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INTRODUCTION
Soft robots have exhibited excellent compatibility with
functional and physical requirements of intraluminal
procedures such as bronchoscopy and cardiovascular
intervention [1]. Despite their favourable mechanical
compliance and scalable design, integrating miniature
force and shape sensors on them is cumbersome [2].
Also, large mechanical deformation of such robots, i.e.,
flexures, may push traditional rigid sensors out of their
linear range [3]. As an alternative approach, the authors
have recently introduced a novel soft sensing method
and soft embedded sensors for flexures that exhibited
less than 10mN error in measuring external 3D tip
forces on soft robots for bronchoscopy and cardiovas-
cular applications [4], [5], [6]. Fig. 1(a –c) depict the
conceptual design, the prototyped sensor developed in
[5], and a representative interventional application. Their
soft sensor was comprised of a gelatin-based matrix
filled with graphite nano-particles that exhibited stable
piezoresistivity under extremely large deformation. De-
spite its accuracy, the accuracy of the proposed sensor
was adversely affected in noisy environments, e.g., op-
eration rooms. The reason was that the rate-dependent
features used in its neural calibration would amplify the
peripheral noise which would diminish the accuracy. In
this study, we have proposed and validated an alterna-
tive deep-learning-based method for calibration of the
proposed soft sensor that is derivative-free thus does
not amplify the peripheral noise and is versatile. Con-
ceptually, the proposed calibration methods can be used
to assemble an array of sensor readings for distributed
sensing on soft robots. Our proposed method is based
on generating a scalogram from the temporal-frequency
content of the measured voltages using real-time wavelet
transform and using transfer learning technique to infer
rate-dependent and deformation-dependent features from
the voltages’ scalogram.

MATERIALS AND METHODS
As an alternative and derivative-free calibration method
for the soft embedded sensor developed in [5], we
investigated the utilization of a deep-learning-based cali-
bration schema. Fig. 2(a) depicts the proposed calibration
framework. To this end, first the scalograms Continuous
Wavelet Transform (CWT) of two voltages 𝑉1 and 𝑉2
recorded during the sensor calibration were obtained
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Fig. 1. (a) Conceptual design and (b) the prototyped soft flexure
with embedded soft sensor [4], and (c) conceptual application of the
proposed soft sensor.

using Matlab Signal Processing Toolbox. As shown in
Fig. 2(a) scalograms were 2D images in red-green-
blue (RGB) colorspace. More specifically, the Morse
wavelet was employed to generate the CWTs. The CWT
images were of 224 × 112 px size and were horizontally
concatenated in the form of [𝑉1 𝑉2] to form a 224×224 px
input image for the transferred neural network. Also, we
applied synchro-squeezing to the wavelet to improve the
temporal resolution of the scalogram. A total of 70 pairs
of CWT scalograms were obtained from the calibration
dataset obtained in [5]. Considering the small size of
the dataset and to perform accurate feature extraction
on scalogram images, GoogLeNet (Alphabet Inc.) pre-
trained network was used. It had a total of 22 layers
(including convolutional and max-pooling. To perform
force estimation (regression), the last layer of GoogLeNet
(classifier) was replaced with eight fully-connected layers
with 250,200,150,100,50,25,10, and 3 neurons with the
rectified linear unit (ReLU) activation function. The
restructured convolutional calibration model was denoted
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Fig. 2. (a) Dataflow-gram of the proposed transfer-learning-based calibration method, (b) representative performance of the proposed calibration.

as WaveLeNet in this study. For better accuracy, the
training forces were normalized. In training, ’adam’
optimizer with 20 epochs and goal function of mean-
absolute error was used. The training was performed in
Matlab Deep Learning Tool Box (Mathworks, MA, USA).
The dataset was split (70:15:15 for train:validate:test).

RESULTS AND DISCUSSION
Fig. 2(b) shows a representative performance of the
proposed calibration for unseen data for predicting tip
force in 𝑥−direction, i.e. 𝐹𝑥 . To assess the accuracy,
maximum and mean absolute errors between predicted
force and ground truth (reference) were analyzed and
compared with the previous rate-dependent calibration
proposed in [5]. In addition, the minimum detectable force
observed with WaveLeNet and that of [5] were compared.
Table I summarizes the performance of WaveLeNet with
the rate-dependent calibration proposed in [5]. The results
showed that the MAE of the proposed network was
less than 5% of full range (i.e., 160mN). Although the
MAE over full range was larger than the previous rate-
dependent calibration it was still below the 5% error level.
Most importantly, we analyzed the error for small force
ranges, where our previous rate-dependent calibration
was most erroneous (due to noise amplification). The
results showed that not only the proposed WaveLeNet
calibration was more accurate than the rate-dependent
calibration, but it was also more accurate compared to
itself at full range. We believe the derivative-free nature of
the WaveLeNet method has contributed to its superiority
compared to rate-dependent calibration. Also, the more
in-depth analysis showed that at force ranges > 100mN,
the scalograms become quite bright and the temporal
gradient of WaveLet scalograms diminishes. This might
have contributed to lower accuracy in high forces.

CONCLUSION
In this study, we proposed a transfer learning-based
calibration schema inherited from GoogLeNet for soft
embedded sensing in soft robots. The proposed method
was derivative-free and would capture temporal changes
in electrical signals from the soft sensors by capturing
image features in scalograms of wavelet transform. Wave-
LeNet, our derivative-free deep convolutional calibration

TABLE I
Performance of WaveLeNet in comparison with Ref. [5].

Force
MAE
WaveLeNet
(mN)

MAE
[5]
(mN)

MDF
WaveLeNet
(mN)

MDF
[5]
(mN)

𝐹𝑥 (full-range) 7.5 3.3 < 1 < 1
𝐹𝑦 (full-range) 7.1 2.6 < 1 < 1
𝐹𝑧 (full-range) 12 8.0 < 1 < 1

𝐹𝑥 < 20mN 3.3 12.0 < 1 < 1
𝐹𝑦 < 20mN 3.7 13.1 < 1 < 1
𝐹𝑧 < 20mN 5.4 14.4 < 1 < 1

MAE: Mean Absolute Error
MDF: Minimum Detectable Force

model, had comparable accuracy over the full range
of our soft flexural sensor compared to a previously
validated rate-dependent calibration. However, thanks to
its derivative-free features, it improved the accuracy for
small forces, i.e., < 20mN. The proposed sensor and
derivative-free calibration facilitates utilization of the
proposed sensor in soft robotic applications especially
tactile grasping (with force feedback) and interventional
soft robots (for intraluminal applications). The authors
have demonstrated the applicability of the proposed
sensor for bronchoscopy applications in [5].
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