truth-non-
empty model of C ′ (in particular, A is not a model of the logic of D, for C ′ is a
proper extension of C), and so a non-∼-paraconsistent one of C. Hence, by (iii),
(2.14) and Theorem 6.32, APC is a model of C ′, that is, CPC is an extension of C ′.
Thus, (iv) holds.

Finally, Remark 2.8(i)(a,d),(ii)(a), Corollaries 3.10(i)⇒(iv), 6.34 and the weak
∼-negativilty of false-singular ∼-super-classical Σ-matrices complete the proof. �

This provides an effective algebraic algebraic criterion of the relative maxi-
mal consistency of unique ∼-classical extensions of ∼-subclassical uniformly three-
valued Σ-logics with subclassical negation ∼, the non-triviality of the property
involved being due to:

Example 6.39. Let Σ = Σ¬
∼ with unary ¬ and A both truth-/false-singular, non-

∼-negative /(and so ∼-paraconsistent) and non-invlolutive with ¬Aa , (1 − a),
for all a ∈ A, in which case it is classically hereditary but not extra-classically
hereditary, while ¬x0 is a a quasi-negation for it, and so by Theorem 6.32(i) /“and
Corollary 6.34(i)”, C is ∼-subclassical /“and maximally ∼-paraconsistent”. Never-
theless, ∆−

2 forms a subalgebra of (A[�2])2, in which case, by (2.14), (A[�2])2�∆−
2

is a truth-non-empty model of C [PC] [cf. Theorem 6.32(i)], and so this has no the-
orem (in particular, by Lemma 6.37, A[�2] has no binary semi-conjunction, and
so, by Corollary 6.34, A�2 is not weakly conjunctive /“as well as A is not weakly
conjunctive{ly classically hereditary}”). �

6.2.2.2.3. Relative maximal inferential consistency of classical extensions versus
proper paraconsistent extensions and quasi-negations.

Theorem 6.40. Suppose C is ∼-subclassical and does [not] satisfy (2.10). Then,
CPC is C-relatively maximally inferentially consistent [iff the following hold:

(i) C has no proper {more specifically, non-∼-subclassical} ∼-paraconsistent ex-
tension (i.e., L3 does not form a subalgebra of A2; cf. Lemma 6.29(i)⇔(iii));

(ii) A has a quasi-negation (in particular, is involutive)].

Proof. [First, assume CPC is C-relatively maximally inferentially consistent, in
which case (i) is by the inferential consistency of∼-paraconsistent Σ-logics. Further-
more, we prove (ii), by contradiction. For suppose (ii) does not hold, in which caseA
is not involutive, and so∼A 1

2 = 1, forA is∼-paraconsistent. Let B be the submatrix
of A2 generated by S , {〈1, 1

2 〉}, in which case B ⊇ (S ∪∼A2
[S] ∪∼A2

[∼A2
[S]]) =

(S∪∆−
2 ) is disjoint with {0, 1

2}
2, and so DB ⊇ S 6= ∅, while (B\DB) = ∆2 6= ∅ (in

particular, B is both consistent and truth-non-empty). Then, by (2.14), the logic
C ′ of B is an inferentially consistent extension of C, in which case C ′ is a sublogic
of CPC. On the other hand, ∼A2

[∆−
2 ] ⊆ ∆−

2 , in which case the Σ-rule ∼x0 ` x0,
not being true in APC under [x0/0], is true in B, and so this contradiction shows
that (ii) holds. Conversely, assume (i,ii) hold.] Consider any inferentially consistent
extension C ′′ of C, in which case it is sublogic of the extension CPC of C, whenever
C ′′ = C. Now, assume C ′′ 6= C, in which case C ′′ is not ∼-paraconsistent, while, by
Theorem 6.36, C is not ∼-classical, and so, by Theorems 6.25 and 6.32, A is ether
classically or quadro-classically hereditary. Then, x1 6∈ T , C ′′(x0) 3 x0, in which
case, by the structurality of C ′′, D , 〈Fmω

Σ, T 〉 is a consistent truth-non-empty
model of C ′′, and so a non-∼-paraconsistent one of C. Hence, A is not a model
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of the logic C ′′′ of D ∈ Mod(C ′′), for C ′′ is a proper extension of C. And what
is more, A has a quasi-negation, whenever it is ∼-paraconsistent. Then, by (2.14)
and Theorem 6.32, APC is a model of C ′′′, so C ′′ is a sublogic of CPC. �

This provides an effective algebraic algebraic criterion of the relative maximal
inferential consistency of unique ∼-classical extensions of ∼-subclassical uniformly
three-valued Σ-logics with subclassical negation ∼, the necessity of its item (i/ii)
(and so the non-triviality of the property involved) in the “∼-paraconsistent” case
being due to /“the optional version of” Example 6.35/6.44 /below. Though infer-
entially consistent logics are consistent, Theorem 6.40 is not subsumed by Theorem
6.38, in view of Example 6.39.
6.2.2.2.4. Structural completeness of paraconsistent U3VLSN versus maximal para-
consistency and ternary equalizers.

Lemma 6.41. Let ε be a ternary equalizer for A. Suppose A is false-singular but
is not classically-hereditary. Then, it has a tautology.

Proof. In that case, there is some φ ∈ Fm2
Σ such that φA(0, 1) = 1

2 . Then,
ψ , (φ[x1/∼x0]) ∈ Fm1

Σ, while ψA(0) = φA(0, 1) = 1
2 . Consider the following

complementary cases:
• (ψA[DA] ∩ {1}) = ∅, in which case ∼ψ is a tautology of A.
• (ψA[DA] ∩ {1}) 6= ∅. Consider the following complementary subcases:

– ψA[DA] = {1}, in which case ψ(ψ) is a tautology of A.
– ψA[DA] 6= {1}. Consider the following complementary subcases:

∗ (ψA[DA] ∩ {0}) = ∅, in which case ψ is a tautology of A.
∗ (ψA[DA] ∩ {0}) 6= ∅, in which case there are some a, b ∈ DA

such that ψA(a) = 0 and ψA(b) = 1, in which case a 6= b, and
so {a, b} = DA. Put ϕ , (ψ[x(2·b)−1/ψ(∼x0)]) ∈ Fm1

Σ. Then,
ϕA(1) = 1 and ϕA(0) = 1

2 . Set ξ , ε(∼x0, x0, ϕ) ∈ Fm1
Σ. Then,

ξA(0) = ξA(1). Let i , (1−χA(ξA(0))) ∈ 2 and η , ∼iξ ∈ Fm1
Σ.

Then, ηA[2] ⊆ DA, while ηA(0) = ηA(1). Let j , χA(ηA( 1
2 )) ∈ 2

and k , max(j, 1 − χ2
A(ηA(0))) ∈ 2. Then, ∼(1−j)·k(η[xk/η]) ∈

Fm1
Σ is a tautology of A. �

Lemma 6.42. Suppose A [both] is classically hereditary (in which case C is ∼-
subclassical with APC = (A�2); cf. Theorem 6.32(i)) [and either is false-singular or
has a ternary anti-equalizer, as well as C is not axiomatically equivalent to CPC].
Then, the logic C ′ of B , (A×APC) is a [proper] axiomatically-equivalent extension
of C.

Proof. Clearly, (π0�B) ∈ hom(B,A) is surjective, in which case, by (2.14) and
(2.15), C ′ is an axiomatically-equivalent extension of C. [Take any ϕ ∈ (CPC(∅) \
C(∅)) 6= ∅, for CPC(∅) * C(∅), as C(∅) ( CPC(∅), in which case ϕ is true
in A�2, while there is some h ∈ hom(Fmω

Σ,A) such that h(ϕ) 6∈ DA, whereas
V , Var(ϕ) ⊆ Varω is finite, and so |Varω \V | = |Varω | = ω ⊇ 2, for ω is infinite.
Take any injective v̄ : 2 → (Varω \V ). Consider the following complementary cases:

• h(ϕ) = 0, in which case h(∼ϕ) = 1 ∈ DA, while, for all g ∈ hom(Fmω
Σ,A�2),

g(ϕ) = 1, and so g(∼ϕ) = 0 6∈ DA. Then, ∼ϕ ` v0 is true in B but is not
true in A under (h�(Varω \{v0})) ∪ [v0/0], for 0 6∈ DA.

• h(ϕ) 6= 0, in which case A is not false-singular, that is, truth-singular,
and so has a ternary anti-equalizer τ , while h(ϕ) = 1

2 , for 1 ∈ DA. Let
k , τA(0, 1, 1) ∈ 2 and θ , ∼kτ , in which case θA2

(〈0, 0〉, 〈1, 1〉, 〈 1
2 , 1〉) =

〈1, 0〉, and so {v0, θ(∼v0, v0, ϕ)} ` v1 is true in B, for θA(0, 1, 1) = 0 6∈
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DA = {1}, but is not true in A under (h�(Varω \{v0, v1})) ∪ [v0/1, v1/0],
for θA(0, 1, 1

2 ) = 1 ∈ DA 63 0.] �

Theorem 6.43. Suppose A is false-singular (in particular, ∼-paraconsistent). In
that case, C is structurally complete iff the following hold:

(i) C has a theorem (i.e., the submatrix of A3 generated by {〈0, 1, 1
2 〉} is truth-

non-empty), whenever it is ∼-classical (i.e., θA ∈ Con(A); cf. Theorem
6.25);

(ii) C has no proper ∼-paraconsistent extension (i.e., L3 does not form a subal-
gebra of A2, that is, either A is not extra-classically hereditary [in particular,
is non-involutive {more specifically, is classically-valued}] or has a ternary
〈in particular, binary〉 semi-conjunction; cf. Lemma 6.29(i)⇔(ii)⇔(iii));

(iii) A is not classically hereditary, whenever C is not ∼-classical (i.e., θA 6∈
Con(A); cf. Theorem 6.25);

(iv) A is not quadro-classically hereditary (in particular, non-involutive);
(v) A has a ternary equalizer (in particular, either has a binary semi-conjunction

or is ∼-negative).

In particular, providing C is weakly conjunctive, it is structurally complete iff it is
either ∼-classical or non-∼-subclassical.

Proof. First, assume (i–v) hold, in which case by (i,iii,v) and Lemma 6.41, C has a
theorem, and so is structurally complete, unless it is ∼-paraconsistent, in view of
Theorems 6.25, 6.32, 6.36 and (iii). Now, assume C is ∼-paraconsistent, in which
case, by Remark 2.8(i)(c), C is not ∼-classical, and so, by Theorem 6.25, θA 6∈
Con(A), while, by (iii), A is not classically hereditary. Consider any axiomatically-
equivalent extension C ′ of C, in which case it is consistent, for C is so, asA is so, and
so x1 6∈ T , C ′(∅) ⊇ C(∅) 6= ∅. Then, by the structurality of C ′, B , 〈Fmω

Σ, T 〉
is a consistent truth-non-empty model of C ′ (in particular, of its sublogic C). We
prove that C ′ = C, by contradiction. For suppose C ′ 6= C, in which case, by (ii),
C ′ is non-∼-paraconsistent, and so is B ∈ Mod(C ′). Then, by (iv,v) and Theorem
6.32(iii), A is a model of the logic of B ∈ Mod(C ′), and so of C ′, in which case
C ′ = C (in particular, C is structurally complete). Conversely, assume either of
(i–iv) does not hold. Consider the respective cases:

(i) does not hold, in which case C is purely-inferential as well as inferentially
consistent, for A is both consistent and truth-non-empty, and so, by Remark
2.9, C is not structurally complete.

(ii) does not hold, in which case A is extra-classically hereditary, for L3 3 〈 1
2 ,

1
2 〉

is disjoint with ∆2, and so involutive, while, by (2.14), D , (A2�L3) ∈
Mod(C), and so, by (2.15), the logic C ′′ of D is an axiomatically-equivalent
extension of C, for (π0�D) ∈ hom(D,A) is surjective, as π0[L3] = A. Then,
DD = {〈 1

2 ,
1
2 〉}, in which case, the Σ-rule x0 ` ∼x0, not being true in A under

[x0/1], is true in D, for A is involutive, and so C ′′ is a proper extension of C
(in particular, C is not structurally complete).

(iii) does not hold, in which case both C is non-∼-classical and A is classically
hereditary, in which case, by Theorem 6.32(i), C is ∼-subclassical (in par-
ticular, is a proper sublogic of CPC), and so is not structurally complete,
whenever it is axiomatically-equivalent to CPC. Otherwise, it is not struc-
turally complete as well, in view of Lemma 6.42.

(iv) does not hold, in which caseA is involutive (in particular, is ∼-paraconsistent,
for it is false-singular), for L4 3 〈0, 1

2 〉 is disjoint with 22, while, by (2.14),
F , (A2�L4) ∈ Mod(C) is not ∼-paraconsistent, for 〈 1

2 ,
1
2 〉 6∈ L4. Then, by
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(2.15), the logic of F is a non-∼-paraconsistent (and so proper) axiomatically-
equivalent extension of C, for (π0�F ) ∈ hom(F ,A) is surjective, as π0[L3] =
A, and so C is not structurally complete.

(v) does not hold, in which case ∼A 1
2 6= 0 (in particular, A, being false-singular,

is ∼-paraconsistent), for, otherwise, ∼x2 would be a ternary equalizer for A,
while, by (2.14), the submatrix G of A2 generated by M , (∆−

2 ∪{〈 1
2 , 1〉}) is

a model of C, whereas G is disjoint with ∆A 3 〈 1
2 ,

1
2 〉 (in particular, G is not

∼-paraconsistent), and so, by (2.15), the logic of G is a non-∼-paraconsistent
(and so proper) axiomatically-equivalent extension of C (in particular, C is
not structurally complete), for (π0�G) ∈ hom(G,A) is surjective, as π0[M ] =
A.

Finally, assume C is weakly Z-conjunctive, in which case ( 1
2 ZA0) = 0 = (0ZA 1

2 ), for
A is false-singular with non-distinguished value 0, and so (〈 1

2 , 0〉Z
A2〈0, 1

2 〉) = 〈0, 0〉 6∈
L4 ⊇ {〈 1

2 , 0〉, 〈0,
1
2 〉} (in particular, A is not quadro-classically hereditary). In this

way, Theorem 6.32, Corollary 6.34 and Lemma 6.37 complete the argument. �

This provides an effective algebraic criterion of the structural completeness of
C, whenever A is false-singular, the opposite case being analyzed in the next sub-
paragraph. In view of the non-optional “false-singular” version of Example 6.21,
the item (i) of Theorem 6.43 cannot be omitted. Likewise, its item (ii) cannot be
omitted, in view of the optional version of Example 6.35, even if C is disjunctive.
And what is more, its item (iii) cannot be omitted, even if C is both conjunctive and
disjunctive, in view of Remark 2.8(i)(c), Corollary 6.34(ii) and the ∼-paraconsistent
conjunctive disjunctive instances with classically hereditary characteristic matrices
summarized in Paragraph 6.2.1.1. Furthermore, in view of Remark 2.8(i)(d) and
Example 6.33, the item (iv) of Theorem 6.43 cannot be omitted, even if C is weakly
disjunctive. Finally, its item (v) cannot equally be omitted, even if C is weakly
disjunctive, in view of the optional version of:

Example 6.44. Let Σ , Σᵀ
∼ with unary ᵀ and A both false-singular and [neither]

involutive [(and so neither extra- nor quadro-classically hereditary) nor ∼-negative]
(and so ∼-paraconsistent) with ᵀA(a) , max(a, 1

2 ), for all a ∈ A, in which case ᵀx0

is a theorem of C (and so this is weakly (ᵀx0)-disjunctive) while A is not classically
hereditary, for ᵀA0 = 1

2 6∈ 2 3 0 [whereas ∆−
2 ∪ {〈 1

2 + (i · 1
2 ), 1

2 + ((1− i) · 1
2 )〉 |

i ∈ 2}, being disjoint with ∆A ∪ {0, 1
2}

2, forms a subalgebra of A2, and so neither
A has a quasi-negation/“ternary equalizer” nor C has a proper ∼-paraconsistent
extension, in view of Lemma 6.29(ii)⇒(i)]. And what is more, in the non-optional
case, ᵀ∼x2 is a ternary equalizer for A, while, for no j ∈ 2, L3+j forms a subalgebra
of A2, because ᵀA2〈0, 1− (j · 1

2 )〉 = 〈 1
2 , 1− (j · 1

2 )〉 6∈ L3+j 3 〈0, 1− (j · 1
2 )〉, and so,

by Theorem 6.43, C is structurally complete. On the other hand, in that case,
(A2 \∆2) ⊇ ∆−

2 forms a subalgebra of A2, and so A has no binary semi-conjunction
(in particular, is not weakly conjunctive, in view of Corollary 6.34). �

In this way, the characterization of the structural completeness given by The-
orem 6.43 is minimal. In this connection, it is also remarkable that, though “the
non-involutivity”/“existence of a binary semi-conjunction” of A subsumes the items
(ii,iv/v) of Theorem 6.43, these cannot be collectively replaced by the single for-
mer stipulation, because there are structurally complete ∼-paraconsistent Σ-logics
with subclassical negation ∼ and with involutive characteristic matrix having no
binary semi-conjunction (and so not being weakly conjunctive), in view of the non-
optional version of Example 6.44. In particular, structural completeness and weak
conjunctivity do not imply one another, in view of ∼-paraconsistent conjunctive
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instances with classically hereditary characteristic matrices summarized in Para-
graph 6.2.1.1. Though Theorem 6.43 refutes the structural completeness of such
instances, it equally shows that their uniform three-valued expansions (cf. Theorem
6.27) with a new nullary connective taking the value 1

2 are structurally complete.
6.2.2.2.5. Structural completeness of weakly disjunctive paracomplete U3VLSN
versus maximal paracompleteness and ternary anti-equalizers. Let K3 , (∆2 ∪
{〈 1

2 , 1〉}), K4 , (K3 ∪ {〈 1
2 , 0〉}) and K the submatrix of A2 generated by K3, in

which case A has no ternary anti-equalizer iff K is disjoint with ∆−
2 , while, provid-

ing A is classically hereditary, K ⊆ (A × 2), for π1[K3] = 2 forms a subalgebra of
A, in which case K is disjoint with ∆−

2 iff either K3 or K4 forms a subalgebra of
A2, for K3 ⊆ K4 = ((A×2)\∆−

2 ), whereas (K4 \K3) = {〈 1
2 , 0〉} is a singleton, and

so A has no ternary anti-equalizer iff either K3 or K4 forms a subalgebra of A2.

Lemma 6.45. Suppose C is ∼-subclassical but neither purely-inferential nor ∼-
paraconsistent (in particular, A is truth-singular). Then, the following are equiva-
lent:

(i) C is axiomatically equivalent to CPC;
(ii) (Fm1

Σ ∩(CPC(∅) \ C(∅))) = ∅;
(iii) The carrier of the subalgebra of A3 generated by {〈0, 1, 1

2 〉} is disjoint with
{〈1, 1〉} × (A \DA);

(iv) The carrier of the subalgebra of A3 generated by {〈0, 1, 1
2 〉} is disjoint with

(DA)2 × (A \DA).

Proof. In that case, ∼A[DA] = {0}, forA is not∼-paraconsistent, while, by Remark
2.4, there is some φ ∈ (Fm1

Σ ∩C(∅)), and so every j ∈ 2 is term-wise definable by
∼j+1φ in A, whereas (ii/iii) is a particular case of (i/iv), respectively. Next, assume
(ii) does not hold, in which case there is some ϕ ∈ (Fm1

Σ ∩(CPC(∅) \ C(∅))) 6= ∅
(in particular, CPC is an inferentially consistent proper extension of C), and so,
by Theorem 6.36, C is not ∼-classical. Then, by Theorems 6.25 and 6.32, A is
classically hereditary, in which case ϕ is true in APC = (A�2), and so ϕA( 1

2 ) 6∈ DA

(in particular, (iii) does not hold). Conversely, assume (iv) does not hold, in which
case there is some ξ ∈ Fm1

Σ such that ξA[2] ⊆ DA, while ξA( 1
2 ) 6∈ DA, and so ξ is

not true in A under [x0/
1
2 ]. Consider the following complementary cases:

• A is classically hereditary, in which case ξA[2] ⊆ (DA ∩ 2) = {1}, and
so, by Theorem 6.32(i), ξ is true in (A�2) = APC (in particular, ξ ∈
(Fm1

Σ ∩(CPC(∅) \ C(∅)))).
• A is not classically hereditary, in which case, since C is not ∼-paraconsis-

tent, by Theorem 6.32(iii), θA ∈ Con(A), and so, Theorem 6.32(ii), h ,
χA ∈ hom(A,APC). Then, as h�2 is diagonal, we have {1} = h[DA] ⊇
h[ξA[2]] = ξAPC [h[2]] = ξAPC [2], in which case ξ is true in APC, and so
ξ ∈ (Fm1

Σ ∩(CPC(∅) \ C(∅))).
Thus, in any case (ii) does not hold. Finally, assume (i) does not hold, in which case
there is some ψ ∈ (CPC(∅) \ C(∅)) 6= ∅, and so there is some h ∈ hom(Fmω

Σ,A)
such that h(ψ) 6∈ DA. For each a ∈ A, set Na , {i ∈ ω | h(xi) = a}. Let σ be the
Σ-substitution extending [xl/∼k+1φ;xm/x0]k∈2,l∈Nk;m∈N 1

2
and g ∈ hom(Fmω

Σ,A)

extend [xn/
1
2 ]n∈ω, in which case h = (σ ◦ g), and so, by the structurality of CPC,

σ(ψ) ∈ (Fm1
Σ ∩(CPC(∅) \ C(∅))) (in particular, (ii) does not hold). �

Lemma 6.46. Suppose C is ∼-subclassical, while A is truth-singular and has no
ternary anti-equalizer. Let ϕ ∈ (Fm1

Σ ∩(CPC(∅) \ C(∅))), B a truth-non-empty
model of C not satisfying ϕ and C ′ the logic of B. Then, A ∈ Mod(C ′).
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Proof. In that case, CPC is an inferentially consistent proper extension of C, and
so, by Theorem 6.36, C is not ∼-classical. Hence, by Theorems 6.25 and 6.32, A
is classically hereditary, in which case ϕ, being true in APC = (A�2), is not true in
A under [x0/

1
2 ], and so ϕA( 1

2 ) = 1
2 , for, otherwise, as DA = {1}, ϕ(x2) would be

a ternary anti-equalizer for A. And what is more, since ϕ is not true in B, there
is some a ∈ B such that ϕB(a) 6∈ DB. Take any b ∈ DB 6= ∅. Then, by (2.14),
the submatrix D of B generated by {a, b} is a finitely-generated truth-non-empty
model of C ′ (in particular, of its sublogic C), in which ϕ is not true under [x0/a].
Therefore, by Lemma 3.7, there are some finite set I, some C ∈ S∗(A)I , and some
subdirect product E ∈ H−1(D/a(D)) of it, in which case, by (2.14) and Remark
2.8(ii)(b), E is truth-non-empty model of C ′ not satisfying ϕ, and so there is some
c ∈ E such that E 3 d , ϕE(c) 6∈ DE . Then, J , {i ∈ I | πi(c) = 1

2} 6= ∅.
Take any e ∈ DE 6= ∅, in which case, as DA = {1}, E 3 e = (I × {1}), and so
E 3 f , ∼Ee = (I × {0}). Consider the following complementary cases:

• J = I, in which case E 3 d = (I×{ 1
2}), and so, as I = J 6= ∅, {〈g, I × {g}〉 |

g ∈ A} is an embedding of A into E ∈ Mod(C ′) (in particular, by (2.14),
A ∈ Mod(C ′)).

• J 6= I, in which case, as J 6= I, h : A2 → AI , 〈j, k〉 7→ ((J ×{j})∪ ((I \J)×
{k})) is injective. Then, h(〈1|0, 1|0〉) = (e|f) ∈ E and h(〈 1

2 , 1〉) = d ∈ E, in
which case h[K3] ⊆ E, and so h�K is an embedding of K into E ∈ Mod(C ′).
And what is more, since K is disjoint with ∆−

2 , for A has no ternary
anti-equalizer, (π0�K) ∈ homS

S(K,A), for π0[K] = A. Thus, by (2.14),
A ∈ Mod(C ′). �

Lemma 6.47. Suppose C is non-∼-paraconsistent (in particular, A is truth-sin-
gular), Y-disjunctive, ∼-subclassical and axiomatically-equivalent to CPC. Then,
C = CPC.

Proof. In that case, by Lemma 3.11, C satisfies (3.2), and so (2.7) with A , A∼
Y .

And what is more, by Lemma 6.18, APC ∈ Mod(C), being false-singular, is Y-
disjunctive, in which case it, being ∼-negative, is A-implicative, in view of Remark
2.8(i)(b), and so CPC, being defined by the two-valued Σ-matrix APC, both is
finitary and has DT with respect to A. In this way, Lemma 4.10 and the fact that
C is a sublogic of CPC complete the argument. �

Theorem 6.48. Suppose A is truth-singular (and so non-∼-paraconsistent). Then,
C is structurally complete iff the following hold:

(i) C has a theorem (i.e., the submatrix of A3 generated by {〈0, 1, 1
2 〉} is truth-

non-empty);
(ii) providing C is ∼-subclassical but not ∼-classical (in which case A is classi-

cally hereditary; cf. Theorems 6.25 and 6.32), the following hold:
(a) C is not axiomatically equivalent to CPC [in particular, disjunctive; cf.

Lemma 6.47 {more specifically, implicative; cf. Theorem 3.5}] (i.e., the
carrier of the subalgebra of A3 generated by {〈0, 1, 1

2 〉} is not disjoint
with {〈1, 1〉} × {0, 1

2}; cf. Lemma 6.45(i)⇔(iii));
(b) A has no ternary anti-equalizer (i.e., either K3 or K4 forms a subalgebra

of A2) 〈in which case A is non-implicative, and so is C; cf. Corollary
6.19〉.

Proof. First, assume both of (i,ii) hold. Then, in case C is either ∼-classical or
non-∼-subclassical, by (i) and Theorem 6.36, C is structurally complete. Now,
assume C is both non-∼-classical and ∼-subclassical, in which case, by (ii)(a), it is
not axiomatically-equivalent to CPC, and so, by (i) and Lemma 6.45(ii)⇒(i), there
is some ϕ ∈ (Fm1

Σ ∩(CPC(∅) \ C(∅))) 6= ∅, while, by (ii)(b), A has no ternary
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anti-equalizer. Consider any axiomatically-equivalent extension C ′ of C, in which
case, by (i), ϕ 6∈ T , C ′(∅) = C(∅) 6= ∅, and so, by the structurality of C ′,
B , 〈Fmω

Σ, T 〉 is a truth-non-empty model of C ′ (in particular, of its sublogic C),
in which ϕ is not true under the diagonal Σ-substitution. Then, by Lemma 6.46,
A is a model of C ′, for B is so, in which case C ′ = C, and so C is structurally
complete. Conversely, assume either of (i,ii) does not hold. Consider the respective
cases:

(i) does not hold, in which case, by Remark 2.9, C, being inferentially consistent,
for A is both consistent and truth-non-empty, is not structurally complete.

(ii) does not hold, in which case C is both ∼-subclassical and non-∼-classical
(in particular, CPC is a proper extension of C), and so is not structurally
complete, whenever it is axiomatically-equivalent to CPC. Otherwise, A has a
ternary anti-equalizer, so, by Lemma 6.42, C is not structurally complete. �

This provides an effective purely-algebraic criterion of the structural complete-
ness of C, whenever A is truth-singular. In view of the non-optional “truth-
singular” version of Example 6.21, the item (i) of Theorem 6.48 cannot be omitted.
Such equally concerns the subitem (b) of its item (ii) (in particular, the item (ii) it-
self), in view of existence of ∼-subclassical Y-disjunctive (Y,∼)-paracomplete (and
so non-∼-classical with truth-singular characteristic matrices; cf. Remark 2.8(i)(d))
implicative (and so non-purely-inferential; cf. (2.5)) uniformly three-valued Σ-logics
with subclassical negation ∼ like, e.g.,  Lukasiewicz’ one (cf. Example 4.17 with
n = 3) and IP 1 (cf. Subparagraph 6.2.1.1.4). Likewise, its subitem (a) cannot be
omitted, while its optional stipulation of disjunctivity (as well as the regular one in
Lemma 6.47) cannot be even weakened, in view of:

Example 6.49 (The disjunction-conjunction-implication-less fragment of G3). Let
Σ , Σ∼,01 and A both truth-singular, non-involutive, non-∼-negative with (A�Σ01)
, (D3,01�Σ01) (cf. Subparagraph 2.2.1.2.1), in which case, by Remark 2.8(ii)(a) and
Theorems 6.25 and 6.32(i), C is not ∼-classical but is ∼-subclassical (in particular,
CPC is a proper extension of C) with APC = (A�2), for A is classically hereditary,
while > is a theorem of C, whereas K3 forms a subalgebra of A2, and so A has
no ternary anti-equalizer as well as, by Remark 2.4, is weakly disjunctive. On
the other hand, K5 , (22 ∪ {〈 1

2 , 0〉}) forms a subalgebra of A2, while π0�K3|5 is
a surjective homomorphism from K′3|5 , 〈A2�K3|5, (π1�K3|5)−1[{1}]〉 onto A′

1
2 |0

,

〈A, {1, 1
2 |0}〉, whereas (π1�K3|5) ∈ homS

S(K′3|5,A�2), in which case by, (2.14,2.15),

any ϕ ∈ CPC(∅) is true in both A′
1
2

and A′
0, and so in A, for DA = {1} = (D

A′
1
2 ∩

DA′
0). Then, C is axiomatically-equivalent to CPC, and so is neither structurally

complete nor disjunctive, in view of Lemma 6.47. �

In this way, the characterization of structural completeness given by Theorem
6.48 is minimal. Nevertheless, it can be enhanced for weakly Y-disjunctive (Y,∼)-
paracomplete uniformly three-valued Σ-logics with subclassical negation ∼, the rest
of this subparagraph being devoted to this enhancement. We start from proving:

Theorem 6.50. Suppose A is both weakly Y-disjunctive and (Y,∼)-paracomplete
as well as has [no] tautologies (i.e., is [not] extra-classically non-hereditary). Then,
C is maximally [inferentially] (Y,∼)-paracomplete iff, providing A is classically
hereditary (i.e., C is ∼-subclassical), it has no ternary anti-equalizer (i.e., ei-
ther K3 or K4 forms a subalgebra of A2), in which case, providing C is {not}
non-∼-subclassical (i.e., A is {not} classically non-hereditary), it has no proper
[inferentially] consistent extension {other than CPC [and CPC

+0 ], as well as is not
implicative}.
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Proof. In that case, for each j ∈ 2, as {j, 1− j} = 2 3 1 ∈ DA, (j YA ∼Aj) ∈ DA,
and so ( 1

2 YA ∼A 1
2 ) 6∈ DA. Hence, { 1

2 ,∼
A 1

2} is disjoint with DA 63 0, in which case
DA = {1}, that is, A is truth-singular, and so is not ∼-paraconsistent.

Furthermore, by Remark 2.8(i)(d), C is not ∼-classical, and so, by Theorems
6.25 and 6.32, C, being non-∼-paraconsistent, is ∼-subclassical iff A is classically
hereditary, in which case APC = (A�2).

Likewise, as A is truth-singular, (A�Σ∼)�{ 1
2} is the only truth-empty submatrix

of A�Σ∼, and so, by Corollary 3.10(i)⇔(iv), C has theorems iff A is not extra-
classically hereditary.

Next, the “only if” part is by Lemma 6.42, for A × (A�2) is truth-non-empty,
while A〈�2〉 is 〈not〉 (Y,∼)-paracomplete, whenever A is classically hereditary.

Conversely, assume A has no ternary anti-equalizer, whenever it is classically
hereditary. Consider any inferentially consistent extension C ′ of C and the following
complementary cases:

• C is ∼-subclassical, in which case A is classically hereditary, and so has no
ternary anti-equalizer. Consider the following complementary subcases:

– C ′ is inferentially (Y,∼)-paracomplete, in which case (x0 Y ∼x0) 6∈
T , C ′(x1) 3 x1, and so, by the structurality of C ′, 〈Fmω

Σ, T 〉 is a
truth-non-empty (Y,∼)-paracomplete model of C ′ (in particular, of
its sublogic C). Then, by Lemma 6.46 with ϕ = (x0 Y∼x0), C ′ = C.

– C ′ is not inferentially (Y,∼)-paracomplete, in which case (2.11) is sat-
isfied in it. Consider the following complementary subsubcases:

∗ C ′ has a theorem φ, in which case, by the structurality of C ′

and (2.11)[x1/φ], x0 Y∼x0 is satisfied in C ′, and so, by Lemma
6.28, C ′ is an inferentially consistent extension of CPC. Then,
by Theorem 6.36, C ′ = CPC.

∗ C ′ has no theorem, and so does its sublogic C. Let C ′′ be the
closure operator over Fmω

Σ dual to the closure system over Fmω
Σ

with basis B , ((imgC ′)\{∅}), in which case (C ′′�℘∞\1(Fmω
Σ))

= (C ′�℘∞\1(Fmω
Σ)), and so, as the set Varω is infinite, while the

set of all variables occurring in any Σ-formula is finite, C ′′ is
structural, for C ′ is so. Then, C ′′ is an extension of C ′ (in
particular, of its sublogic C) such that C ′′(∅) = (Fmω

Σ ∩
⋂

B),
in which case x0Y∼x0 is satisfied in C ′′, and so, by Lemma 6.28,
C ′′ is an inferentially consistent (for its (∞ \ 1)-extension C ′ is
so) extension of CPC. Hence, by Theorem 6.36, C ′′ = CPC, and
so C ′ = C ′′

+0 = CPC
+0 .

• C is not ∼-subclassical, in which case, by Theorem 6.36, C ′ = C, for C is
not ∼-paraconsistent.

Finally, Corollary 6.19 and the fact that any inferentially (Y,∼)-paracomplete Σ-
logic is inferentially consistent, while any Σ-logic with theorems is consistent/(Y,∼)-
paracomplete iff it is inferentially so, complete the argument. �

Since any Σ-logic axiomatically-equivalent to a (Y,∼)-paracomplete one is (Y,∼)-
paracomplete, by Remark 2.8(i)(d), Theorems 6.25, 6.32, 6.48, 6.50 (as well as the
first three paragraphs of its proof) and Corollary 3.10(i)⇔(iv), we eventually get:

Corollary 6.51. Suppose C is both weakly Y-disjunctive and (Y,∼)-paracomplete.
Then, the following are equivalent:

(i) C is structurally complete;
(ii) C is maximally (Y,∼)-paracomplete;
(iii) the following hold:

(a) A is not extra-classically hereditary (i.e., C has a theorem);
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(b) providing A is classically hereditary (i.e., C is ∼-subclassical), it has no
ternary anti-equalizer (i.e., either K3 or K4 forms a subalgebra of A2),

in which case, providing C is {not} non-∼-subclassical (i.e., A is {not} classically
non-hereditary), it has no proper consistent extension {other than CPC, as well as
is not implicative}.

Theorem/Corollary 6.50/6.51 provides a purely-algebraic criterion of “maximal
[inferential] (Y,∼)-paracompleteness”/“structural completeness” of weakly Y-dis-
junctive (Y,∼)-paracomplete uniform three-valued Σ-logics with subclassical nega-
tion ∼ “and with[out] theorems”/, covering positively both G〈∗〉

3 {with K3(+1) (not)
forming a subalgebra of A2} and KL3,01 [as well as /negatively KL3 with extra-
classically hereditary characterisic matrix] {with K4(−1) (not) forming a subalgebra
of A2}, and so demonstrating the necessity of regarding both K3 and K4 as well
as yielding a new insight into the non-implicativity {regardless to any connective}
of the weakly ⊃-implicative G3. (In view of Lemma 4.24 of [23] with B = DM3,1

and Σ = Σ∼,+,01, KL3,01 is axiomatically-equivalent to B4,01, in which case the
former, being structurally complete, is the structural completion of the latter.)
Likewise, it negatively covers implicative (and so non-purely-inferential; cf. (2.5))
Y-disjunctive (Y,∼)-paracomplete uniform three-valued Σ-logics with subclassical
negation ∼ like  Lukasiewicz’ one (cf. Example 4.17 with n = 3) and IP 1 (cf.
Subparagraph 6.2.1.1.4).
6.2.2.3. Self-extensionality versus discriminating endomorphisms. A (truth-)discri-
minating operator/endomorphism on/of A is any h ∈ (AA/hom(A,A)) such that
χA(h( 1

2 )) 6= χA(h(kA)), in which case h( 1
2 ) 6= h(kA), and so h is neither diagonal

nor singular, the set of all them being denoted by (∂/ð)(A), respectively. Then,
since img[θA \ ∆A] = {{ 1

2 ,k
A}}, by Example 4.2, Corollary 4.12 and Theorem

6.25(iii)⇒(i), we have:

Corollary 6.52. [Providing A is either implicative or both conjunctive and dis-
junctive] C is self-extensional if[f ] either it is ∼-classical or ð(A) 6= ∅.

Though there are 33 = 27 unary operations on A, only few of them may be
discriminating operators/endomorphisms on/of A. More precisely, let h+|−,a ,

(∆+|−
2 ∪ {〈 1

2 , a〉}) ∈ A
A, where a ∈ A, H , (

⋃
a∈A{h+,a, h−,a}) and HA , ({h−,a |

a ∈ A,χA(a) = kA} ∪ {h+,1−kA}). Clearly,

(6.5) (H ∩ ∂(A)) = HA.

Conversely, since ð(A) = (∂(A) ∩ hom(A,A)), by (6.5) and Lemma 6.22(i) with
D = A = B, we have:

Corollary 6.53. ð(A) ⊆ H. In particular, ð(A) = (HA ∩ hom(A,A)).

Combining Corollaries 6.52 and 6.53, we eventually get:

Theorem 6.54. [Providing A is either implicative or both conjunctive and disjunc-
tive] C is self-extensional if[f ] either it is ∼-classical or (HA ∩ hom(A,A)) 6= ∅.

This yields a quite effective purely-algebraic criterion of the self-extensionality of
C with either implicative or both conjunctive and disjunctive A that can inevitably
be enhanced a bit more under separate studying the alternatives involved excluding
a priori some elements of HA from ð(A) (i.e., from hom(A,A); cf. Corollary
6.53), because, under the stipulation of C’s being both self-extensional and non-∼-
classical, the alternatives under considerations are disjoint, as it is shown below.
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6.2.2.3.1. Self-extensionality versus equational truth-definitions.

Lemma 6.55. Let f be an equational truth definition for A. Suppose A is either
false-singular or A-implicative, while C is not ∼-classical. Then, any non-singular
endomorphism h of A is diagonal. In particular, providing A is either implicative
or both conjunctive and disjunctive, C is not self-extensional.

Proof. Then, for any a ∈ A, we have (a ∈ DA) ⇔ (A |= (
∧

f)[x0/a]) ⇒ (A |=
(
∧

f)[x0/h(a)]) ⇔ (h(a) ∈ DA), in which case h ∈ hom(A,A) (in particular,
h(1) 6= 0, for 1 ∈ DA 63 0), and so, by Lemma 6.22(i) with D = A = B, h�2 is
diagonal. Therefore, if h( 1

2 ) was equal to kA, then h would be equal to χA, in
which case θA = (kerh) would be a congruence of A, and so, by Theorem 6.25, C
would be ∼-classical. Hence, in case A is false-singular, h( 1

2 ) = 1
2 , for 1

2 ∈ D
A 63 0.

Otherwise, A is A-implicative, in which case ( 1
2 AA 0) = 1 and (1 AA 0) 6= 1, and

so h( 1
2 ) = 1

2 , for otherwise, we would have h( 1
2 ) = 1, in which case we would get

1 6= 1. Thus, in any case, h( 1
2 ) = 1

2 , and so h is diagonal. In this way, Corollary
4.13 and Theorem 6.25(iii)⇒(i) complete the argument. �

This “equational truth definition” analogue of Corollary 4.15 provides another
and much more transparent insight into the non-self-extensionality of the instances
discussed in Example 4.18 and summarized below. In this connection, we first have:

Corollary 6.56. Suppose A is both A-implicative and either weakly Z-conjunctive
(in particular, o-negative with Z = ]oA; cf. Remark 2.8(i)(a)) or truth-singular.
Then, A has a finitary equational truth-definition. In particular, C is not self-
extensional, unless it is ∼-classical.

Proof. The case, when A is truth-singular, is due to Remark 4.14(iv). Otherwise, A
is weakly Z-conjunctive, while { 1

2} does [not] form a subalgebra of A [that is, there is
some ϕ ∈ Fm1

Σ such that ϕA(a) ∈ 2], so {(x0 A φ) ≈ φ} with φ , (ψ[Z(ψ[x0/ϕ])])
and ψ , (x0 Z ∼x0) is a finitary equational truth definition for A. In this way,
Lemma 6.55 completes the argument. �

This is why the contexts of the next two subparagraphs are disjoint, whenever C
is self-extensional but not ∼-classical. Before coming to discussing them, we provide
practically immediate applications of the above results of this subparagraph to some
of the logics specified in Paragraph 6.2.1.1.

Remark 6.57. Suppose A is both ∼-paraconsistent (and so false-singular), conjunc-
tive and Y-disjunctive as well as both classically- and extra-classically-hereditary.
Then, {x0 ≈ (x0 Y ∼x0)} is an equational truth definition for A, so, by Remark
2.8(i)(c) and Lemma 6.55, C is not self-extensional. �

This subsumes disjunctive conjunctive ∼-paraconsistent LP and HZ, providing
a more transparent insight into the non-self-extensionality of them than that given
by Example 4.18. Likewise, [I]P 1 is subsumed by:

Remark 6.58. Suppose A is both classically-valued and �-conjunctive/-disjunctive
/(in particular, A-implicative with � = ]A). Then, it is o-negative, where ox0 ,
∼(x0 � x0), in which case, by Remark 2.8(i)(a), A is both Z-conjunctive and Y-
disjunctive, where Z , �/o and Y , �o/, and so, by Remark 2.8(i)(b), A is Ao

Y-
implicative. On the other hand, as 1

2 6∈ 2, any idempotent binary operation on
A, being term-wise definable in A, is so by either x0 or x1, in which case it is not
symmetric, for A is not a singleton, and so A is not a semi-lattice (in particular, is
not a [distributive] lattice). And what is more, {((x0 Ao

Y x0) Ao
Y x0) ≈ (x0 Ao

Y x0)}
is a finitary equational truth definition for A, so, providing A is not ∼-negative (in
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which case it is ∼-paraconsistent|(Y,∼)-paracomplete, whenever it is false-|truth-
singular), so, by Remark 2.8(i)(c|d) and Lemma 6.55, C is not self-extensional. �

6.2.2.3.2. Conjunctive U3VLSN.

Lemma 6.59. Let B be a consistent/truth-non-empty weakly �-conjunctive/-dis-
junctive Σ-matrix. Suppose B is a �-semi-lattice with bound. Then, βB

� 6∈ / ∈ DB.

Proof. By the weak �-conjunctivity/-disjunctivity of B, we do have βB
� = (βB

� �B

a) 6∈ / ∈ DB, where a ∈ ((B \DB)/DB) 6= ∅. �

Lemma 6.60. Suppose C is weakly Z-conjunctive. Then, A is a Z-semi-lattice
with bound such that the following hold:

(i) (0 ZA 1) = βA
Z ;

(ii) 1
2 ≤

A
Z 1;

(iii) [providing ð(A) 6= ∅, (g)⇒](a)⇒(b)⇒(c)⇔(d)⇔(e)⇔(f)⇒(g)⇒(h)[⇒(f)],
where:
(a) h+,1−kA ∈ hom(A,A);
(b) A is classically-hereditary;
(c) βA

Z = 0;
(d) 0 ≤A

Z
1
2 ;

(e) 0 ≤A
Z 1;

(f) A is not involutive;
(g) h−,a ∈ hom(A,A), for no a ∈ A;
(h) h−, 1

2
6∈ hom(A,A);

(iv) A is not ∼-negative, unless ð(A) = ∅.

Proof. In that case, by Theorem 4.6(i)⇒(iv), A, being finite, is a Z-semi-lattice
with bound, so, by Lemma 6.59, βA

Z 6∈ DA. Let ξ0[+1] , [∼]x0 as well as both
φk , ξk(x0 Z∼x0) and ψk , φk(∼x0), where k ∈ 2.

(i) In case βA
Z = 0, we have 0 = βA

Z ≤A 1, and so get (0 ZA 1) = 0 = βA
Z .

Otherwise, as 1 ∈ DA, we have DA 63 βA
Z = 1

2 , in which case A is truth-
singular, and so is non-∼-paraconsistent, that is, C is so. Then, by (2.10)
and the conjunctivity of C, we have x1 ∈ C(φ0), in which case, by Theorem
4.6(i)⇒(iv), we get βA

Z ≤A (0 ZA 1) = φA
0 (0) ≤A

Z βA
Z , and so eventually get

(0 ZA 1) = βA
Z .

(ii) Consider the following complementary cases:
• A is is false-singular, in which case, by (i), for each k ∈ 2, φA

0 (k) =
φA

0 (0) = βA
Z = 0, and so (φ|ψ)A

1 (k) = 1 ∈ DA. Consider the following
complementary subcases:

– ∼A 1
2 = 1

2 , in which case φA
1 ( 1

2 ) = 1
2 ∈ D

A, for A is false-singular,
and so φ1 is true in A (in particular, φ1 ∈ C(x1)). Then, by
Theorem 4.6(i)⇒(iv), 1

2 ≤
A
Z φA

1 (0) = 1.
– ∼A 1

2 6=
1
2 , that is, ∼A 1

2 ∈ 2, in which case ψA
1 ( 1

2 ) = φA
1 (∼A 1

2 ) =
1 ∈ DA, and so ψ1 is true in A (in particular, ψ1 ∈ C(x1)). Then,
by Theorem 4.6(i)⇒(iv), 1

2 ≤
A
Z ψA

1 (0) = 1.
• A is truth-singular, in which case it is non-∼-paraconsistent, that is, C is

so, and so, by (2.10) and the Z-conjunctivity of C, x1 ∈ C(φ0). Consider
the following complementary subcases:

– 1
2 is equal to either βA

Z or ∼A 1
2 , in which case we have 1

2 = φA
0 ( 1

2 ),
and so, by Theorem 4.6(i)⇒(iv), get 1

2 ≤
A
Z 1, for x1 ∈ C(φ0).

– βA
Z 6= 1

2 6= ∼A 1
2 , in which case, as 1 ∈ DA, by (i), for each k ∈ 2,

φA
0 (k) = (0 ZA 1) = βA

Z = 0, and so (φ|ψ)A
1 (k) = 1 ∈ DA (in
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particular, ψA
1 ( 1

2 ) = φA
1 (∼A 1

2 ) = 1 ∈ DA). Then, ψ1 is true in
A, in which case ψ1 ∈ C(x1), and so, by Theorem 4.6(i)⇒(iv),
1
2 ≤

A
Z ψA

1 (0) = 1.
(iii) First, (d/h) is a particular case of (c/g), while (d/e)⇒(e/c) is by (ii/i),

whereas (b)⇒(e) is by the Z-conjunctivity of A and the fact that 1 ∈ DA 63 0.
Next, (a)⇒(b) is by the fact that img(h+,1−kA) = 2. Further, assume (f)
holds, in which case l , ∼A 1

2 ∈ 2, and so ξA
1−l(

1
2 ) = 1 ∈ DA. We prove

(e) by contradiction. For suppose (e) does not hold, in which case βA
Z 6= 0,

and so, by Lemma 6.59, βA
Z = 1

2 , for 1 ∈ DA (in particular, φA
0 ( 1

2 ) = 1
2 ).

Likewise, by (i), for each k ∈ 2, φA
0 (k) = (0 ZA 1) = βA

Z = 1
2 , in which case

φ1−l is true in A, and so φ1−l ∈ C(x1). Then, by Theorem 4.6(i)⇒(iv),
0 ≤A

Z φA
1−l(0) = 1. Thus, (e) holds. [Conversely, assume (f) does not hold, in

which case ∼Aa = (1−a), for all a ∈ A. Take any h ∈ ð(A) 6= ∅, in which case
it is neither diagonal nor singular, and so, by Lemma 6.22, (h�2) ∈ {∆+

2 ,∆
−
2 }.

Then, we have h( 1
2 ) = h(∼A 1

2 ) = ∼Ah( 1
2 ) = (1 − h( 1

2 )), in which case we
get h( 1

2 ) = 1
2 , and so h = h−, 1

2
, for, otherwise, h would be diagonal. Thus,

(h)⇒(f) holds.] Now, assume (e) holds (that is, (c) does so), in which case,
for each k ∈ 2, φA

0 (k) = (0 ZA 1) = 0, and so φA
1 (k) = 1 ∈ DA. We prove (f)

by contradiction. For suppose ∼A 1
2 = 1

2 , in which case φA
0 ( 1

2 ) = 1
2 , and so

φA
1 ( 1

2 ) = 1
2 . Consider the following complementary cases:

• A is false-singular, in which case φA
1 ( 1

2 ) = 1
2 ∈ DA, and so φ1 is true

in A (in particular, φ1 ∈ C(x1)). Then, by Theorem 4.6(i)⇒(iv), 1 ≤A
Z

φA
1 ( 1

2 ) = 1
2 , in which case, by (ii), 1

2 = 1, and so 1
2 ∈ 2.

• A is truth-singular, in which case it is not ∼-paraconsistent, and so,
by (2.10) and the Z-conjunctivity of C, x1 ∈ C(φ0). Then, by Theorem
4.6(i)⇒(iv), 1

2 = φA
0 ( 1

2 ) ≤A
Z 0, in which case, by (c), 1

2 = 0, and so 1
2 ∈ 2.

Thus, as 1
2 6∈ 2, (f) does hold. Furthermore, if any h : A→ A with (h�2) = ∆−

2

was an endomorphism of A, then, by (e), we would have 1 = h(0) = h(0 ZA

1) = (h(0) ZA h(1)) = (1 ZA 0) = (0 ZA 1) = 0, and so (g) holds. [Finally,
(g)⇒(a) is by (6.5) and Lemma 6.22, for ð(A) = (∂(A) ∩ hom(A,A)).]

(iv) Assume ð(A) 6= ∅. Then, A is not ∼-negative, whenever it is involutive.
Otherwise, by (iii)(f)⇒(a), h , h+,1−kA ∈ hom(A,A), in which case, if A
was ∼-negative, then we would have ∼A 1

2 = (1 − kA), and so would get
2 3 kA = ∼A(1− kA) = ∼Ah( 1

2 ) = h(∼A 1
2 ) = h(1− kA) = (1− kA). �

Theorem 6.61. Suppose C is Z-conjunctive, non-∼-classical and self-extensional.
Then, ð(A) 6= ∅.

Proof. Then, by Theorem 6.25, A is hereditarily simple, while, by Theorem 4.6(i)⇒
(iv) and Lemma 6.59, A, being finite, is a Z-semi-lattice with bound βA

Z 6∈ DA, in
which case, as 1

2 6∈ 2 3 kA (in particular, 1
2 6= kA), by the commutativity identity for

Z, there are some ā ∈ ({ 1
2 ,k

A}2 \∆A) and some i ∈ 2 such that a1−i 6= (ai ZAa1−i),
and so B , 〈A, F 〉, where ai ∈ F , {b′ ∈ A | ai ≤A

Z b′} 63 a1−i, being both truth-
non-empty and Z-conjunctive, is a finite consistent truth-non-empty model of C.
Then, as 2 forms a subalgebra of A�Σ∼, by Remark 2.8(ii)(b), Lemmas 3.7, 6.24(i,ii)
with Σ′ = Σ∼ and the conjunctivity of A, ((A�Σ∼)�2), being ∼-classical, belongs to
I(S(H−1(H(B�Σ∼)))), in which case, by (2.14), ∼ is a subclassical negation for the
logic C ′ of B, and so, by Theorem 6.15, B, being three-valued, is ∼-super-classical.
Let D be the canonization of B, in which case they are isomorphic, and so, by
(2.14), C ′ is defined by D. Consider the following complementary cases:
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• C ′ is ∼-classical, in which case, as it is Z-conjunctive, for its sublogic C is so,
by Theorem 6.25, D is a strictly surjectively homomorphic counter-image
of a ∼-classical Σ-matrix E , and so is B, being isomorphic to D. Then, by
(2.14), E is a ∼-classical model of C, for B ∈ Mod(C), in which case, by
Theorem 6.32, A is classically hereditary, A�2 being isomorphic to E , and
so B is a strictly [surjectively] homomorphic counter-image of A[�2].

• C ′ is not ∼-classical, in which case, by Theorem 6.25, D, being canonically
∼-super-classical and defining C ′, is simple, and so is B, being isomorphic
to D, in view of Remark 2.6(iii). Hence, by Lemma 3.7, there are some
finite set I, some C ∈ S∗(A)I , some subdirect product G of it and some
g ∈ homS

S(G,B), in which case, by Remark 2.8(ii)(b), G is both consistent
and truth-non-empty, for B is so, and so, by Lemma 6.24(i), a , (I×{1}) ∈
G 3 b , (I×{0}). We prove, by contradiction, that A is truth-singular. For
suppose it is false-singular, in which case, by Lemma 6.59, 0 = βA

Z ≤A
Z 1,

and so, by Lemma 6.60(ii)/(iii)(c)⇒(f), (1 = δβA
Z )/(∼A 1

2 ∈ 2), respectively.
Then, ai 6= 1

2 , for, otherwise, we would have 1
2 = ai 6≤A

Z a1−i = kA = 1 =
δβA

Z . Hence, ai = kA = 1, in which case DB = {1}, for 1 = δβA
Z , and

so B is a finite, truth-singular, consistent, truth-non-empty model of C, in
which (2.10) is not true under [x0/1, x1/0]. Therefore, by Remark 2.8(ii)(c)
and Lemma 3.7, A, being finite and simple but not truth-singular, is not
a model of C ′, for truth-singularity is clearly preserved under P, in which
case, by Theorem 6.32(ii), A, being conjunctive, is classically hereditary.
Then, as a ∈ DG , for 1 ∈ DA, g(a) = 1, in which case g(b) = g(∼Ga) =
∼Ag(a) = 0, and so g[{a, b}] = 2. Furthermore, there is some c ∈ G such
that g(c) = 1

2 6∈ D
B, in which case c 6∈ DG , and so there is some j ∈ I such

that πj(c) = 0, for Cj ∈ S∗(A), while 0 is the only non-distinguished value
of A. Let H be the submatrix of G generated by {a, b, c}, in which case
h , (g�H) ∈ homS

S(H,B), for g[{a, b, c}] = A, while, since πj [{a, b, c}] = 2
forms a subalgebra of A, f , (πj�H) ∈ hom(H,A�2) is surjective. Consider
the following complementary (for ∼A 1

2 ∈ 2) subcases:
– ∼A 1

2 = 1, in which case B is weakly ∼-negative, for ∼A0 = 1 ∈ DB,
and so is H, in view of Remark 2.8(ii)(a). Then, by the following
claim, f ∈ homS

S(H,A�2), for A�2 is ∼-negative:

Claim 6.62. Let B and D be Σ-matrices. Suppose B is weakly ∼-
negative, while D is consistent but not ∼-paraconsistent (in particular,
∼-negative; cf. Remark 2.8(i)(c)). Then, any h ∈ hom(B,D) is strict.

Proof. Take any d ∈ (D \DD) 6= ∅. If, for any b ∈ (B \DB), h(b) was
in DD, then, by the weak ∼-negativity of B, we would have ∼Bb ∈ DB,
in which case we would get ∼Dh(b) = h(∼Bb) ∈ h[DB] ⊆ DD, and so
(2.10) would not be true in D under [x0/h(b), x1/d] (in particular, D
would be ∼-paraconsistent). �

– ∼A 1
2 = 0, in which case A is ∼-negative, and so, by Remarks 2.6(ii),

2.8(i)(a,b) and Theorem 3.2, h is injective, for A is conjunctive and
hereditarily simple. Then, (h−1 ◦ f) ∈ homS

S(B,A�2), for (h|f)(a/b) =
(1/0) ∈ / 6∈ DB|A and (h|f)(c) = ( 1

2 |0) 6∈ DB|A.
Thus, anyway, by (2.14), C ′, being defined by B, is defined by A�2, and so is
∼-classical, forA�2 is so. This, contradiction shows thatA is truth-singular,
in which case B is so, in view of Remark 2.8(ii)(c), for truth-singularity is
clearly preserved under P, and so DB = {ai} (in particular, by Lemma
6.60(ii), ai 6= 1

2 , for 1 6= 1
2 ). Then, βA

Z 6= ai = kA = 0, in which case,
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by Lemma 6.60(iii)(b)⇒(c), A is not classically-hereditary (in particular,
is generated by 2), and so, by Lemma 6.24(ii), there is some embedding e
of A into G. Therefore, by Remark 2.6(ii), e′ , (e ◦ g) is an embedding of
A into B, for A is simple, in which case it is an isomorphism from A onto
B, as |A| = 3 
 k, for no k ∈ 3 = |B|, and so e′−1 ∈ hom(B,A) is strict.

In this way, in any case, there is some strict h′ ∈ hom(B,A) ⊆ hom(A,A), in which
case h′(ai) ∈ DA 63 h′(a1−i), for ai ∈ DB 63 a1−i, and so h′ ∈ ð(A), as required. �

Then, combining Theorems 6.32(iii), 6.61 and Corollary 6.52 with Lemmas 6.59
and 6.60(ii, iii,iv), we immediately get the following two corollaries:

Corollary 6.63. Suppose C is both Z-conjunctive and non-∼-classical, while A
is false-/truth-singular. Then, C is self-extensional iff /either h+,1−kA /“or h−, 1

2
”

is an endomorphism of A [while A is a Z-semi-lattice with 1
2 ≤

A
Z 1, whereas it is

that with bound 0 and/iff it is that with dual bound 1 and/iff A is non-involutive
and/iff A is classically-hereditary (i.e., C is ∼-subclassical), as well as A is not
∼-negative].

Corollary 6.64. Suppose A is both Z-conjunctive and Y-disjunctive, while C is
not ∼-classical. Then, C is self-extensional iff h+,1−kA ∈ hom(A,A), in which case
A is a distributive (Z,Y)-lattice with zero 0 and unit 1, while A is neither involutive
nor ∼-negative as well as classically-hereditary, and so C is ∼-subclassical.

These immediately yield the self-extensionality of [P ]G(∗)
3 , for h+,1−kA is an endo-

morphism of the underlying algebra of its conjunctive (disjunctive) characterisic ma-
trix. And what is more, they immediately imply the non-self-extensionality of [I]P 1,
for the underlying algebra of its conjunctive (disjunctive) characteristic matrix is
not a semi-lattice at all {cf. Remark 6.58}. Likewise, the non-self-extensionality of
the conjunctive (disjunctive) HZ {cf. Subparagraph 6.2.1.1.3} ensues from either
the involutivity of its conjunctive (disjunctive) classically-hereditary characteris-
tic matrix or the fact that the underlying algebra of this matrix, though being a
distributive lattice, is not that with both zero 0 and unit 1. Finally, the above
corollaries imply immediately the non-self-extensionality of LP[01]/KL3[01], in view
the involutivity of their conjunctive (disjunctive) classically-hereditary character-
istic matrices, providing, as opposed to Example 4.18, a more [perhaps, the most]
transparent and immediate generic insight into the non-self-extensionality of the
latter independent from that of the former, and so into that of  Lukasiewicz’ finitely-
valued logics [8] {cf. Example 4.17}, for these are expansions of KL3. On the other
hand, Corollary/Theorem 6.64/4.7 does not subsume Corollary/Theorem 6.63/6.61,
due to existence of self-extensional conjunctive but non-disjunctive non-∼-classical
uniform three-valued Σ-logics with subclassical negation ∼, in view of:

Example 6.65. Let Σ , {∧,∼} and A the Σ-reduct of the [non-]truth-singular
Σ⊃
∼,+,01-matrix specified in Subparagraph 6.2.1.1.2, in which case the former is both

∧-conjunctive and non-∼-negative, for the latter is so, and so [P ]G∧
3 , C, being

the Σ-fragment of the self-extensional [paraconsistent counterpart of] Gödel’s three-
valued logic [P ]G3 [3], is both ∧-conjunctive and self-extensional as well as, by
Remark 6.20 and Theorem 6.25, not ∼-classical. On the other hand, by induction
on construction of any ϕ ∈ Fm2

Σ, we prove that either ϕA( 1
2 ,

1
2 ) 6= 1

2 or there are
some a, b ∈ A such that max(a, b) 
 ϕA(a, b). In case ϕ = x0|1, taking a , (0|1)
and b , (1|0), we get max(a, b) = 1 
 0 = ϕA(a, b). Likewise, in case ϕ = ∼ξ,
where ξ ∈ Fm2

Σ, as (img∼A) ⊆ 2 63 1
2 , we have ϕA( 1

2 ,
1
2 ) 6= 1

2 . Finally, in case
ϕ = (φ∧ψ), where φ, ψ ∈ Fm2

Σ, if ϕA( 1
2 ,

1
2 ) is equal to 1

2 , then so is either φA( 1
2 ,

1
2 )

or ψA( 1
2 ,

1
2 ), for A is classically-hereditary, while, if, for any a, b ∈ A, it holds that
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max(a, b) 6 ϕA(a, b) = min(φA(a, b), ψA(a, b)), then both max(a, b) 6 φA(a, b) and
max(a, b) 6 ψA(a, b) hold, and so the induction hypothesis completes the argument.
In particular, max∩A2 is not term-wise definable in A. Therefore, by Lemma 6.18
and Corollary 6.64, [P ]G∧

3 is not disjunctive. �

Example 6.66. Let Σ , {∧,∼} and A both truth-singular and involutive (in
particular, non-∼-negative) with (a∧A a) , a, for all a ∈ A, as well as (a∧A b) , 1

2 ,
for all b ∈ (A \ {a}). Then, A is a ∧-semi-lattice with bound 1

2 and maximal
elements in 2, in which case A is ∧-conjunctive and, being involutive, is not ∼-
negative, and so C is Z-conjunctive and, by Remark 6.20 and Theorem 6.25, not
∼-classical. Moreover, h−, 1

2
is an endomorphism of A, so, by Corollary 6.63, C is

self-extensional, while, by Corollary 6.64, C is not disjunctive. �

The latter example shows that the “involutive” alternative cannot be disre-
garded in Corollary 6.63, by which, among other things, any conjunctive self-
extensional uniform three-valued non-∼-classical logic with subclassical negation
∼ is a ∼-conservative term-wise definitional expansion of either of the three in-
stances discussed above, and so is ∼-paraconsistent, unless its characteristic ma-
trix is truth-singular. Likewise, by Corollary 6.64, any conjunctive Y-disjunctive
self-extensional uniform three-valued non-∼-classical logic with subclassical nega-
tion ∼ and [non-]truth-singular characteristic matrix is a ∼-conservative term-wise
definitional expansion of [P ]G∗

3, and so is [not] non-∼-paraconsistent as well as
[non-](Y,∼)-paracomplete.
6.2.2.3.3. Implicative U3VLSN. We start from marking the framework of the self-
extensionality of C under its being both non-∼-classical and implicative:

Corollary 6.67. Suppose A is A-implicative. Then, C is not self-extensional,
unless it is either ∼-paraconsistent or ∼-classical. In particular, C is not self-
extensional, unless it is ∼-classical, whenever A is truth-singular (in particular,
both (Y,∼)-paracomplete and weakly Y-disjunctive).

Proof. If A is both false-singular and non-∼-paraconsistent, then it is ∼-negative.
So, Remark 2.8(i)(d), Corollary 4.16 and Theorem 6.25 complete the argument. �

Theorem 6.68. Suppose A is A-implicative, while C is not ∼-classical. Then,
the following are equivalent:

(i) C is self-extensional;
(ii) h−, 1

2
∈ hom(A,A) [while A is an A-implicative intrinsic semi-lattice with

bound 1
2 , whereas A is both false-singular and involutive as well as not clas-

sically-hereditary, and so C is not ∼-subclassical];
(iii) A 1

2
is a [∼-paraconsistent] model of C;

(iv) C is non-maximally ∼-paraconsistent.

Proof. First, the equivalence of (iv) and the optional version of (iii) is due to Lemma
6.29(i)⇔(iv). Next, the fact that the non-optional version of (ii/iv) implies (i) is
by Theorem 6.54/“4.1(vi)⇒(i) with S = {A,A 1

2
}, for (θA ∩ θA 1

2 ) = ∆A”. Fur-
ther, assume the optional version of (ii) holds. Then, h−, 1

2
is a strict surjective

homomorphism from B , 〈A, {0, 1
2}〉 onto A, for this is false-singular, in view of

(ii), in which case, by (2.14), B is a model of C, for A is so, and so is A 1
2
, for

{ 1
2} = (DA ∩ DB). Thus, the optional version of (ii) holds, for the involutiv-

ity of A implies the ∼-paraconsistency of the consistent A 1
2
. Finally, assume (i)

holds. Then, by Theorem 4.9, A is an A-implicative intrinsic semi-lattice with
bound a , ( 1

2 AA 1
2 ) = (b AA b), for any b ∈ A, while, by Corollary 6.67, A is

∼-paraconsistent (in particular, false-singular), in which case a ∈ DA = { 1
2 , 1}, and
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so a = 1
2 [in particular, ∼Aa ∈ DA, and so ∼Aa = 1

2 ], for, otherwise, we would
have [∼A]a = 1, in which case we would get ∼A[∼A]a = ∼A1 = 0 6∈ DA, and so A
would be o-negative, where ox0 , (x0 A ∼[∼](x0 A x0)) (in particular, by Corollary
6.56, C would not be self-extensional). In that case, A is involutive as well as not
classically-hereditary, for (0 AA 0) = a = 1

2 6∈ 2 3 0, while, for any h ∈ hom(A,A),
we have h( 1

2 ) = (h( 1
2 ) AA h( 1

2 )) = 1
2 , so Theorems 6.32 and 6.54 end the proof. �

It is remarkable that Theorem 6.68(i)⇔(iv) appears to be opposite to Theorem
6.14. Corollary 6.64/6.63 and Theorem 6.68, in particular, “provide one more in-
sight into ttheir context’s being disjoint, in view of opposite requirements on the
involitivity of characteristic matrices”/“taking Example 4.2 into account, immedi-
ately yield the following essential (mainly, due to elimination of the disjunctivity
stipulation) enhancement of Theorem 6.54”:

Corollary 6.69. Suppose A is either implicative or conjunctive. Then, C is self-
extensional iff either it is ∼-classical or ({h+,1−kA , h−, 1

2
} ∩ hom(A,A)) 6= ∅.

Finally, we present a term-wise definitionally minimal instance of a self-extensi-
onal paraconsistent implicative U3VLSN:

Example 6.70. Let Σ , Σ⊃
∼ and A both false-singular and involutive with (a ⊃A

a) , 1
2 and (a ⊃A b) , b, for all a ∈ A and all b ∈ (A \ {a}). Then, A is

both ∼-paraconsistent and ⊃-implicative. And what is more, h−, 1
2
∈ hom(A,A).

Hence, by Theorem 6.68, C is self-extensional. Now, let Σ′ 3 ∼ be a signature with
(possibly, secondary) binary connective A, A′ an A-implicative canonical ∼-super-
classical Σ′-matrix and C ′ the logic of A′. Assume C ′ is self-extensional. Then, by
Corollary 6.67 and Theorem 6.68, A′ is false-singular, in which case DA′

= DA, as
well as involutive, in which case ∼A′

= ∼A, while A′ is an A-implicative intrinsic
semi-lattice with bound 1

2 = (a AA[′] a), for any a ∈ A′ = A, whereas h , h−, 1
2
∈

hom(A′,A′). Therefore, by (4.2), for all a ∈ A, ( 1
2 AA′

a) = ((a AA′
a) AA′

a) = a.
Furthermore, by the A-implicativity and false-singularity of A, for each b ∈ DA,
(b AA′

0) = 0, and so (h(b) AA′
1) = h(0) = 1. Likewise, (0 AA′

b) ∈ DA, in
which case (0 AA′ 1

2 ) = 1
2 , for, otherwise, DA 3 (1 AA′ 1

2 ) = h(1) = 0 6∈ DA,
while (0 AA′

1) = 1, for, otherwise, DA 63 (1 AA′
0) = h( 1

2 ) = 1
2 ∈ DA, and so

(1 AA′ 1
2 ) = h( 1

2 ) = 1
2 . In this way, AA′

= ⊃A. Thus, C ′ is a ∼-conservative
term-wise definitional expansion of C. �

7. Conclusions

Aside from quite useful general results and their equally illustrative generic appli-
cations (sometimes, even multiple ones providing different insights, and so demon-
strating the whole power of universal tools elaborated here) to infinite classes of par-
ticular logics, the incompatibility of the self-extensionality of either implicative or
both conjunctive and disjunctive finitely-valued logics with unitary equality deter-
minant and the algebraizability (in the sense of [17, 16]) of two-side sequent calculi
(associated with such logics according to [18]), discovered here, looks quite remark-
able, especially due to its providing a new insight into the non-“self-extensinality
of”/“algebraizability of sequent calculi associated with” certain logics of such a kind
proved originally ad hoc, and so justifying the thesis of the first paragraph of Section
1. Likewise, equivalence of structural completeness and maximal paracompleteness
of both uniform four-valued expansions of Belnap’s logic and weakly disjunctive
paracomplete U3VLSN as well as equally interesting connections between maximal
paraconsistency and implicativity/self-extensionality of self-extensional/implicative
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uniform “four-valued expansions of Belnap’s logic”/“three-valued logics with sub-
classical negation” deserve a particular emphasis within the context of General
Logic. And what is more, Subsection 6.2 constitutes foundations of an algebraic
theory of U3VLSN. In this connection, taking Theorem 6.61 into account, the most
acute problem remaining still open is marking the framework of elimination of
disjuctivity stipulation in Theorem 4.7.
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