

Homogeneous Diophantine Equation of Degree Two in NP-Complete

Frank Vega

EasyChair preprints are intended for rapid dissemination of research results and are integrated with the rest of EasyChair.

December 3, 2022

Homogeneous Diophantine equation of degree two in NP-complete

Frank Vega 🖂 🏠 💿

CopSonic, 1471 Route de Saint-Nauphary 82000 Montauban, France

— Abstract

In mathematics, a Diophantine equation is a polynomial equation, usually involving two or more unknowns, such that the only solutions of interest are the integer ones. A homogeneous Diophantine equation is a Diophantine equation that is defined by a homogeneous polynomial. Solving a homogeneous Diophantine equation is generally a very difficult problem. However, homogeneous Diophantine equations of degree two are considered easier to solve. Certainly, using the Hasse principle we may able to decide whether a homogeneous Diophantine equation of degree two has an integer solution: we are able to reject an instance when there is no solution reducing the equation modulo p. We prove that this decision problem is actually in NP-complete under the constraints that all solutions contain only positive integers which are actually a residue of modulo a single positive integer. This problem remains in NP-complete even when all the coefficients are non-negative.

2012 ACM Subject Classification Theory of computation Complexity classes; Theory of computation Problems, reductions and completeness

Keywords and phrases complexity classes, boolean formula, completeness, polynomial time

1 Introduction

Let $\{0,1\}^*$ be the infinite set of binary strings, we say that a language $L_1 \subseteq \{0,1\}^*$ is polynomial time reducible to a language $L_2 \subseteq \{0,1\}^*$, written $L_1 \leq_p L_2$, if there is a polynomial time computable function $f: \{0,1\}^* \to \{0,1\}^*$ such that for all $x \in \{0,1\}^*$:

$$x \in L_1$$
 if and only if $f(x) \in L_2$.

An important complexity class is NP-complete [3]. If L_1 is a language such that $L' \leq_p L_1$ for some $L' \in NP$ -complete, then L_1 is NP-hard [1]. Moreover, if $L_1 \in NP$, then $L_1 \in NP$ -complete [1]. A principal NP-complete problem is SAT [3]. An instance of SAT is a Boolean formula ϕ which is composed of:

- **1.** Boolean variables: x_1, x_2, \ldots, x_n ;
- Boolean connectives: Any Boolean function with one or two inputs and one output, such as ∧(AND), ∨(OR), ¬(NOT), ⇒(implication), ⇔(if and only if);
- 3. and parentheses.

A truth assignment for a Boolean formula ϕ is a set of values for the variables in ϕ . A satisfying truth assignment is a truth assignment that causes ϕ to be evaluated as true. A Boolean formula with a satisfying truth assignment is satisfiable. The problem *SAT* asks whether a given Boolean formula is satisfiable [3]. We define a *CNF* Boolean formula using the following terms:

A literal in a Boolean formula is an occurrence of a variable or its negation [1]. A Boolean formula is in conjunctive normal form, or CNF, if it is expressed as an AND of clauses, each of which is the OR of one or more literals [1]. A Boolean formula is in 3-conjunctive normal form or 3CNF, if each clause has exactly three distinct literals [1]. For example, the Boolean formula:

$$(x_1 \lor \neg x_1 \lor \neg x_2) \land (x_3 \lor x_2 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor \neg x_4)$$

2 Homogeneous Diophantine equation of degree two in NP-complete

is in 3CNF. The first of its three clauses is $(x_1 \lor \neg x_1 \lor \neg x_2)$, which contains the three literals $x_1, \neg x_1$, and $\neg x_2$. In computational complexity, not-all-equal 3-satisfiability (NAE-3SAT) is an NP-complete variant of SAT over 3CNF Boolean formulas. NAE-3SATconsists in knowing whether a Boolean formula ϕ in 3CNF has a truth assignment such that for each clause at least one literal is true and at least one literal is false [3]. NAE-3SATremains NP-complete when all clauses are monotone (meaning that variables are never negated), by Schaefer's dichotomy theorem [6]. We know that the variant of XOR 2SATthat uses the logic operator \oplus (XOR) instead of \lor (OR) within the clauses of 2CNF Boolean formulas can be decided in polynomial time [4, 5]. Despite of its feasible computation, we announce another problem very similar to this one but in NP-complete.

▶ Definition 1. Monotone Exact XOR 2SAT (EX2SAT)

INSTANCE: A Boolean formula φ in 2CNF with monotone clauses using logic operators \oplus and a positive integer K.

QUESTION: Does φ has a truth assignment such that there are exactly K satisfied clauses?

▶ Theorem 2. $EX2SAT \in NP$ -complete.

A homogeneous Diophantine equation is a Diophantine equation that is defined by a polynomial whose nonzero terms all have the same degree [2]. The degree of a term is the sum of the exponents of the variables that appear in it, and thus is a non-negative integer [2]. In a general homogeneous Diophantine equations of degree two, we can reject an instance when there is no solution reducing the equation modulo p. We define our finally decision problem:

▶ Definition 3. ZERO-ONE Homogeneous Diophantine Equation (HDE)

INSTANCE: A homogeneous Diophantine equation of degree two $P(x_1, x_2, ..., x_n) = B$ with the unknowns $x_1, x_2, ..., x_n$ and a positive integer B.

QUESTION: Does $P(x_1, x_2, \ldots, x_n) = B$ has a solution u_1, u_2, \ldots, u_n on $\{0, 1\}^n$?

▶ Theorem 4. $HDE \in NP$ -complete.

▶ Definition 5. Bounded Homogeneous Diophantine Equation (BHDE)

INSTANCE: A homogeneous Diophantine equation of degree two $P(x_1, x_2, ..., x_n) = B$ with the unknowns $x_1, x_2, ..., x_n$ and two positive integers B, M.

QUESTION: Does $P(x_1, x_2, ..., x_n) = B$ has a solution $u_1, u_2, ..., u_n$ on integers such that $0 \le u_i < M$ for every $1 \le i \le n$?

▶ Theorem 6. $BHDE \in NP$ -complete.

2 Proof of Theorem 2

Proof. Let's take a Boolean formula ϕ in 3CNF with n variables and m clauses when all clauses are monotone. We iterate for each clause $c_i = (a \lor b \lor c)$ and create the conjunctive normal form formula

 $d_i = (a \oplus a_i) \land (b \oplus b_i) \land (c \oplus c_i) \land (a_i \oplus b_i) \land (a_i \oplus c_i) \land (b_i \oplus c_i)$

where a_i, b_i, c_i are new variables linked to the clause c_i in ϕ . Note that, the clause c_i has exactly at least one true literal and at least one false literal if and only if d_i has exactly one unsatisfied clause. Finally, we obtain a new formula

$$\varphi = d_1 \wedge d_2 \wedge d_3 \wedge \ldots \wedge d_m$$

where there is not any repeated clause. In this way, we make a polynomial time reduction from ϕ in *NAE-3SAT* to $(\varphi, 5 \cdot m)$ in *EX2SAT*. Certainly, $\phi \in NAE-3SAT$ if and only if $(\varphi, 5 \cdot m) \in EX2SAT$, where the new instance $(\varphi, 5 \cdot m)$ is polynomially bounded by the bit-length of ϕ . At the end, we see that *EX2SAT* is trivially in *NP* since we could check when there are exactly *K* satisfied clauses for a single truth assignment in polynomial time.

3 Proof of Theorem 4

Proof. Let's take a Boolean formula φ in *XOR 2CNF* with *n* variables and *m* clauses when all clauses are monotone and a positive integer *K*. We iterate for each clause $c_i = (a \oplus b)$ and create the Homogeneous Diophantine Equation of degree two

$$P(x_a, x_b) = x_a^2 - 2 \cdot x_a \cdot x_b + x_b^2$$

where x_a, x_b are variables linked to the positive literals a, b in the Boolean formula φ . When the literals a, b are evaluated in $\{false, true\}$, then we assign the respective values $\{0, 1\}$ to the variables x_a, x_b (1 if it is true and 0 otherwise). Note that, the clause c_i is satisfied if and only if $P(x_a, x_b) = 1$ (otherwise $P(x_a, x_b) = 0$). Finally, we obtain a polynomial

$$P(x_1, x_2, \dots, x_n) = P(x_a, x_b) + P(x_c, x_d) + \dots + P(x_e, x_f)$$

that is a Homogeneous Diophantine Equation of degree two. Indeed, K satisfied clauses in φ for a truth assignment correspond to K distinct small pieces $P(x_i, x_j)$ of the Homogeneous Diophantine Equation of degree two equal to 1 after its evaluation on x_i, x_j . In this way, we make a polynomial time reduction from (φ, K) in EX2SAT to $(P(x_1, x_2, \ldots, x_n), K)$ in HDE. Certainly, $(\varphi, K) \in EX2SAT$ if and only if $(P(x_1, x_2, \ldots, x_n), K) \in HDE$, where the new instance $(P(x_1, x_2, \ldots, x_n), K)$ is polynomially bounded by the bit-length of (φ, K) . At the end, we see that HDE is trivially in NP since we could check whether an evaluation of x_1, x_2, \ldots, x_n in the solution u_1, u_2, \ldots, u_n on $\{0, 1\}^n$ is equal to K in polynomial time.

4 Proof of Theorem 6

Proof. This is trivial since we can make a polynomial time reduction from $(P(x_1, x_2, \ldots, x_n), B)$ in *HDE* to $(P(x_1, x_2, \ldots, x_n), B, 2)$ in *BHDE* (i.e. using M = 2). Due to *HDE* is in *NP-complete*, then *BHDE* is in *NP-hard*. Finally, we know that *BHDE* is in *NP*. Note that, this problem remains in *NP-complete* even when the coefficients are non-negative.

— References

¹ Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. *Introduction to Algorithms*. The MIT Press, 3rd edition, 2009.

² David A Cox, John Little, and Donal O'shea. Using algebraic geometry, volume 185. Springer Science & Business Media, 2006.

³ Michael R Garey and David S Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. San Francisco: W. H. Freeman and Company, 1 edition, 1979.

⁴ Neil D Jones, Y Edmund Lien, and William T Laaser. New problems complete for nondeterministic log space. *Mathematical systems theory*, 10(1):1–17, 1976. doi:10.1007/BF01683259.

⁵ Omer Reingold. Undirected connectivity in log-space. *Journal of the ACM (JACM)*, 55(4):1–24, 2008. doi:10.1145/1391289.1391291.

⁶ Thomas J Schaefer. The complexity of satisfiability problems. In *Proceedings of the tenth* annual ACM symposium on Theory of computing, pages 216–226, 1978.