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Abstract—Hybridization of machine learning methods with 

soft computing techniques is an essential approach to improve the 

performance of the prediction models. Hybrid machine learning 

models, particularly, have gained popularity in the advancement 

of the high-performance control systems. Higher accuracy and 

better performance for prediction models of exergy destruction 

and energy consumption used in the control circuit of heating, 

ventilation, and air conditioning (HVAC) systems can be highly 

economical in the industrial scale to save energy. This research 

proposes two hybrid models of adaptive neuro-fuzzy inference 

system-particle swarm optimization (ANFIS-PSO), and adaptive 

neuro-fuzzy inference system-genetic algorithm (ANFIS-GA) for 

HVAC. The results are further compared with the single ANFIS 

model. The ANFIS-PSO model with the RMSE of 0.0065, MAE of 

0.0028, and R2 equal to 0.9999, with a minimum deviation of 

0.0691 (KJ/s), outperforms the ANFIS-GA and single ANFIS 

models.   

Keywords—Adaptive neuro-fuzzy inference system, ANFIS-

PSO, ANFIS-GA, HVAC, hybrid machine learning 

I. INTRODUCTION 

Machine learning has become essential for the advancement 
of novel control systems in various applications domains [1-3]. 
Machine learning methods are fast evolving to deliver more 
intelligent control systems with the higher performance [4-6]. 
Machine learning has been reported highly beneficial in the 
control systems of heating, ventilation, and air conditioning 
(HVAC) mechanisms [7-9]. Artificial neural networks (ANN), 
decision trees (DT), adaptive neuro-fuzzy inference system 
(ANFIS) and multilayer perceptron (MLP) are among the most 

popular machine learning methods used in HVAC control 
systems [10-15].  

The recently proposed machine learning models for HVAC 
control systems are reported promising for energy saving and 
reducing energy deviation [16-20]. Thus, the improvement of 
machine learning models for higher accuracy and performance 
is essential [21-23]. However, the research is in the early stage, 
as the recent literature suggests a great potential in machine 
learning and many rooms to explore the application of new 
methods [24-27]. Soft computing techniques and optimization 
algorithms are shown beneficial in the preprocessing and 
postprocessing HVAC data [28-31]. However, the application of 
the hybrid machine learning models has been limited in this 
realm [11, 24]. Considering the higher performance reported in 
using hybrid machine learning models in other control systems, 
e.g., [32-35], a research gap is apparent in the advancement of 
HVAC control systems.  

The contribution of this paper is to propose two new hybrid 
machine learning models, i.e., adaptive neuro-fuzzy inference 
system-particle swarm optimization (ANFIS-PSO), and 
adaptive neuro-fuzzy inference system-genetic algorithm 
(ANFIS-GA) to improve the performance of an HVAC control 
system. The results are to be compared with the previously 
proposed ANFIS model [15] to evaluate the performance of the 
hybrid model. Section two represents the description of the 
dataset and methods, and the results are presented in section 
three.  

 



 

II. MATERIALS AND METHODS 

A. Experimental data 

The study’s experimental data are gathered from an HVAC 
system used for the temperature-control mushrooms production 
room with a volume equal to 643.5 m3. Fig. 1 shows a schematic 
representation of the 5 parts of the system exergy adopted from 
[15]. Nine sensors, i.e., five platinum resistance thermometers, 
two board mount humidity detectors, and two manometers, are 
set to collect the temperature, relative humidity, and pressure 
data. The DAQMaster and data loggers are also used for sensor 
data management to configure parameters, real-time monitoring, 
and store the data. The detailed statement of the energy and 
exergy analysis of the HVAC system is available in [15].  

 

Fig. 1. Schematic representation of the HVAC unit used for the data collection  

 

B. Hybrid machine learning methods  

The two hybrid methods of ANFIS-GA and ANFIS-PSO are 
used to develop the prediction models of exergy destruction and 
energy consumption. Both proposed methods have recently been 
gained popularity for advancing prediction models in a wide 
range of engineering applications including the control systems 
[36-39]. The ANFIS-GA hybridizes the components of a single 
ANFIS and genetic algorithm (GA) [40]. GA efficiently tunes 
the ANFIS controller through a global optimization represented 
by a set of ANFIS parameters, i.e., finding the optimum ANFIS 
parameters, see Fig. 2 [41]. ANFIS-GA has previously shown to 
outperform the accuracy of a single ANFIS model used in a 
control system [42]. Thus, it is expected that this hybrid form of 
ANFIS provides promising results.  

 

Fig. 2. Schematic representation of the ANFIS layers  

 

In ANFIS, the model variables are constituted by the 
computation expressions of fuzzy logic and ANNs within the 
framework of five layers (see Fig.2). According to [43], in the 
first layer the n nodes are defined based on the Gaussian 
functions as follows;  

𝑂𝑖
1 = 𝛽𝑋 = 𝑒𝑥𝑝

(−
1

2
 
𝑥−𝑧2

𝜎2 )
                  (1) 

where O, Z, and 𝜎 , are output, the center of Gaussian 
function, and variance. The second and third layers ensure the 
accuracy of qualification and strength normalization of the 
model as follows;   
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The fourth layer presents the effect of rules on outputs, where 
𝑛𝑖, 𝑚𝑖 and 𝑟𝑖 represent the ANFIS linear parameters. The model 
further aims at reducing the difference between predicted values 
and experimental data as follows; 
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In the last layer the weighted average summation is used to 
deliver a qualitative form of the model as follows; 
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Fig. 3 represents a schematic adaptation of the ANFIS-GA 
from [39], where a detailed description of the model flowchart 
is given.    

 

Fig. 3. Schematic representation of ANFIS-GA model 

The second model is ANFIS-PSO to calculate the exergy 
destruction and energy consumption of the HVAC control 



system. ANFIS-PSO has recently shown outstanding results in 
enhancing the control systems [44]. Therefore, it has been 
chosen for this case study. ANFIS-PSO has been first proposed 
for the prediction of the wind power energy [45], where PSO 
represented a reliable approach for tuning the ANFIS parameters 
using a low number of variables for proper implementation, as 
presented in Fig. 4.  

  

Fig. 4. Schematic representation of ANFIS-PSO model 

The swarm in the PSO algorithm works based on random 

particles, which are the model solutions for tuning the ANFIS. 

Thus, the performance of each particle is assessed according to 

its fuzzy system. In ANFIS-PSO, the PSO is used to optimize 

the parameters of the fuzzy system as follows;  

𝑅𝑖: if  𝑥1(𝑘) is 𝐴𝑖1and … 𝑥𝑛(𝑘) is 𝐴𝑖𝑛 , 𝑡ℎ𝑒𝑛 𝑢(𝑘) 𝑖𝑠 𝑎𝑖        (9)  

where 𝑥𝑛(𝑘) , 𝑢(𝑘) , and k represent the input variables, 

output variables, and time. And the 𝑆𝑖
⃑⃑⃑  , 𝑉𝑖⃑⃑ , 𝑎𝑛𝑑 𝑃𝑖

⃑⃑  represent the 

position, velocity, and vector of particles, respectively, where:  

𝑆𝑖
⃑⃑⃑  (𝑡 + 1) = 𝑆𝑖

⃑⃑⃑  (𝑡)+ 𝑉𝑖⃑⃑ (𝑡 + 1)                    (10) 

The optimum global value in the solution space of 𝑃𝑠 is 𝑃𝑖
𝑔⃑⃑⃑⃑  ⃑  

[46]. The PSO identifies the optimal antecedent parameters after 

the rule generation and initialization. The error-index E(t) 

represents the evaluation function. 

C. Evaluation metrics  

The evaluation metrics of root mean square error (RMSE), 
Pearson correlation coefficient (R), and mean absolute error 
(MAE) are used to evaluate the performance of the models as 
follows; 
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In both stages of training and testing, the RMSE, R2, and 
MAE values are calculated.   

      

III. RESULTS 

The models are built based on the total exergy destruction of 
the system, i.e., output variable. The ambient temperature, air 
flow rate, and water flow rate ambient relative humidity are 
considered as independent variables, i.e., network inputs. The 
70% of the data are used for training and 30% for testing. Table. 
I represents the training results for the three models. ANFIS-
PSO shows better results compared to ANFIS and ANFIS-GA.  

TABLE I.  TRAINING RESULTS 

Method  Structure  
RMSE MAE 

Deviation 

(KJ/s) 

ANFIS 

MF type: Gaussian  
Number of MFs: 3 

Output: linear 

Optimizer type: hybrid 

0.024 0.014 0.3547 

ANFIS-

GA 

Max generation=282 

Population size=200 
0.005 0.0038 0.2123 

ANFIS-

PSO 

Max iteration=204 

Swarm size=250 
0.0017 0.00091 0.0502 

 

Table. II represents the testing results for the three models. 
ANFIS-PSO shows better results compared to ANFIS and 
ANFIS-GA. Furthermore, Fig. 5 presents predicted values with 
R2 for all the models. The comparative analysis of the deviation 
from the target value for the exergy destruction for all the 
models is given in Fig. 6 where ANFIS-PSO has delivered the 
minimum deviation.     

TABLE II.  TESTING RESULTS 

Method  Structure  
RMSE MAE 

Deviation 

(KJ/s) 

ANFIS 

MF type: Gaussian  

Number of MFs: 3 

Output: linear 
Optimizer type: hybrid 

0.068 0.04 0.9694 

ANFIS-

GA 

Max generation=282 

Population size=200 
0.0396 0.0226 0.5443 

NFIS-
PSO 

Max iteration=204 
Swarm size=250 

0.0065 0.0028 0.0691 

 



 

 

Fig. 5. Comparative analysis of the models for predicted values and R2 

 

 

Fig. 6. Comparative deviation from the target value for the exergy destruction 

(KJ/s) for three models.  

IV. CONCLUSION 

The hybridization of machine learning methods with soft 

computing techniques is an essential approach to improve the 

performance of the prediction models. Hybrid machine learning 

models, particularly, have gained popularity in the advancement 

of the high-performance control systems. Higher accuracy and 

better performance for prediction models of exergy destruction 

and energy consumption used in the control circuit of HVAC 

systems can be highly economical in the industrial scale to save 

energy. This research proposes two hybrid models of ANFIS-

PSO and ANFIS-GA for the HVAC control system. The results 

are further compared with the single ANFIS model. The ANFIS-

PSO model with the RMSE of 0.0065, MAE of 0.0028, and R2 

equal to 0.9999, with a minimum deviation of 0.0691 (KJ/s), 

outperforms the ANFIS-GA and single ANFIS models. For the 

future research, advancement of hybrid and ensemble machine 

learning models, e.g., [47-52], and comparative analysis with 

deep learning models, e.g., [53-56] are proposed to identify 

models with higher efficiency.   
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