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Abstract 

The influence of quantum radiative pressure and electrical resistivity incorporating 

the Hall current is studied on the Jeans instability of magnetized plasma. The basic 

equation of the problem is constructed and linearized by using the QMHD model. The 

general dispersion relation is derived using a normal mode technique and discussed in the 

parallel and perpendicular propagation. In the case of longitudinal propagation, the Jeans 

instability is modified due to quantum radiative pressure but is unaffected by electrical 

resistivity and Hall current. While in transverse propagation the electrical resistivity is 

modifying the growth rate of instability. In the graphical presentation, we found that the 

electrical resistivity has destabilizing influence but the presence of a quantum parameter 

is reduced the destabilizing effect of electrical resistivity in the system. The result is 

relevant to understanding many astrophysical problems. 

Keyword - Quantum correction, Hall current, Radiative heat-loss function, electrical 

resistivity, and    magnetic field. 

1 Introduction 

The plasma physics is one of the rapidly growing fields of science. It is an interdisciplinary 

science as it has wide potential applications in space and astrophysical conditions. In astroplasma 

physics, plasma has application in understanding the formation of molecular clouds, dust clusters and 

structures, star formation, nebulae, cometary tails, and magnetospheres etc. In astrophysical fluids, the 

collapse of an object is attributed to a self-gravitational force that is responsible for producing 

instability. And in order to understand the origin of star formation, the problem of self-gravitating 

interstellar plasma gas cloud is of considerable astrophysical significance. Jeans [1] gives a simple 

example of gravitational instability in an infinite homogeneous medium in connection with the 
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fragmentation of interstellar matter in the formation of stars. Chandrasekhar [2] gives a great 

contribution to the self-gravitational instability on the magnetic field and rotation. The thermal 

instability in cooling and expanding medium including self-gravity and conduction in the neutral fluid 

dynamics has been investigated by Gomez-Pelaez and Moreno-Insertis [3]. Radwan [4] has studied the 

gravitational instability of radiating, rotating gas cloud streams with non-uniform velocity. Tsintsadze 

et al. [5] have discussed the importance of thermal radiation in the Jeans instability of magnetized dusty 

plasma. The Jeans instability of rotating anisotropic heat-conducting plasma has been analyzed by 

Prajapati et al. [6]. Pensia et al. [7] have studied the Jeans instability of quantum plasma under the 

influence of Hall effect. The gravitational instability of anisotropic plasma with Hall current is 

investigated by Ariel [8]. Bhatia [9] have studied the combined effects of Hall currents, finite 

conductivity, uniform rotation, and finite Larmor radius on gravitational instability. Shaikh et al. [10] 

have discussed the Jeans instability of thermally conducting plasma in a variable magnetic field with 

Hall current, finite conductivity, and viscosity. The self-gravitational instability of rotating viscous Hall 

plasma with arbitrary radiative heat-loss functions and electron inertia have examined by Prajapati et 

al. [11]. The quantum effect plays an important role in the structure formation through the gravitational 

collapsing process of many astrophysical objects, such as a white dwarf star, supernova, neutron stars, 

and magnetars. A quantum multi-stream model for one and two stream plasma instabilities is presented 

by Hass [12]. The Pines [13] introduced quantum plasma; he suggested that at very low temperatures 

the de Broglie wavelength of electrons and ions is of the order of the dimension of the system, such as 

Debye length and Larmor radius. In this type of dense plasma system plasma behaves like Fermi gas 

and we would treat it as quantum plasma. Recently many researchers used this QMHD model in their 

studies. Wu et al. [14] have investigated the effect of Hall term on Jeans instability in quantum magneto 

plasma with resistivity using the QMHD model. Also, Ren et al. [15] used the QMHD model to 

investigate the problem of Jean’s instability of quantum magneto plasma considering resistivity effects. 

Masood et al. [16] investigated the self-gravitational instability of a multi-component quantum plasma 

using Bohm potential and statistical terms on electrons and ions. Recently Jain et al. [17] have discussed 

the effect of finite Larmor radius corrections on the thermal instability of thermal conducting viscous 

plasma with Hall current and electron inertia. The impact of Hall current and electrical resistivity on 

the stability of gravitating anisotropic quantum plasma is analyzed by Bhakta et al. [18]. 

Thus, we find that a large number of studies are done for the quantum magnetohydrodynamic model 

(QMHD) with different parameters under various assumptions. But no one considers the quantum 

magnetohydrodynamic model with radiation, electrical resistivity, and Hall current effect. 

2 Linearized perturbation equation and Dispersion relation 

We consider an infinite extended homogeneous, high density gravitating plasma containing 

electrons and singly charged ions including, Hall current, electrical resistivity, radiative heat-loss 

functions, and thermal conductivity. It is assumed that the above medium is permeated with a weak 

uniform magnetic field �⃗� (0,0, B) along the z-direction. The quantum effects introduced through the 

Bohm potential term in the momentum transfer equation describing quantum diffraction effects. The 

basic QMHD set of equations for quantum magnetoplasma is given by Hass [12]. In the present study, 

we have used QMHD set of equations.  

The momentum transfer equation                                                     

𝛿�⃗� 

𝛿𝑡
 =  −

𝛻𝛿𝑝

𝜌
+ 𝛻𝛿  +  

1

4𝜋𝜌
(𝛻 × �⃗� ) × �⃗� +

ℏ2

4𝑚𝑒𝑚𝑖

𝛻
(𝛻2𝛿𝜌)

𝜌
                                                            (1) 

The equation of continuity  
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𝜕𝛿𝜌

𝜕𝑡
 =  −𝜌𝛻. �⃗�                                                                                                                                                     (2)   

Poisson’s equation for a self-gravitational potential 

𝛻2𝛿 =  −4𝜋𝐺𝛿𝜌                                                                                                                                               (3) 

The induction equation for a magnetic field  

𝜕�⃗� 

𝜕𝑡
= 𝛻 × (�⃗� × �⃗�  )   + ∇2�⃗� −

𝐶

4𝜋𝑁𝑒
[ ∇ × {(∇ × �⃗� ) × �⃗� }]                                                                    (4) 

Gauss’s law of magnetism 

𝛻. �⃗� = 0                                                                                                                                                                  (5) 

The heat equation for a perfect gas including the radiative effect and thermal conduction  

1

(𝛾 − 1)

𝜕𝛿𝜌

𝜕𝑡
−

𝛾

(𝛾 − 1)

𝑝

𝜌

𝜕𝛿𝜌

𝜕𝑡
+ 𝜌(ℒ𝜌𝛿𝜌 + ℒ𝑇𝛿𝑇) = 𝜆𝛻2𝛿𝑇                                                                   (6) 

The gas equation 

𝛿𝑃

𝑃
 =  

𝛿𝑇

𝑇
 + 

𝛿𝜌

𝜌
                                                                                                                                                  (7) 

Where, 𝑣(𝑣𝑥 , 𝑣𝑦 , 𝑣𝑧), 𝜌, 𝑝, , 𝐵(0,0, 𝐵),, 𝐺, 𝜆, 𝑅, 𝛾, ℏ, denote respectively, the gas velocity, density, 

fluid pressure, gravitational potential, magnetic field, electrical resistivity, gravitational constant, 

thermal conductivity, gas constant, the ratio of two specific heat, Plank’s constant divided by 

2𝜋,𝑚𝑒  𝑎𝑛𝑑 𝑚𝑖 are the electron and ion mass. ℒ𝜌 is the partial derivatives of the density dependent 

(𝜕ℒ 𝜕𝑇⁄ )𝑇 heat-loss function, ℒ𝑇 is the partial derivatives of the temperature dependent (𝜕ℒ 𝜕𝑇⁄ )𝜌 heat-

loss functions, 𝛿𝑇 is the temperature. With the help of equation (6) and (7), we obtained the expression 

for 𝛿𝑝 and get, 

𝛿𝑝 =  (
𝛼 + 𝜎𝐶2

𝜎 + 𝛽
)𝛿𝜌                                                                                                                                           (8) 

 Where 𝜎 = 𝑖𝜔 is the growth rate of the perturbation, and 𝐶 = (
𝛾𝑝

𝜌
)
1

2⁄

 is the adiabatic velocity 

of sound in the medium.  The parameter 𝛼 𝑎𝑛𝑑 𝛽 are 

𝛼 = (𝛾 − 1) (ℒ𝑇𝑇 − ℒ𝜌𝜌 +
𝑘2𝑇

𝜌
)  𝑎𝑛𝑑 𝛽 =  (𝛾 − 1) (

ℒ𝑇𝑇𝜌

𝑝
+
𝑘2𝑇

𝑝
)                                            (9) 

In order to study the stability of system we assume that the perturbed quantities vary as 

𝑒𝑥𝑝{𝑖(𝑘𝑥𝑥 + 𝑘𝑧𝑧 + 𝜔𝑡)}                                                                                                                                   (10) 

Where 𝜔 is the frequency of harmonic disturbances, 𝑘𝑥  and 𝑘𝑧 are the wave numbers along x and 

z-direction to the magnetic field, such that 𝑘𝑥
2 + 𝑘𝑧

2 = 𝑘2, 𝑠 =  𝛿𝜌 𝜌⁄  is the condensation of the 

medium.  Solving equation (1-9) using equation (10) we obtain the following matrix relation, 

𝑋𝑖𝑗𝑌𝑗 = 0,   𝑖, 𝑗 = 1,2,3,4,                                                                                                                                  (11) 

Where 𝑋𝑖𝑗 is a 4 × 4 matrix whose elements are,  

𝑋11 = (𝜎 +
𝑘2𝑉2𝐴1

𝐴2

),         𝑋12 = −
𝑘2𝑉2𝑀𝑘𝑧

2 

𝐴2

         𝑋13 = 0,              𝑋14 =
𝑖𝑘𝑥

𝑘2
(𝑇

2 +
ℏ2𝑘4

4𝑚𝑒𝑚𝑖

) 
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 𝑋21 =
𝑘2𝑉2𝑀𝑘𝑧

2 

𝐴2

 , 𝑋22 = (𝜎 +
𝑘𝑧

2𝑉2𝐴1

𝐴2

) , 𝑋23 =  0, 𝑋24 = 0,  

𝑋31 = 0, 𝑋32 =  0,      𝑋33 = 𝜎 , 𝑋34 =
𝑖𝑘𝑧

𝑘2
(𝑇

2 +
ℏ2𝑘4

4𝑚𝑒𝑚𝑖

),   

𝑋41 =
𝑖𝑘𝑥𝑘

2𝑉2𝐴1

𝐴2

,    𝑋42 = −
𝑖𝑘𝑥𝑘

2𝑉2𝑀𝑘𝑧
2

𝐴2

, 𝑋43 = 0, 𝑋44 = −(𝜎2 +𝑇
2 +

ℏ2𝑘4

4𝑚𝑒𝑚𝑖

) 

Where 𝑉 =  
𝐵

(4𝜋𝜌)1 2⁄  is the Alfven velocity, 𝐶2 = 𝛾𝐶′2 where 𝐶 and 𝐶′are the adiabatic and 

isothermal velocities of sound. Also, we have assumed the following substitutions,  

𝛺𝐽
2 = (𝑘2𝑐2 − 4𝜋𝐺𝜌), 𝛺𝐼

2 = (𝑘2𝛼 − 4𝜋𝐺𝜌𝛽), 𝑇
2 = (

𝜎𝛺𝐽
2 + 𝛺𝐼

2

𝜎 + 𝛽
) ,𝑚 = 𝑘2,  

𝐴2 = 𝐴1
2 + 𝐴3

2𝑘2𝑘𝑧
2, 𝐴1 = (𝜎 +𝑚), 𝐴3 =

𝐶𝐵

4𝜋𝑁𝑒
, 𝐴4 = (𝜎 +

𝑘𝑧
2𝑉2𝐴1

𝐴2
)  

Equation (11) has a non–trivial solution if the determinant of the matrix should vanish is to the 

following dispersion relation.  

[{𝜎 (𝜎 +
𝑘2𝑉2𝐴1

𝐴2

)(𝜎 +
𝑘𝑧

2𝑉2𝐴1

𝐴2

)(𝜎2 +𝑇
2 +

ℏ2𝑘4

4𝑚𝑒𝑚𝑖

)}

+ {𝜎 (𝜎2 +𝑇
2 +

ℏ2𝑘4

4𝑚𝑒𝑚𝑖

)(
𝑘𝑧

2𝑘2𝑉2𝐴3

𝐴2

)

2

}

− {
𝑘𝑥

2

𝑘2
(𝑇

2 +
ℏ2𝑘4

4𝑚𝑒𝑚𝑖

) (
𝑘2𝑉2𝜎𝐴1𝐴4

𝐴2

+
𝑘𝑧

4𝑘4𝑉4𝐴3
2 𝜎

𝐴2
2 )}] = 0                           (12) 

The dispersion relation (12) shows the combined influence of Hall current, electrical resistivity, 

quantum correction, radiative heat-loss function, and magnetic field. If we neglect the effect of radiative 

heat-loss function, thermal conductivity and Hall current then dispersion relation (15) is identical to 

Ren et al. [15] excluding resistivity in that case. Thus the present result represents the modified 

dispersion relation for gravitational instability of quantum correction including the effect of Hall 

current, electrical resistivity, radiative heat-loss function, and magnetic field. 

3 Discussion 

For the discussion of dispersion relation (12) in an effective manner, we discuss it for the 

longitudinal and transverse mode of propagation. 

3.1 Longitudinal propagation  

In this case, we assume that all the perturbations are longitudinal to the direction of the magnetic 

field (𝑖. 𝑒. , 𝑘𝑥 = 0,   𝑘𝑧 = 𝑘) this dispersion relation reduces to a simple form, 

 

[𝜎 (𝜎2 +𝑇
2 +

ℏ2𝑘4

4𝑚𝑒𝑚𝑖

) {(𝜎 +
𝑘2𝑉2𝐴1

𝐴2

)

2

+ (
𝑘4𝑉2𝐴3

𝐴2

)

2

}] = 0                                                       (13) 
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The equation (13) shows the combined effect of thermal conductivity, magnetic field, self- 

gravitation, quantum plasma, electrical resistivity, heat-loss function and Hall current, the above 

equation have a tree independent factors, each represents the different parameters. The first factor of 

equation (13) is 𝜎 = 0 and represents the natural stability of the system. The second factor of equation 

(13) gives a cubic equation as  

    𝜎3 + 𝜎2𝛽 + 𝜎 (𝐽
2 +

ℏ2𝑘4

4𝑚𝑒𝑚𝑖
) + {𝐼

2 + 𝛽 (
ℏ2𝑘4

4𝑚𝑒𝑚𝑖
)} = 0                                                          (14) 

The dispersion relation (14) is affected by the presence of thermal conductivity, quantum 

correction and radiative heat-loss function of the medium. This mode does not depend on Hall current, 

electrical resistivity, and magnetic fields. The above dispersion relation is the cubic equation in the 

power of 𝜎,  it will give us three roots, this odd-degree equation has always one real root of opposite 

sing to that of its constant term. The constant term of the above equation (14) is positive, it will give 

one real negative root and the system will be stable when the constant term is negative, it will give at 

least one real positive root, which gives the instability and here we considered plasma is unstable 

when 

[𝑘2 (ℒ𝑇𝑇 − ℒ𝜌𝜌 +
𝑘2𝑇

𝜌
) + (

ℒ𝑇𝑇𝜌

𝑝
+
𝑘2𝑇

𝑝
)(

ℏ2𝑘4

4𝑚𝑒𝑚𝑖

− 4𝜋𝐺𝜌) < 0   ]                                       (15) 

The equation (15) represents a modified condition of self-gravitational instability due to the 

quantum correction but is independent that electrical resistivity, magnetic field, and Hall current in 

the longitudinal mode of propagation. If we reduced the influence heat-loss function and thermal 

conductivity in equation (14) the condition of gravitational instability is given by  

[𝑐2𝑘2 − 4𝜋𝐺𝜌 +
ℏ2𝑘4

4𝑚𝑒𝑚𝑖

< 0   ]                                                                                                                 (16) 

The equation (16) is a similar condition of gravitational instability is given by Ren et al. [15]. For a 

thermally non-conducting and non-radiating classical plasma medium, the dispersion relation (14) 

reduced to  

𝜎2 +𝑗
2 = 0                                                                                                                                                        (17) 

From equation (17) it is clear that when 𝑗
2 < 0, the product of the roots of equation (17) must be 

negative. This implies that at least one root of 𝜎 is positive, so the system is unstable. The condition of 

instability is given by equation (17) 

𝑐2𝑘2 − 4𝜋𝐺𝜌 < 0                                                                                                                                              (18) 

𝑘 < 𝑘𝑗 = (
4𝜋𝐺𝜌

𝑐2
)

1
2
                                                                                                                                            (19) 

Where the 𝑘𝑗 is the Jeans wave number and the above equation (19) is obtained by Jeans self-

gravitational instability criterion. The condition of instability is identical to Chandrasekhar [2]. We find 

that the condition of Jeans criteria is modify the presence of quantum correction, thermal conductivity 

and heat-loss function but is not affected by electrical resistivity and Hall current.  
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Now the third factor of the equation of (13) is equating to zero and then solved it we get the 

dispersion relation.  

𝜎6 + 3𝑚𝜎5 + 2𝜎4(𝑘4𝐴3
2 + 𝑘2𝑣2) + 𝜎3(3𝑚

4 + 4𝑘4𝐴3
2𝑚 + 6𝑘2𝑣2𝑚)

+ 𝜎2(𝑚
4 + 2𝑘4𝐴3

2𝑚
2 + 𝑘8𝐴3

4 + 6𝑘2𝑣2𝑚
2 + 2𝑘6𝑣2𝐴3

2 + 𝑘4𝑣4)

+ 2𝜎(𝑘2𝑣2𝑚
3 + 𝑘6𝑣2𝐴3

2𝑚 + 𝑘4𝑣4𝑚) + 𝑘4𝑣4𝑚
2 + 𝑘8𝑣4𝐴3

4 = 0             (20) 

The dispersion relation (20) involves electrical resistivity, magnetic field and Hall current but is 

does not involves thermal conductivity, radiative heat-loss function. It is shown that in the above 

equation the growth rate of instability and Jeans criterion of instability is modified by electrical 

resistivity and Hall current.  

3.2 Transverse propagation 

For this case, we assume all the perturbation are propagating perpendicular to the direction of the 

magnetic field, we take 𝑘𝑥 = 𝑘,   𝑘𝑧 = 0. The dispersion relation (12) can be written as  

𝜎3 [  𝜎4 + 𝜎3(𝛽 +𝑚) + 𝜎2 (𝛽𝑚 +𝑗
2 +

ℏ2𝑘4

4𝑚𝑒𝑚𝑖

+ 𝑘2𝑣2)

+ 𝜎 (𝐼
2 +𝑚𝑗

2 +
𝛽ℏ2𝑘4

4𝑚𝑒𝑚𝑖

+
𝑚ℏ2𝑘4

4𝑚𝑒𝑚𝑖

+ 𝛽𝑘2𝑣2) +𝐼
2𝑚 + 𝛽𝑚

ℏ2𝑘4

4𝑚𝑒𝑚𝑖

]

= 0                                                                                                                                     (21) 

The first factor of propagating is spurious stable mode independent of all the effects and represents 

natural stability. The second factor of dispersion relation (21) gives 

𝜎4 + 𝜎3(𝛽 +𝑚) + 𝜎2 (𝛽𝑚 +𝑗
2 +

ℏ2𝑘4

4𝑚𝑒𝑚𝑖

+ 𝑘2𝑣2)

+ 𝜎 (𝐼
2 +𝑚𝑗

2 +
𝛽ℏ2𝑘4

4𝑚𝑒𝑚𝑖

+
𝑚ℏ2𝑘4

4𝑚𝑒𝑚𝑖

+ 𝛽𝑘2𝑣2) +𝐼
2𝑚 + 𝛽𝑚

ℏ2𝑘4

4𝑚𝑒𝑚𝑖

= 0                                                                                                                                    (22) 

The above dispersion relation (22) shows the combined influence of the magnetic field, radiative 

heat-loss function, electrical resistivity, quantum correction but is not affected by Hall current in the 

transverse mode of propagation. The condition of instability is obtained from the constant term of the 

dispersion relation (22), and it is given by 

[𝑘2𝑚 (ℒ𝑇𝑇 − ℒ𝜌𝜌 +
𝑘2𝑇

𝜌
) +𝑚 (

ℒ𝑇𝑇𝜌

𝑝
+
𝑘2𝑇

𝑝
) (

ℏ2𝑘4

4𝑚𝑒𝑚𝑖

− 4𝜋𝐺𝜌) < 0   ]                         (23) 

We write the dispersion relation (23) in non-dimensional form, for showing the effects of the 

different parameter on the growth rate of instability, as  

𝜎∗4 + 𝜎∗3(𝛽∗ + ∗𝑘∗2) + 𝜎∗2(𝛽∗∗𝑘∗2 + 𝑘∗2 − 1 + 𝑄∗𝑘∗2 + 𝑘∗2𝑉∗2)
+ 𝜎∗(𝑘∗2𝛼∗ − 𝛽∗ + ∗𝑘∗4 − 1 + 𝛽∗𝑄∗𝑘∗2 + ∗𝑘∗4𝑄∗ + 𝛽∗𝑘∗2𝑉∗2) + ∗𝑘∗4𝛼∗

− 𝛽∗∗𝑘∗2 + 𝛽∗∗𝑘∗4𝑄∗ = 0                                                                                     (24) 
Where the various non-dimensional parameters are defined as 

𝜎∗ =
𝜎

√4𝜋𝐺𝜌 
,  𝑘∗ =

𝑘𝐶

√4𝜋𝐺𝜌
, 𝑄∗ =

ℏ2𝑘𝑗
2

4𝑚𝑒𝑚𝑖
, 𝑉∗ =

𝑉√4𝜋𝐺𝜌

𝐶
, 𝜆∗ =

(𝛾−1)𝑇𝜆√4𝜋𝐺𝜌

𝜌𝐶2 
,   ℒ𝜌

∗ =
(𝛾−1)𝜌 ℒ𝜌

𝐶2√4𝜋𝐺𝜌
,   ℒ𝑇

∗ =

(𝛾−1)𝜌 𝑇ℒ𝑇

𝜌√4𝜋𝐺𝜌
, 𝛼∗ = (

1

𝛾
(ℒ𝑇

∗ + 𝜆∗𝑘∗2) − ℒ𝜌
∗),   𝛽∗ = (ℒ𝑇

∗ + 𝜆∗𝑘∗2),     ∗ =
√4𝜋𝐺𝜌

𝐶2 
,𝐼

∗2 = (𝑘∗2𝛼∗ − 𝛽∗),

𝑗
∗2 = (𝑘∗2 − 1)                                                                                                                                              (25)    

In Figure 1-4 we have depicted the non-dimensional growth rate versus non-dimensional wave 

number for various values of the magnetic field and electrical resistivity, and fixed values of 
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temperature dependent heat-loss function, density dependent heat-loss function, thermal conductivity, 

and quantum correction. 
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Figure 1: The growth rate 𝝈∗, in the transverse mode, is plotted against wave number  𝒌∗ with variation in 

the magnetic field 𝑽∗ = (𝟎, 𝟏, 𝟐, 𝟑), keeping the values of other parameters are fixed, as 𝓛𝝆
∗ = 𝓛𝑻

∗ = 
∗ = 𝑸∗ =

𝟎. 𝟓 𝒂𝒏𝒅 ∗ = 𝟎 
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Figure 2: The growth rate 𝝈∗, in the transverse mode, is plotted against wave number  𝒌∗ with variation in 

the magnetic field 𝑽∗ = (𝟎, 𝟏, 𝟐, 𝟑), keeping the values of other parameters are fixed, as 𝓛𝝆
∗ = 𝓛𝑻

∗ = 
∗ = 𝑸∗ =

𝟎. 𝟓 𝒂𝒏𝒅 ∗ = 𝟏. 𝟓 

 



8 
 

0.0 0.1 0.2 0.3 0.4 0.5

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

 Q
*
 = 0

 Q
*
 = 1

 Q
*
 = 2

 Q
*
 = 3

G
ro

w
th

 r
at

e 




Wave number 

 

 
Figure 3: The growth rate 𝝈∗, in the transverse mode, is plotted against wave number  𝒌∗ with variation in 

the quantum correction 𝑸∗ = (𝟎, 𝟏, 𝟐, 𝟑), keeping the values of other parameters are fixed, as 𝓛𝝆
∗ = 𝓛𝑻

∗ = 
∗ =

𝑽∗ = 𝟎.𝟓 𝒂𝒏𝒅 ∗ = 𝟎 
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Figure 4: The growth rate 𝝈∗, in the transverse mode, is plotted against wave number  𝒌∗ with variation in 

the quantum correction 𝑸∗ = (𝟎, 𝟏, 𝟐, 𝟑), keeping the values of other parameters are fixed, as 𝓛𝝆
∗ = 𝓛𝑻

∗ = 
∗ =

𝑽∗ = 𝟎.𝟓 𝒂𝒏𝒅 ∗ = 𝟏. 𝟓 

From figure 1-4, the dimensionless growth rate is plotted against the dimensionless wave number 

for different values of the magnetic field and quantum correction. It is quite obvious from the figures 

that with an increase in a magnetic field and quantum correction there is a decrease in the growth rate 

of the system. Thus, the magnetic field and quantum correction have a stabilizing influence on the 

system but the presence of electrical resistivity the growth rate of the system is increasing and the 

system is destabilized.  
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4 Conclusion 

In this paper we have investigate a theoretical study of Jeans instability of a quantum radiative 

pressure with resistivity and Hall current. We have derived a general dispersion relation using normal 

mode analysis and QMHD equation. In the case of longitudinal propagation the Alfven wave mode 

modified in the presence of electrical resistivity and Hall current. The dispersion relation for the 

transverse mode is unaffected by the presence of Hall current. The gravitational instability is obtained 

which is modified by electrical resistivity, magnetic field, quantum correction, thermal conductivity, 

and radiative heat-loss function. From the curves, we find that the magnetic field and quantum 

correction have stabilized the system when we reduced the impact of electrical resistivity, but the 

presence of the electrical resistivity system is destabilized. We conclude that electrical resistivity has a 

destabilizing effect on the growth rate of instability while the magnetic field and quantum parameter 

have to stabilize the system. 
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