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Abstract
In mathematics, a Diophantine equation is a polynomial equation, usually involving two or more
unknowns, such that the only solutions of interest are the integer ones. A homogeneous Diophantine
equation is a Diophantine equation that is defined by a homogeneous polynomial. Solving a
homogeneous Diophantine equation is generally a very difficult problem. However, homogeneous
Diophantine equations of degree two are considered easier to solve. Certainly, using the Hasse
principle we may able to decide whether a homogeneous Diophantine equation of degree two has an
integer solution: we are able to reject an instance when there is no solution reducing the equation
modulo p. We prove that this decision problem is actually in NP-complete under the constraints that
all solutions contain only positive integers which are actually a residue of modulo a single positive
integer. This problem remains in NP-complete even when all the coefficients are non-negative.
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1 Introduction

Let {0, 1}∗ be the infinite set of binary strings, we say that a language L1 ⊆ {0, 1}∗ is
polynomial time reducible to a language L2 ⊆ {0, 1}∗, written L1 ≤p L2, if there is a
polynomial time computable function f : {0, 1}∗ → {0, 1}∗ such that for all x ∈ {0, 1}∗:

x ∈ L1 if and only if f(x) ∈ L2.

An important complexity class is NP–complete [3]. If L1 is a language such that L′ ≤p L1
for some L′ ∈ NP–complete, then L1 is NP–hard [1]. Moreover, if L1 ∈ NP , then L1 ∈
NP–complete [1]. A principal NP–complete problem is SAT [3]. An instance of SAT is a
Boolean formula ϕ which is composed of:

1. Boolean variables: x1, x2, . . . , xn;
2. Boolean connectives: Any Boolean function with one or two inputs and one output, such

as ∧(AND), ∨(OR), ⇁(NOT), ⇒(implication), ⇔(if and only if);
3. and parentheses.

A truth assignment for a Boolean formula ϕ is a set of values for the variables in ϕ. A
satisfying truth assignment is a truth assignment that causes ϕ to be evaluated as true. A
Boolean formula with a satisfying truth assignment is satisfiable. The problem SAT asks
whether a given Boolean formula is satisfiable [3]. We define a CNF Boolean formula using
the following terms:

A literal in a Boolean formula is an occurrence of a variable or its negation [1]. A Boolean
formula is in conjunctive normal form, or CNF , if it is expressed as an AND of clauses, each
of which is the OR of one or more literals [1]. A Boolean formula is in 3-conjunctive normal
form or 3CNF , if each clause has exactly three distinct literals [1]. For example, the Boolean
formula:

(x1∨ ⇁ x1∨ ⇁ x2) ∧ (x3 ∨ x2 ∨ x4) ∧ (⇁ x1∨ ⇁ x3∨ ⇁ x4)
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is in 3CNF . The first of its three clauses is (x1∨ ⇁ x1∨ ⇁ x2), which contains the three
literals x1, ⇁ x1, and ⇁ x2. In computational complexity, not-all-equal 3-satisfiability
(NAE–3SAT) is an NP–complete variant of SAT over 3CNF Boolean formulas. NAE–3SAT
consists in knowing whether a Boolean formula ϕ in 3CNF has a truth assignment such that
for each clause at least one literal is true and at least one literal is false [3]. NAE–3SAT
remains NP–complete when all clauses are monotone (meaning that variables are never
negated), by Schaefer’s dichotomy theorem [6]. We know that the variant of XOR 2SAT

that uses the logic operator ⊕ (XOR) instead of ∨ (OR) within the clauses of 2CNF Boolean
formulas can be decided in polynomial time [4, 5]. Despite of its feasible computation, we
announce another problem very similar to this one but in NP–complete.

▶ Definition 1. Monotone Exact XOR 2SAT (EX2SAT)
INSTANCE: A Boolean formula φ in 2CNF with monotone clauses using logic operators

⊕ and a positive integer K.
QUESTION: Does φ has a truth assignment such that there are exactly K satisfied

clauses?

▶ Theorem 2. EX2SAT ∈ NP–complete.

A homogeneous Diophantine equation is a Diophantine equation that is defined by a
polynomial whose nonzero terms all have the same degree [2]. The degree of a term is the
sum of the exponents of the variables that appear in it, and thus is a non-negative integer [2].
In a general homogeneous Diophantine equations of degree two, we can reject an instance
when there is no solution reducing the equation modulo p. We define our finally decision
problem:

▶ Definition 3. ZERO-ONE Homogeneous Diophantine Equation (HDE)
INSTANCE: A homogeneous Diophantine equation of degree two P (x1, x2, . . . , xn) = B

with the unknowns x1, x2, . . . , xn and a positive integer B.
QUESTION: Does P (x1, x2, . . . , xn) = B has a solution u1, u2, . . . , un on {0, 1}n?

▶ Theorem 4. HDE ∈ NP–complete.

▶ Definition 5. Bounded Homogeneous Diophantine Equation (BHDE)
INSTANCE: A homogeneous Diophantine equation of degree two P (x1, x2, . . . , xn) = B

with the unknowns x1, x2, . . . , xn and two positive integers B, M .
QUESTION: Does P (x1, x2, . . . , xn) = B has a solution u1, u2, . . . , un on integers such

that 0 ≤ ui < M for every 1 ≤ i ≤ n?

▶ Theorem 6. BHDE ∈ NP–complete.

2 Proof of Theorem 2

Proof. Let’s take a Boolean formula ϕ in 3CNF with n variables and m clauses when all
clauses are monotone. We iterate for each clause ci = (a ∨ b ∨ c) and create the conjunctive
normal form formula

di = (a ⊕ ai) ∧ (b ⊕ bi) ∧ (c ⊕ ci) ∧ (ai ⊕ bi) ∧ (ai ⊕ ci) ∧ (bi ⊕ ci)

where ai, bi, ci are new variables linked to the clause ci in ϕ. Note that, the clause ci has
exactly at least one true literal and at least one false literal if and only if di has exactly one
unsatisfied clause. Finally, we obtain a new formula

φ = d1 ∧ d2 ∧ d3 ∧ . . . ∧ dm
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where there is not any repeated clause. In this way, we make a polynomial time reduction
from ϕ in NAE–3SAT to (φ, 5 · m) in EX2SAT . Certainly, ϕ ∈ NAE–3SAT if and only
if (φ, 5 · m) ∈ EX2SAT , where the new instance (φ, 5 · m) is polynomially bounded by
the bit-length of ϕ. At the end, we see that EX2SAT is trivially in NP since we could
check when there are exactly K satisfied clauses for a single truth assignment in polynomial
time. ◀

3 Proof of Theorem 4

Proof. Let’s take a Boolean formula φ in XOR 2CNF with n variables and m clauses when
all clauses are monotone and a positive integer K. We iterate for each clause ci = (a ⊕ b)
and create the Homogeneous Diophantine Equation of degree two

P (xa, xb) = x2
a − 2 · xa · xb + x2

b

where xa, xb are variables linked to the positive literals a, b in the Boolean formula φ. When
the literals a, b are evaluated in {false, true}, then we assign the respective values {0, 1} to
the variables xa, xb (1 if it is true and 0 otherwise). Note that, the clause ci is satisfied if
and only if P (xa, xb) = 1 (otherwise P (xa, xb) = 0). Finally, we obtain a polynomial

P (x1, x2, . . . , xn) = P (xa, xb) + P (xc, xd) + . . . + P (xe, xf )

that is a Homogeneous Diophantine Equation of degree two. Indeed, K satisfied clauses in φ

for a truth assignment correspond to K distinct small pieces P (xi, xj) of the Homogeneous
Diophantine Equation of degree two equal to 1 after its evaluation on xi, xj . In this way,
we make a polynomial time reduction from (φ, K) in EX2SAT to (P (x1, x2, . . . , xn), K) in
HDE. Certainly, (φ, K) ∈ EX2SAT if and only if (P (x1, x2, . . . , xn), K) ∈ HDE, where
the new instance (P (x1, x2, . . . , xn), K) is polynomially bounded by the bit-length of (φ, K).
At the end, we see that HDE is trivially in NP since we could check whether an evaluation of
x1, x2, . . . , xn in the solution u1, u2, . . . , un on {0, 1}n is equal to K in polynomial time. ◀

4 Proof of Theorem 6

Proof. This is trivial since we can make a polynomial time reduction from (P (x1, x2, . . . , xn), B)
in HDE to (P (x1, x2, . . . , xn), B, 2) in BHDE (i.e. using M = 2). Due to HDE is in
NP–complete, then BHDE is in NP–hard. Finally, we know that BHDE is in NP . Note
that, this problem remains in NP–complete even when the coefficients are non-negative. ◀
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