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Abstract 

The urban watershed of Guwahati, Assam, has witnessed a rapid urbanization in recent years, making it to one of the 

most deteriorated cities in terms of environmental issues. Therefore, this work focused on finding the most suitable 

soil-water conservation areas at a micro-scale using coupling coordination mechanism. Principal component analysis 

(PCA) was used to create a priority model for sub-watershed basin based on nineteen morphometric parameters. We 

then quantified the soil erosion using the revised universal soil loss equation (RUSLE) for current and future 

scenarios based on the representative concentration pathway (RCP) 2.6 and 8.5 models (RCP2.6 and 8.5). In 

addition, we proposed the fuzzy logic and analytical hierarchy process (AHP) model-based soil-water conservation 

suitability (SWPC) model for current and future scenarios. Finally, the most suitable soil-water conservation areas 

for current and future scenarios were identified using coupling coordination degree model (CCD). To the author’s 

knowledge, this is the first in-depth study that identifies the most suitable conservation areas by analyzing the 

watershed prioritization, soil erosion, and topographic, hydrologic, land cover, and climatic parameters-based soil-

water conservation suitability models. Sub-watersheds comprising Silsako, Bharalu, Deepor Beel, and North 

Guwahati have been identified as high-priority sub-watersheds. According to the current RUSLE model, soil erosion 

in the study area varies from 140 to 181.64 tonnes per hectare per year. In contrast, soil erosion would continue to 

increase in the future as per the RCP8.5 model, which varies from 305 to 332 tonnes per hectare per year. The 

current SWPC model predicted 46.92 km2 area as high and 54.40 km2 area as very high suitable zones. However, 

under the RCP 2.6 and RCP 8.5 models, the high and very high SWPC zones will experience extended areas in the 

future due to increased soil erosion intensity. According to the CCDM results, Bharalu, Deepor Beel, and North-

Guwahati sub-watersheds have observed a very high to medium coupling degrees, which are considered the most 

suitable areas for conservation. The findings of this study will significantly help stakeholders and experts in long-

term land-water resource management and effectively address environmental degradation issues in urban watersheds 

around the world. 
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1. Introduction 

River erosion, land use change, and incompetent management contribute to the loss of tons of soil per year, 

causing permanent damage in agricultural and mountain areas (Kulimushi et al., 2021, Kebede et al., 2021). Many 

countries have developed river basin management plans that prioritize watersheds based on their drainage and 

ecological importance (Patle et al., 2020; Arefin et al., 2020; Rodrigues et al., 2022). The drainage system of an area 

and the characteristics of the watershed are crucial to the long-term development, management and restoration of 

soil-water process, as they allow accurate estimation of water flow, soil loss, and management alternatives (Naqvi et 

al., 2019; Hembram and Saha, 2020). Recently, numerous studies have used remote sensing (RS) coupled with 

geographic information systems (GIS) to reliably calculate morphological features and analyze basin attributes 

(Resmi et al., 2019; Bogale, 2021). In recent years, experts and researchers worldwide have developed methods for 

automatic extraction of drainage networks and their properties utilizing remote sensing and GIS (Arubalaji and 

Padmalal, 2020; Hibi et al., 2021; Ahad et al., 2022). Furthermore, several scholars have reported about the 

application of GIS for morphometric analysis with interaction of drainage morphometric features of various 

watersheds of India (Kumar et al., 2021: Shekar et al., 2022). Therefore, RS can be considered a valuable technique 

for morphometric analysis, and prioritizing watersheds, which are crucial indicators to adopt any different relevant 

conservation actions.  However, prioritization of watershed and landscape planning are often considered for 

developing and implementing robust management and restoration strategies (Sharda et al., 2021). Prioritization is 

key to identifying areas that need attention (Yu et al., 2021; Abdeta et al., 2020). Due to time and cost constraints, it 

is challenging to undertake restoration and soil and water conservation work at all sites simultaneously in a 

watershed management program. Therefore, watershed prioritization for robust soil-water conservation can be a 

feasible approach to solve the mentioned issues (Zhang et al., 2021; Meshram et al., 2022). Although soil erosion 

(SE) can occur naturally, human activities such as land use change, agriculture, livestock grazing, and deforestation 

have worsened erosion and soil deterioration (Gong et al., 2022). As a result, SE is seen as a natural and human-

caused issue with severe economic and environmental consequences in many cultures. Despite the significant 

impacts of SE on soil sustainability, there is a scarcity of data on existing and future situations. The lack of this data 

is because of the complexity of erosion processes, making SE estimates costly, time-consuming, and challenging 

(Cunha at al., 2022; Ferreira et al., 2022). Because of this difficulty, several models and techniques have been 

developed to simplify SE modelling and better our knowledge of the pattern and processes of SE. Previous 

researchers have found that RUSLE model outperformed other models in terms of accuracy and simplicity to 

estimate the potential soil erosion (Mengie at al., 2022; Somasiri et al., 2022). Therefore, in the present study, we 

used the RUSLE model to estimate the potential soil erosion for current and future scenarios.  

However, previous researchers have developed future soil erosion scenarios by considering the R factor 

(erosive factor) for current and future times (Pal et al., 2022). They have computed R factor from future rainfall 

datasets.  The Intergovernmental Panel on Climate Change (IPCC) has released the Representative Concentration 

Pathways (RCPs), which comprises four future scenarios for earth’s greenhouse gas (GHG) emission (2.6, 4.5, 6, 

and 8.5), for future climatic variables. The RCP2.6 model simulates low GHG emissions, whereas the RCP4.5 and 

RCP6 models represent stability scenarios, and the RCP8.5 model simulates high GHG emissions. Using several 



 
 

CMIP5-RCP scenarios, research has been undertaken to forecast the influence of future climate on soil erosion; 

however, relatively few studies have been conducted on the Indian subcontinent (Choudhury et al., 2022; Raj et al., 

2022). In this research, we considered minimum and maximum RCP scenarios to compute the R factor for future 

rainfall scenarios. The soil erosion estimation using RUSLE model is very common, not the future soil erosion 

models, but the research on the conservation strategies for reducing soil erosion and its impact is very rare. Also, it 

is very challenging to identify the areas to be conserved and monitored for soil erosion based on limited resources. 

However, to do so, several parameters related to soil erosion are required under the framework of multi-criteria 

decision making (MCDM) process. Therefore, this research aimed to predict robust suitable soil-water conservation 

zone, not only for current situation, but also for future soil erosion scenarios, under the MCDM framework. Previous 

researchers have already applied several MCDM techniques to find the flood, landslide susceptible zones, wetland 

habitat zone, urban surface ecological health condition zones (Rehman et al., 2022; Craciun et al., 2022). Few 

popular MCDM techniques are analytical hierarchy process (AHP) (Kumar et al., 2022; Roshani et al., 2022), 

analytical network process (ANP) (Dahri et al., 2022; Abedini et al., 2022), weights of evidence (WOE) (Bopche & 

Rege, 2022; Behera & Panigrahi, 2022), evidential belief function (EBF) (Ramesh & Iqbal, 2020; Zhao et al., 2022) 

etc. However, the MCDM techniques have suffered from biasness due to subjective weights, time consuming and 

slow computational process. To prevent these drawbacks, the fuzzy logic model, a semi machine learning algorithm, 

has been emerged and frequently used for solving several environmental issues (Aghaloo and Chiu, 2020; 

Baharvand et al., 2020; Jha et al., 2020; Noori et al., 2019). Because of its capacity to handle linguistic data 

efficiently, Vema et al. (2019) employed a fuzzy inference system (FIS) for the selection of sites concerning the 

facilities related to harvesting of water (e.g., ponds, check dams, and tanks). Similarly, Kumar and Anbalagan 

(2015) and Ramesh and Anbazhagan (2015) identified landslide prone regions using landslide frequency ratio and 

fuzzy logic based on GIS. According to the conclusions of these investigations, the fuzzy logic technique exceeds 

the other methods in terms of accuracy. Literature review also validates fuzzy-based work for groundwater as well 

as land suitability analysis (Bikdeli, 2020; Moonjun et al., 2020; Tafreshi et al., 2018). Therefore, based on previous 

literature, we used advanced fuzzy logic and conventional AHP model to prepared SWPC model for current and 

future scenarios. Furthermore, the association between watershed prioritizing and soil-water appropriateness is a 

new and emerging idea (Melaku et al., 2018). The current study links these two systems to comprehend the 

influence of physical and drainage features on soil and water resources in a location. Coupling coordination theory 

can explain the degree to which two or more subsystems interact. The degree of coupling describes the strength of 

the contact between two subsystems, whereas the degree of coordination indicates the intensity of cooperative 

growth between them (Lai et al., 2020). We selected the coupling coordination theory because of its capacity to 

provide a complete assessment system and its intuitiveness, but it has not been frequently employed in empirical 

applications. Only a few researchers have recently applied the coupling coordination theory to investigate the 

coordination between two or more parameters (Ye et al., 2021; He et al., 2021; Dong et al., 2021). Yuan et al. (2021) 

for example, investigated the coordination among the regional environment, economy, and tourism in western 

Hunan Province, China, using a coordinated development model. In addition, Yang et al. (2021) employed the 

CCDM (coupling coordination model) and GIS spatial methodologies to examine the correlation, coupling, and 



 
 

coordination degrees between the geo-ecological environment and urbanization in Chongqing 

Municipality.Guwahati Metropolitan Area is one of the most urbanized areas in India, on the bank of the 

Brahmaputra River. Therefore, because of the urbanization, this river has experienced flow of domestic waste or 

sewages and industrial debris from the city, such as hazardous, chemical, industrial solid, and solid waste generated 

by municipalities (Pondari et al., 2020; Tsering et al., 2020). Little work has been done so far in the urban watershed 

of Guwahati, focusing on soil-water conservation modelling. Therefore, to fill the research gaps, this study proposed 

a robust way to find the soil-water conservation zones by considering PCA-NDVI based watershed prioritization, 

RUSLE based soil erosion and fuzzy logic and AHP based-soil water potential conservation (SWPC) zones under 

current and future scenarios at RCP2.6 and 8.5. The novelty of the present study is to identify the highly accurate 

areas to be conserved or monitored in order to reduce the area coverage and impact of soil erosion for current and 

future scenarios through a coupling coordination mechanism in the Guwahati watershed To the author’s knowledge, 

this has been the first study that considered different aspects for mitigating soil erosion by identifying the 

conservation areas. In this study, we provide an alternate method for watershed prioritization in the six sub-

watersheds of the Guwahati Metropolitan Area, Assam, such as Deepor Beel, Bharalu, Silsako, North Guwahati, 

Foreshore, and Kalmoni, by leveraging factors with strong influence (as determined by PCA) on soil degradation in 

each of these micro-watersheds. Furthermore, for the first time, the coupling coordination evaluation model (CCD) 

has been used to examine the degree of coupling and coordination among watershed prioritized model, soil erosion 

model, and soil-water suitability model. The present research will provide scientific support and insights for 

mitigating the severity of soil erosion by identifying accurate conservation areas for current and future scenarios 

(2040). The main objectives of the present study are: 

1. to provide an alternative method for watershed prioritization by effectively utilizing factors that have a 

strong influence (as determined by PCA) on soil degradation in the urban watershed of Guwahati, 

2. to estimate soil erosion using RUSLE model for current and future scenarios (2040) at RCP2.6 and 8.5, 

3. to develop the sub-watershed zones-wise soil-water conservation suitability model (SWPC) in the study 

area for current and future scenarios (2040) at RCP2.6 and 8.5, 

4. to identify the highly suitable soil-water conservation areas through the coupling degree and degree of 

coordination among the priority, soil erosion and SWPC models for current and future scenarios (2040) at 

RCP2.6 and 8.5. 

2. Material and Methodology 

2.1 Study Area 

The urban watershed of Guwahati was chosen as the study area as it is the fastest-growing city in Northeast 

India. Guwahati is located in Assam's Kamrup (Metro) district. Guwahati's urban watershed, known as the Guwahati 

Metropolitan Region, includes the Guwahati Municipal Corporation (GMC) area, the North Guwahati Town 

Committee (NGTC) area, the Amingaon Census Town (ACT), and 21 revenue villages (GMA). It has a total area of 

340.67 km2. Guwahati's overall population has grown from 500,000 in 1991 to 8, 14,575 in 2008, and 963,429 in 

2011 (Census of India, 2001 & 2011). The study area is on an undulating plain with elevations ranging from 50 to 



 
 

55 meters above mean sea level (MSL). Guwahati's urban watershed is further expanded in an east-west ward trend, 

spanning 45 kilometres between Narengi in the east and Lokpriya Gopinath Bordoloi (LGB) International Airport in 

the west, as well as both sides of the Brahmaputra River in the north and the slopes of the Shillong Plateau in the 

south. The urban watershed of Guwahati is divided into six sub-watersheds: Bharalu, Silsako, Kalmoni, Deepor 

Beel, Foreshore, and North Guwahati (Fig. 1). In recent years, all the basins being part of the primary drainage route 

have been undergoing increasing urbanization. As a result, they have become the most degraded regions due to 

encroachment and dumping of solid and liquid wastes into these watersheds. Thus, watershed prioritization of these 

six micro-watersheds will considerably alleviate the problem of soil degradation and water management in the given 

area. 

 

Figure 1 Location of the study area 

2.2 Database 

The morphometric analysis of the urban watershed of Guwahati was conducted using the 1:50,000 scale 

topographical maps collected from the Survey of India (SOI). Landsat 8 (OLI/TIRS) image acquired from the 



 
 

website of the United States Geological Survey (USGS). The analysis comprises delineating the study area into six 

sub-watersheds and then calculating nineteen morphometric parameters based on each watershed's areal, linear, and 

relief aspects (e.g., stream number, stream length ratio, elongation ratio, ruggedness number, bifurcation ratio, 

drainage density, etc.). In addition, the drainage network of the urban watershed of Guwahati was evaluated using 

Horton's (1945) and Strahler's (1945, 1964) methodologies. SoI topographic maps were georeferenced in ArcGIS 

desktop version 10.4 using the WGS84 datum and UTM zone 46 N. The SRTM digital elevation map (DEM) was 

downloaded from earth explorer of USGS. The rainfall map was collected from meteorological stations of IMD for 

the periods of 2000-2018. The road data was collected from DIVA GIS. 

2.3 Method for morphometric analysis 

A detailed description of the methodology is provided in the supplementary material and supplementary table 

1. 

2.3.1 Methods for watershed prioritization 

The areal, linear, and relief morphometric parameters were designated as the significant aspects for prioritizing 

sub-watersheds (Kulimushi et al., 2021; Kale and Deshmukh, 2020). Soil erosion of an area directly relates to linear 

(e.g., stream number, stream order, etc.), as well as relief parameters (e.g., ruggedness number, relief ratio, etc.). As 

a result, higher ranks are assigned to a higher value of linear and relief factors. Areal parameters (e.g., basin area, 

drainage texture, elongation ratio) have opposite relationship with soil erodibility (Hema et al., 2021). Areal 

parameters with lower values have a more significant influence on the degradation of the soil of a watershed. Hence, 

the ranking of the erodibility of soil was computed through assigning priority ranks. In this research, we used three 

methods to prepare the watershed priority model i.e., compound factor, PCA, and NDVI. The theoretical 

background of these methods has been given below: 

Compound Factor 

For the final watershed prioritization map, three basic weighted sum ranking systems were used: compound 

parameter (CP), priority rank (NP), and priority degree (GP) (Chauhan et al. 2016; Prabhakar et al. 2019). At first, 

CP for each sub-watershed was determined through computing the mean of all morphological parameters. The 

second phase involves assigning NP. The sub-watershed with the lowest compound parameter was given the highest 

NP, and so on. Furthermore, the priority degree was calculated using eq. (1), (2), and (3), and they were categorized 

into high, medium, and low priority ranks. 

𝐺𝑃𝐻𝑖𝑔ℎ = [𝐶𝑃𝑀𝐼𝑁 ,  𝐶𝑃𝑀𝐼𝑁 + (
𝐶𝑃𝑀𝐴𝑋−𝐶𝑃𝑀𝐼𝑁

3
)]     [1] 

𝐺𝑃𝑀𝑒𝑑𝑖𝑢𝑚 = [𝐶𝑃𝑀𝐼𝑁 + (
𝐶𝑃𝑀𝐴𝑋−𝐶𝑃𝑀𝐼𝑁

3
)  ,  𝐶𝑃𝑀𝐼𝑁 ± 2 ∗ (

𝐶𝑃𝑀𝐴𝑋−𝐶𝑃𝑀𝐼𝑁

3
)]    [2] 

𝐺𝑃𝐿𝑜𝑤 = [𝐶𝑃𝑀𝐼𝑁 + 2 ∗ (
𝐶𝑃𝑀𝐴𝑋−𝐶𝑃𝑀𝐼𝑁

3
) ,  𝐶𝑃𝑀𝐴𝑋]     [3] 



 
 

In the same way, the NDVI was calculated, and its values were classified according to the methods proposed 

by Gómez-Almonte (2005) and Merg et al. (2011) (Supplementary Table 2).  

Principal Component Analysis 

The PCA was primarily used in this study to reduce data and represent fundamental data properties with 

only a few principal components (Pourghasemi et al., 2021; Mohamed and Worku, 2021; Perez and Reynoso, 2021). 

Using PCA, we computed the correlation matrix, the principal component loading matrix, and the respective 

Eigenvalues (Singh et al. 2021; Patle et al., 2020; Meshram and Sharma, 2017)) based on nineteen morphometric 

parameters. Finally, we used PCA to assess the structural correlations of the morphometric characteristics and 

classify the basins based on component values.  

Normalized difference vegetation index 

Vegetation indices, which utilize the transformation of electromagnetic spectrum (EMS) reflected from the 

earth's surface to satellite sensors, are the most prevalent and widely studied remote sensing products. For example, 

the normalized differential vegetation index (NDVI) measures the difference between near-infrared and red bands to 

quantify vegetation (Tucker, 1979). 

2.3.2 Method for current and future soil-water conservation model 

In this research, to compute the current and future soil-water conservation model, we prepared several components, 

such as current and future rainfall, soil erosion model using RUSLE, fuzzy logic based SWPC model, and final 

robust SWPC model using CCD mechanism. The methods for these components have been presented below 

sections: 

2.3.3 Method for estimation of current and future rainfall 

The circulation patterns of the atmospheric and ocean currents have changed because of global warming. The 

geographical and temporal patterns of precipitation and temperature throughout the planet have altered because of 

this. As a result, rising groundwater depletion is linked to global warming (IPCC, 2011). Increased flooding risks in 

particular landscapes, which are entirely unfavorable for groundwater recharge, may be directly connected to a 

change in the pattern of extreme rainfall events (IPCC, 2011). Researchers have attempted to create these 

connections in a stochastic manner. Therefore, future climates may be forecasted using GCMs in conjunction with 

expected changes in land use to predict future SWPC models. To consider climate change in the research field, we 

extracted precipitation data of RCP 2.6 and 8.5 climate scenarios from CCSM-4 of the 4th IPCC Assessment Report 

based on AR5. These data are freely available from the NCAR GIS Initiative Climate Change Scenario portal (https: 

/gisclimatechange.ucar.edu) in vector format (Shapefile). Representative pathways of concentration (RPCs) show 

the concentrations of greenhouse gases (GHGs) in the atmosphere and the routes that may be taken to get there. The 

GHG emission will be 2.6 W/m2 at RCP2.6 by 2100, followed by 4.5 W/m2 at RCP4.5, 6.0 W/m2 at RCP 6 and 8.5 

W/m2 at RCP8.5. In the present study, we produced rainfall data for the period of 2020-2040 based on minimum and 



 
 

maximum concentration of greenhouse in atmosphere (RCP2.6 and RCP8.5). In the present study, we prepared R-

factor based on the rainfall obtained from RCP 2.6 and RCP 8.5 for the period of 2020-2040. 

2.3.4 Method for potential soil erosion estimation for current and future scenario using RUSLE 

This research uses the RUSLE to estimate the soil erosion in an urban watershed. It needs significant input 

variables, which can be readily obtained from accessible data sources. RUSLE measures the long-term erosion 

process of rills and inter-rills over a wide range of agricultural and forest catchments (Ostovari et al., 2021; Biswas 

and Pani 2015). It is modified version of USLE model, which has issues of sensitivity (Renard et al., 1997). The 

RUSLE model has widely been used for its accurate estimation of average annual soil erosion. RUSLE estimates the 

average annual soil loss in an area using equation 5. 

𝑆𝐸 = 𝑅 × 𝐾 × 𝐿𝑆 × 𝐶 × 𝑃         [5] 

SE is the projected soil loss (t ha-1 year-1) in this equation, and R is the rainfall-erosivity index (MJ mm ha−1 

h−1 year−1). K is the predicted soil erodibility factor (t h ha MJ−1 ha−1 mm−1). C is the land use-specific cover 

management component; P is the conservation support practice element that includes slope length and slope 

steepness. For a detailed explanation of the parameters used for RUSLE modeling, readers can follow Behera et al. 

(2020) and Teng et al. (2018). 

2.3.5 Soil-water conservation suitability zone modeling for current and future scenario 

To identify robust soil-water conservation areas, topographic, hydrologic, climatic, land cover, and artificial 

structure-related parameters are required. The application of fuzzy logic and AHP to create SWPC model has not 

been done so far in any study, so the approach used in this paper is novel.  Physical as well as drainage parameters 

are strongly connected to soil and water conservational activities. DEM, Aspect, Slope, LULC, Topographic 

Wetness Index (TWI), drainage density (Dd), length of overland flow (Lg), basin relief (Bh), ruggedness number 

(Rn), and rainfall are all standard criteria for assessing soil-water suitability. The affluence, as well as the influence 

of these parameters, varies depending on the land characteristics. Also, the future conservation areas can be 

modelled using fuzzy logic as well as an analytical hierarchy process (AHP) under the scenario of climate change in 

terms of rainfall (2020-2040).  

Fuzzy logic based SWPC modelling 

The SWPC model was prepared by integrating eleven parameters using fuzzy logic and AHP methods. To 

implement fuzzy logic, the 'Membership function' and 'Fuzzy overlay' analysis were implemented in ArcGIS 10.4 

environment. There are two important aspects related to selecting a membership function (MF): the midpoint and 

spread. Initially, it is possible to choose from several membership functions, such as linear and non-linear fuzzy MF, 

including large, small, Gaussian, and linear. 

Non-linear membership function "MsSmall" (large membership values are assigned to a small input raster 

value), as well as "MsLarge" (small membership values are set to an enormous input raster value), were used to 



 
 

assess soil-water suitability for all the nine parameters. Furthermore, five distinct combinations of fuzzy operators 

are described in the literature (fuzzy OR, fuzzy AND, fuzzy Product, fuzzy Sum, and fuzzy Gamma). The fuzzy 

Gamma operator was used in this study because it is determined by all input layers' maximum and minimum 

membership values (Ki and Ray, 2014; Tafreshi et al., 2018). 

Analytical Hierarchical Process (AHP) based modeling 

Multi-criteria decision analysis, such as the Analytical Hierarchical Process (AHP), is a well-known method 

that analyzes different environmental parameters and involves ranking based on certain criteria to solve a very 

complex decision-making process (Saaty and Vargas, 2001). It is the most common method for delineating potential 

zones of various natural phenomena (Rahaman et al., 2022). The hierarchy of the parameters of SWPC was 

determined by its interdependence and interplay with other parameters, and the hierarchy was built from the top 

down. In the decision-making process, this strategy employs subjective and objective criteria (Baig et al., 2020). It 

also uses a pairwise comparison of a distinct parameter affecting the study area's soil and water. The pairwise 

comparison was done with the assistance of a parameter matrix and assigning weight to the parameter concerning 

their effect on other parameters stated in a numerical scale and consistency ratio (Saaty, 1980). Each parameter's 

weights were assigned using Saaty's scale (1-9) of relative relevance value. 

Estimation of important variables using Random Forest 

To calculate the importance of each soil erosion parameter for defining soil loss in the study area, the 

methodology of random forests (a classifier that combines many single decision trees) is used. In this study, we have 

used the two-variable importance measures of the RF algorithm: mean decrease in accuracy (MDA) and mean 

decrease in Gini (MDG). The Gini index measures node impurity; the mean decrease in Gini indicates an 

improvement in the splitting criterion, which measures the reduction in class impurity from partitioning the data set 

(Myles et al., 2004). At the same time, the mean decrease in accuracy is a permutation-based measure of variable 

importance derived from evaluating a variable's contribution to prediction accuracy. The mean decrease in Gini also 

measures of variable significance by permuting the values of each soil erosion controlling factor in the out-of-bag 

sample. The factors with the highest mean Gini importance in the model were primarily responsible for flood 

prediction in the study area.  

2.3.6 Method for identification of precise soil-water conservation areas using coupling coordination mechanism  

The coupling coordination degree model has been used to compute the agreement between two sub-systems 

through interaction and physical process. Therefore, in this research, the watershed prioritization, potential soil 

erosion, and soil-water conservation potential areas have been integrated using CCD model to find the agreement 

areas of all models. The application of CCD for identifying suitable model by considering three different system is 

totally new concept, also provides quite accurate results. The CCDM is derived using equation 5. 

𝐶 = √((𝑆𝑊 ×𝑊𝑃)/(𝑆𝑊 +𝑊𝑃)2)  -----------------------Eq. (5) 



 
 

Where SW is the comprehensive index of soil-water conservation level, WP is the watershed prioritization 

index, and C is the coupling degree value of the coupled system of soil-water conservation and watershed 

prioritization. The CCDM degree value ranges from 0≤ C ≤ 1, higher the value, more precise the soil-water 

conservation suitable zones and vice versa (Supplementary Table 3). The high priority watershed, areas with higher 

soil erosion rates, and areas with higher chances to be conserved potentiality can have the high value of coupling 

degree and coupling coordination degree. These areas should be monitored closely for implementing management 

plans. In this research, several sophisticated methods have been applied to identify different aspects for soil erosion 

conservation modeling. Therefore, to explain the methodology in a bird-eye-view, a hierarchical methodology chart 

has been given (Figure 2). 

 



 
 

 

Figure 2 Hierarchical methodological framework of the study 

3. Result 

3.1 Watershed prioritization modeling 

In the present study, the watershed prioritization has been done based on the parameters of areal aspect, linear 

aspect, and relief aspect. The parameters of these three morphometric aspects have been integrated at ArcGIS 

platform. The details of these aspects and computation of watershed priority model is given below: 

3.1.1 Areal aspect of sub-watersheds 

Morphometric analysis of the sub-watershed areal aspects reveals a dendritic drainage pattern strongly affected 

by the terrain of the study area. The urban watershed of Guwahati is divided into six sub-watersheds. The total 

drainage area of the watershed is 339.25 km2, while the perimeter is 922.16 km2, and the basin length is 42.81 km2, 

respectively. Further, the total length (Lu) of the urban watershed is 316.58 km. Deepor Beel (98.14 km2) is the 

largest sub-watershed of the 6, while Kalmoni was the smallest (8.75 km2). The highest and lowest perimeters 

among the sub-watersheds were Deepor Beel, and North Guwahati are 90.40 km and 25.52 km, respectively. 

Supplementary Fig. 1 (a), (b) & (c) depicts the variations in the basin area, perimeter and length. The basin length 

corresponds to the total area of the drainage basin, with a maximum length of 10.50 km observed in Deepor Beel, 

followed by Foreshore (Supplementary Table 4). Dd ranges from 0.84 km/km2 in North Guwahati to 1.43 km/km2 in 

the Kalmoni sub-watershed in the study area, indicating abundant vegetation and permeable surface material 

(Supplementary Table 4). The study shows that higher Fs values are observed in the southern part of the 

Brahmaputra River (Supplementary Fig. 1 e), primarily in sub-watersheds Kalmoni (3.89) and Foreshore (2.33) 

(Supplementary Table 4). As per the result, the textures of all the sub-watersheds are classified as very coarse, 

indicating the presence of vegetation-protected massive and resistant rocks in the study area resulting in low soil 

degradation (Supplementary Fig. 1 f). The Lg value varies from 0.59 to 0.35, which indicates that Lg moves over 



 
 

longer distance before joining the respective channel in the study area. Such a situation arises primarily due to a 

gentle slope gradient, abundant vegetation, more infiltration, and reduced runoff (Supplementary Fig. 1g). The Ff 

ranges from 2.87 to 0.17 for all watersheds (Supplementary Table 4). The sub-watershed of Bharalu (2.87) and 

Silsako (1.48) have high Ff. These values represent a rounded basin quickly, followed by high peak flow resulting in 

soil degradation condition (Supplementary Table 4). The Re value ranges from 0.47 to 1.11, with moderate to 

slightly steep slope, Kalmoni and Foreshore have the lowest Re, which indicate that the basin is elongated and has 

less chance of erosion. In contrast, Deepor Beel, Bharalu, Silsako, and North Guwahati have high Re values 

indicating a circular basin and will be more prone to flooding (Supplementary Fig. 1i). 

  

3.1.2 Linear aspect of sub-watersheds 

The study area is a fourth-order river based on Strahler's hierarchical ranking (Strahler, 1964). Silsako 

watershed is the only fourth-order (Supplementary Table 5), while most sub-watersheds are categorized into three 

orders. Out of the total stream in the watersheds, the 1st streams account for 59.4 percent (243 Nu), while the 2nd 

order accounts for 24.2 percent (99 Nu), the third-order accounts for 13.6 percent (56 Nu), and the fourth-order 

account for 2.68 percent (11 Nu) (Supplementary Fig.3a). Similarly, to stream number, first-order streams have 

accounted for 64.22 percent (212.8 km) of total length (Supplementary Fig. 2b). Supplementary table 5 clearly 

shows more information about the sub-watershed’s characteristics (e.g., area, perimeter, length, stream length, etc.). 

The Lsm of the sub-watersheds in the urban watershed of Guwahati ranges from 0.27 to 1.15. Supplementary Table 5 

clearly shows that the Lsm of a given stream order is greater than the lower order but less than the next higher order. 

The Rl in the urban watershed of Guwahati is highest for the third-order and second-order streams. The highest Rl is 

from second to third-order streams (73.64) in the Kalmoni sub-watershed (Supplementary Table 5). A high Rl 

indicates an increased susceptibility to soil erosion in the study area. In the present study, the sub-watersheds of the 

urban watershed of Guwahati have high Rb values ranging from 0.72 to 5.4, indicating early hydrograph peaks, flash 

flood potential, and soil erosion susceptibility. 

3.1.3 Relief aspects of sub-watersheds 

The highest and the lowest maximum height of basin mouth (Z) is observed in the sub-watershed of Silsako 

(352 meters) and Kalmoni (166 meters), respectively. While the highest and lowest minimum height of basin mouth 

(z) is observed in Bharalu (0.00 meters), Silsako (0.00 meters), and Deepor Beel (-10.00 meters) above mean sea 

level, respectively (Supplementary Table 6). The more the basin mouth rises, the more vulnerable the area becomes 

to soil erosion. Supplementary Fig. 3 a & b shows the variation in relief across the sub-watersheds. The highest 

relief is observed in the sub-watershed of Silsako (352 meters), while the lowest is observed in Kalmoni (166 

meters). Rh values in the urban watershed range from 28.17 to 83.33 (Supplementary Table 6). In the study area, 

sub-watersheds with high relief features and steep slope gradients have high Rh values and more susceptibility to soil 

degradation, while regions with low relief and a gentle to uniform slope have low Rh (Supplementary Fig. 3d). The 

Rn of the watersheds is shown in table11. Rn in this study ranged from 0.24 to 0.39. The ruggedness values were 

highest in the Silsako sub-watershed and lowest in the Kalmoni sub-watersheds (Supplementary Fig. 3e). It suggests 



 
 

that the Silsako sub-watershed (0.39) is more vulnerable to soil erosion than the others (Asfaw and Workineh, 2019; 

Tiwari and Kushwaha, 2021). 

3.1.4 Computation of watershed prioritization 

Supplementary Table 7 summarizes the Pearson correlation coefficient (r) between all the morphometric 

parameters. According to the findings, 19 parameters had very high positive correlations (with r greater than 0.70). 

In contrast, we discovered 17 negative correlations with a high significance level (at 0.05 level of significance 

level). In addition, it is observed that 14 parameters that have no significant correlation with each other (below 

0.10). Furthermore, the analysis discovered that seven morphometric parameters, have significant correlations, four 

are associated with areal aspects (drainage density, drainage texture, stream frequency, length of overland flow), and 

three are associated with relief aspects (ruggedness number, basin relief, and height of basin mouth). Although these 

correlations permit for recognition of high and effective relationships amongst the parameters, they do not yet 

qualify for the grouping of specific parameters into components and the assignment of physical significance. PCA 

was used in the present study because there were many correlations among these morphometric parameters. PCA 

helped determine the morphometric parameters with a more significant influence on watershed behavior. 

Supplementary Table 8 depicts the various morphometric parameters analyzed by PCA methods that influence the 

soil erosion in the study area. According to the results, the first five principal components (PC01, PC02, PC03, 

PC04, and PC05) had a total variance of 100%. But alone, PC01, PC02, and PC03 account for 88% of the total 

variance (Supplementary Table 9). The result showed a high correlation of PC01, PC02 and PC03 with the 

parameters. The analysis also shows that PC01 is associated with linear parameters e.g. Nu (0.744 & 0.655), Ls 

(0.748 & 0.611), Lsm (0.854 & 0.085) and Fs (0.747 & 0.655). At the same time, PC02 has a high correlation with 

basin perimeter, Dd, and Dt, and moderately with Ls, basin area, and basin length, indicating that these parameters are 

associated with the continuous soil erosion process of the watershed over time. Also, it was observed that PC03 has 

a suitable correlation with Re and Ff, along with a minimum height of basin mouth (Supplementary Table 8). The 

PCA determined that basin perimeter, Dd, Fs, Dt, Lg, Ff, Re, and Rn were relevant variables to assess the watershed 

prioritization of the study area (Table 1). These variables were chosen due to their highest values correlated with the 

three principal components. 

Table 1 Watershed prioritization based on morphometric parameter 

Sub-

watersheds 

Basin 

perimeter 

Dd Fs Dt Lg Ff Re Rn CP NP GP 

Deepor Beel 1 3 6 4 3 4 4 2 3.375 3 Medium 

Bharalu 3 2 5 3 4 1 1 3 2.75 1 High 

Foreshore 2 5 2 6 2 5 5 5 4 5 Low 

Silsako 4 4 3 1 5 2 2 1 2.75 2 High 

Kalmoni 5 1 1 5 6 6 6 6 4.5 6 Low 

North 

Guwahati 

6 6 4 2 1 3 3 4 3.625 4 Medium 

Where, Dd drainage density, Fs stream frequency, Dt drainage texture, Lg length of overland flow, Re elongation ratio, Rn Ruggedness number, 

CP compound parameter, NP priority rank and GP priority degree  



 
 

Table 1 shows the sub-watersheds CP, NP, and GP based on basin perimeter, Dd, Fs, Dt, Lg, Ff, Re, and Rn. 

Bharalu, Silsako, Deepor Beel, and North Guwahati have the highest and medium priority ranks. On the other hand, 

the priority rank of sub-watershed Foreshore increases due to the urban areas' presence and scarcity of vegetation 

cover (Supplementary Fig. 4). Supplementary table 10 shows the priority index of NDVI-estimated vegetation 

cover. The degradation of the sub-watersheds caused by concentrated flow channels and downslope flow of water is 

described by NDVI. Based on vegetation NDVI, the highest priority is allotted to North Guwahati and Foreshore 

due to the lowest vegetation cover in these sub-watersheds. However, the rank of Bharalu and North Guwahati has 

decreased when seen in the result of ranking based on morphometric parameters than that of NDVI ranking. The 

NDVI indicates that the vegetation cover in these sub-watersheds is at its peak. Finally, the watershed's final 

prioritization (GPf) demonstrates that sub-watershed Silsako and Bharalu have very high susceptibility to soil 

degradation with NPf 1 and 2, respectively. In contrast, Deepor Beel and North Guwahati have a high susceptibility 

to soil erosion with NPf  3 and 4 (Table 2). Furthermore, table 2 shows the rank of priority and final priority for sub-

watersheds as a component of morphometric parameters and NDVI values. The final priority (GPf) analysis clearly 

states that the highest priority comprises Silsako and Bharalu, followed by Deepor Beel and North Guwahati (Fig. 

3). The priority rank clearly shows the degradation condition of the sub-watersheds. The slopes are steeper in the 

sub-watersheds with high-priority ranks, and the profiles constitute deeper channels. With the descent of the slope 

degree of the sub-watersheds, the steepness, depth of the channel profile, and erodibility of the areas also reduce. 

Table 2. Watershed prioritization based on final priority index 

Sub-watersheds CPf NPf GPf 

Deepor Beel 3.4375 4 Medium 

Bharalu 3.25 2 High 

Foreshore 3.75 5 Low 

Silsako 3.125 1 High 

Kalmoni 4.125 6 Low 

North Guwahati 3.3125 3 Medium 

Where, CP compound parameter, NP priority rank, GP priority degree, f mean morphometry, NDVI and final 

 

 



 
 

Figure 3 Watershed prioritization map of the urban watershed of Guwahati 

3.2 Estimation of potential soil erosion with future insight 

In the present study, we estimated potential soil erosion using the RUSLE model for the current scenario and 

under the climate change scenario for 2040. Therefore, to do so, we prepared future climatic change-related 

parameters, like rainfall for 2020-2040, under RCP2.6 and RCP8.5. Figure 4 shows the annual average rainfall data 

for the current time and 2040 for RCP2.6 and RCP8.5. The maximum rainfall for the present scenario (2000-2018) 

is 186.7 mm, and the minimum is 156 mm. but, maximum and minimum rainfall will increase by 42% and 27% in 

future (2040) if we consider both methods (RCP2.6 and RCP8.5) based on the minimum and maximum 

concentration of greenhouse gases (Figure 4b and 4c).  

 

Fig. 4 Rainfall Modelling (a) Present rainfall (b) Rainfall 2.6, and (c) Rainfall 8.5 

In the present study, we employed the RUSLE model to estimate soil erosion in the present and future 

scenarios using five factors (K, C, P, LS, and R) (Figure 5). Figure 5a shows that the K factors vary from 0.02 to 

0.212 tons Ha MJ−1mm−1 across the watershed. High soil erodibility indicates the higher potentiality of soil erosion 

and vice versa. Also, the sub-watersheds like Silsako, Bharalu, North Guwahati, and Foreshore show very high to 

high K factors, as these regions have sand-dominated soil texture. On the other hand, Deepor Beel has very low K 

values, indicating lower soil erosion sensitivity. In the case of the LS factor, the value ranges from -0.61 to 46.23. 

High values indicate higher chances of eroding and vice versa (Figure 5b). The value of the P factor ranges from 0.5 

to 1, while low values imply higher sensitivity to be eroded (Figure 5c). The value of the C factor ranges from 0.01 

to 0.35, where a low value indicates a higher potentiality to be eroded by rainfall and runoff. Most of the Silsako and 



 
 

Bharalu sub-watershed areas have been covered by low values of the C factor, which indicates that these regions are 

highly susceptible to soil erosion. The present study computed the R factor for current and future scenarios (2040) 

using RCP2.6 and RCP8.5. The R factor of the current scenario ranges from 25.84 to 34.49 MJ mm/ha/year. Higher 

R factor or rainfall erosivity can have higher erosional ability and vice versa. Very high and high values of the R 

factor have been observed in the Silsako, Bharalu, and Foreshore. Similarly, the R factor for 2040 (RCP8.5) will be 

increased at 42 MJ mm/ha/year, which can cause severe damage to the soil. 

 

Figure 5 RUSLE parameters (a) K factor (b) LS factor (c) C factor (d) P factor (e) Present R factor (f) R factor at 

RCP2.6 (2040), and (g) R factor at RCP8.5 (2040) 



 
 

The RUSLE models were created after integrating all the parameters in the raster calculator of ArcGIS (version 

10.8) software. The final RUSLE models have been generated for three time periods to estimate soil erosion. The 

current RUSLE model shows that the soil erosion of the study area ranges from 140 to 181.64 tonnes hectare per 

year. The RUSLE model for 2040 (RCP8.5) estimates the soil erosion ranges from 305 to 332 tonnes hectare per 

year. While, the RUSLE model for 2042.0 (RCP2.6) estimates the soil erosion ranges from 267 to 302 tonnes 

hectare per year (Figure 6). Therefore, the models show that the soil erosion will be increased manifold in the future. 

After deriving the RUSLE soil erosion models, we classified the models using Jenk's natural break algorithms into 

five classes: very high, high, moderate, low, and very low. Very high and high soil erosion zones have been 

identified in Silsako, Bharalu, North Guwahati, and Foreshore. While very low soil erosion zone has identified in 

Kalmoni sub-watershed and some parts of Deepor Beel. 

 

 

Figure 6 Estimation of soil erosion using RUSLE Models for (a) current scenario (b) future scenario (2040) 

(RCP2.6), and (c) future scenario (2040) (RCP8.5) 

3.3 Proposing potential soil-water conservation models for current and future scenarios 

Estimating and identifying the degree of soil erosion is insufficient and is just for quantification and 

visualization. As a result, the high priority region should be designated to avoid soil erosion. Hence, we also 

proposed a fuzzy logic and AHP-based model for detecting potential soil-water conservation zones for the present 

and the future (by 2040) under a climate change scenario to minimize future soil erosion. Topographical, 

hydrological, and land cover-related parameters were used to create the SWPC model (Supplementary Figures 5 and 

6). Since each parameter has a distinct dimension and direction, all parameters were normalized before modelling. 



 
 

As a result, among various membership functions, we used two fuzzy membership functions in this study: MsLarge 

(Large considers large values of the parameters, would have a low degree of membership with the destination (soil 

conservation), and MsSmall (small considers small value of the parameters, will have a high degree of membership 

with destination). After that, we used fuzzy operator, like GAMMA 0.9 to integrate all the fuzzified parameters to 

create fuzzy logic based SWPC model. The value of SWPC model ranges from 0 to 1, where close to 1 indicates 

highly suitable areas for conservation and vice versa. Then, we used Jenkin’s natural break algorithm to classify the 

SWPC model into five classes, such as very high, high, moderate, low, and very low soil conservation zones.  

Figure 7 shows the locations of the sites with the highest soil-water suitability using fuzzy logic and AHP. 

According to the fuzzy logic present SWPC, most of the study area is in a very poor soil-water conservation 

potential zone. Approximately 125.82 km2 of the total SWPC area is in the moderate suitability zone, followed by 

the low suitability zone (73.51km2). At the same time, high (46.92 km2) and very high (54.40 km2) suitability zones 

cover a sizable area (Figure. 7a). In RCP 2.6 (129.98 km2) and RCP 8.5 (128.99 km2), the area under the moderate 

SWPC increased (Fig. 7b-c). In terms of sub-watersheds, the three SWPC maps show that Deepor Beel, Kalmoni, 

and North-Guwahati have the lowest potential for soil-water conservation, followed by Kalmoni and North-

Guwahati. On the other hand, the highest SWPC is found in the Bharalu and Silsako sub-watersheds, with nearly 

80% of the area falling into the high and very high SWPC zones. Also, the three maps show that around 41% of the 

total area (Figure 7a-c) is suitable for moderate SWPC, while 33% of the watershed is compatible with high and 

very high SWC sites. When the final fuzzy models were compared to the watershed prioritization map (Fig. 3), it 

was obvious that the SWPC maps roughly corresponded to the prioritization map. For example, the sub-watersheds 

of Bharalu and Silsako had high priority values on the watershed prioritization map (Fig. 3), corresponding to higher 

values on the soil-water conservation maps (Fig. 7a). To compare the findings of fuzzy logic, we applied MCDM 

technique (AHP) to prepare SWPC models for current to future periods. We used twelve parameters to compute 

pairwise comparison matrix of AHP for generating weights of each parameter. We obtained weights for all 

parameters, such as drainage density (0.85), ruggedness number 0.75), basin relief (0.4), Lg (0.25), LULC (0.2), 

TWI (0.18), elevation (0.15) and so on. The CR value for this matrix was 0.08. Then, the weights have been 

assigned to the parameters in raster calculator to produce the SWPC models under current and future scenarios. The 

generated SWPC model for current scenario shows 81.2km2 as low suitability zone, and 49km2 as very high SWPC 

zones (Figure 7d). Similarly, the AHP based SWPC models under RCP2.6 and 8.5 scenarios showed quite similar 

results like fuzzy logic based SWPC models (Figure 7e & f). 

 

 



 
 

 

Figure 7 Soil-water suitability zones for (a, d) Present SWPC (b, e) SWPC in 2040 (RCP2.6), and (c, f) SWPC in 

2040 (RCP8.5) using fuzzy logic and AHP 

The variable importance for SWPC model needs to be assessed because the management plans should be 

carried out based on the important variables. Therefore, this study used random forest (RF) based sensitivity 

technique to compute the variable importance to the model (Figure 8). In the present study, we used this sensitivity 

technique on the fuzzy logic based SWPC model because we consider it as base model of this study. The figure 

shows that drainage density has highest influence to the model, followed by ruggedness number, aspect, TWI, basin 

relief, and elevation. Length of overland flow has lowest influence to the output, followed by LULC, and NDVI. 

 

Figure 8 Computation of importance variable for current SWPC model using RF based MDA and MDG technique 

3.4 Coupling coordination degree mechanism for identifying accurate soil-water conservation zone 



 
 

Figures 9(a-c) and 10(a-c) depict the degree of coupling coordination between watershed prioritization, soil-

water conservation and soil loss in the urban watershed of Guwahati. It identified the agreement areas among three 

sub-systems based on coupling interaction. Therefore, the agreement areas have been quantified in terms of coupling 

degree and coupling coordination degree model. Higher the agreement indicates high value of three sub-systems, 

which reflects the high priority zones and vice versa. In general, the coupling coordination degrees in the region are 

classified into very poor, poor, medium, high, and very high. Figure 9a shows that the high agreement value for 

coupling degree model under present scenario has been observed in the sub-watersheds of Bharalu and North-

Guwahati. In comparison, the Deepor Beel and Kalmoni sub-watersheds have very low coupling degrees. However, 

RCP 2.6 projections for 2040 show a moderate coupling degree for Deepor Beel and a very poor coupling degree for 

Silsako (Figure 9b). Furthermore, the high agreement areas for coupling degree model under RCP 8.5 scenario has 

observed a slight difference from the mentioned two models (Figure 9c). Foreshore and North Guwahati have the 

highest coupling degree, as shown in Fig. 9c. The coupling models clearly show that the maximum extent of the 

urban watershed has very high to moderate coupling. The coupling degree for all the sub-watershed has varying 

agreement values in all three models (Figure 9a-c). Although, a very poor coupling degree is primarily observed in 

the sub-watershed of Deepor Beel and Kalmoni, indicating a serious imbalance between watershed prioritization, 

soil-water suitability and soil loss. 

 

Figure 9 Coupling degree between watershed priority, SWPC and RUSLE model for (a) present scenario (b) future 

scenario at RCP 2.6 (2040), and (c) future scenario at RCP 8.5 (2040) of the urban watershed of Guwahati 

 

Further analysis of the coordination degree is required to comprehend the coordinated relationship between 

subsystems. As a result, we calculated the coordination degrees of the six sub-watersheds based on the present RCP 

2.6 and RCP 8.5 and classified the coordination degree values into ten classes, followed by Liu et al., (2018) (Figure 



 
 

10a-c). The CCD value ranges from 0 to 1, suggesting the lowest to the highest level of coordination. Also, in the 

present coordination degree model, the highest coordination (0.8 ≤ C ≤ 1) is observed in three sub-watersheds: 

Silsako, North Guwahati, and some parts of Bharalu. Due to increased soil loss, these sub-watersheds also have high 

prioritization and are primarily suitable for soil-water conservation activities (Figure 9a-c). On the other hand, most 

parts of the Deepor Beel sub-watershed have the lowest coordination degree (0 ≤ C ≤ 0.2) in all three maps, 

indicating a severe imbalance in the study area between soil-water suitability, soil loss, and watershed prioritization. 

Figure 9a also depicts that the coordination of the variables stretched a higher degree to the northern, northeastern 

and central portions of the watershed due to extreme urbanization. Due to the existing vegetation and water 

resources, the southwestern region of the urban watershed exhibits a lower degree of coordination (0 ≤ C ≤ 0.3). 

Therefore, the areas with high coupling and coordination degrees should be monitored continuously. Also, 

appropriate soil-water conservation management plans should be proposed and implemented to mitigate soil erosion. 

 

Figure 10 CCD model between watershed priority, SWPC and RUSLE model (a) Present (b) RCP 2.6 (2040), and 

(c) RCP 8.5 (2040) of the urban watershed of Guwahati 

 

4. Discussion 

In the present study, we intended to build a highly robust model of potential soil-water conservation, which can 

provide precise soil-water conservation areas. To do so, we first prioritized the sub-watersheds through advanced 

statistical techniques, then measured soil erosion using the RUSLE model for current and future scenarios based on 

RCP2.6 and RCP8.5, then proposed a fuzzy logic-based potential soil-water conservation zone. Finally, we 

introduced coupling coordination mechanism among watershed priority, soil erosion model, and potential soil-water 

conservation model for present and future scenarios to identify precise areas for soil-water conservation (Fig. 2). 

According to the author's knowledge, this is the first comprehensive analysis considering different dimensions and 



 
 

integrating all aspects through standard methods to identify the soil-water conservation areas. In this study, six sub-

watersheds in the urban watershed of Guwahati, Assam, were delineated to prioritize watersheds based on 

morphometric parameters and NDVI values. The assessment of potential soil erosion vulnerability necessitates the 

consideration of several drainages and relief parameters. Morphometric properties significantly influence runoff and 

infiltration capacity (Pathare and Pathare, 2021; Hembram and Saha, 2020). The urban watershed of Guwahati 

covers a total area of 339.25 km2. It has a perimeter of 42.81 km2 km and is textured with 409 streams. First-order 

streams are approximately 243, accounting for 59.4 per cent of all streams, indicating the catchment's erosional risk. 

Nineteen morphometric indices (linear, areal, and relief parameters) (Supplementary Table 1) were encompassed to 

prioritize six sub-watersheds based on erodibility risk. Furthermore, the findings of this study state that the higher 

values of Fs are mostly found in the southern sub-watersheds of the Brahmaputra River, primarily in the sub-

watersheds Kalmoni (3.89) and Foreshore (2.33), indicating soils prone to erosion and degradation (Supplementary 

Table 4). The Nilachal hills on the sub-watershed of Foreshore have massive landslides, soil erosion, and urban flash 

floods (Hussain and Goswami, 2016). Due to increased urbanization, dense vegetative cover, primarily in the hills of 

the Guwahati Metropolitan Area (GMA), has degraded at an alarming rate (Borthakur and Nath 2012; Patowary and 

Sarma, 2018). However, the linear aspects of an area directly correlate with soil erosion, with a higher value 

indicating greater erodibility. Similarly, the sub-watersheds of Guwahati's urban watershed have high Rb values 

ranging from 0.72 to 5.4. These high Rb values are connected to high peak flows, the potentiality of flash floods 

(Siddiqui et al., 2020), and susceptibility to soil erosion, all of which are influenced by geomorphological, as well as 

lithological conditions such as deformation forms, tectonism, as well as the mass movements (Kamberis et al., 

2012). In the present study, PCA was very helpful in categorizing variables with physical relevance and 

differentiating morphometric aspects with little influence. The result shows that the first principal component 

(PC01) is linked to the linear parameters. In contrast, the second (PC02) is related to the watershed's areal aspects, 

and the third component (PC03) is directly correlated with the relief parameters. The values of PC01 and PC02 for 

the sub-watersheds suggest that soil erosion, as well as run-off, can be associated with linear features of 

morphometric study (e.g., Nu (0.744 & 0.655), Ls (0.748 & 0.611), Lsm (0.854 & 0.085), and Fs (0.747 & 0.655). Our 

result aligns with what Kamberis et al. (2012) found; components like soil characteristics, LULC, and geology are 

highly influenced by parameters such as Dd and Fs. Additionally, using these morphometric parameters combined 

with NDVI values improves the quality of watershed prioritization results. The morphometric parameters and the 

NDVI-estimated vegetation cover result are shown in supplementary table 10. The degradation of a watershed 

caused by concentrated water in channels and Lg on hillslopes is described by morphometry and NDVI, respectively. 

These sub-watersheds are very highly urbanized and often face scarcity of vegetation cover, leading to soil erosion 

susceptibility (Fig. 3). Hence, proper management of these sub-watersheds is necessary to safeguard against soil and 

water degradation in these areas. The present study results are also likely to help the local government and decision-

makers identify the priority of the sub-watersheds that require prompt actions on soil degradation, management, and 

conservation practices in the study region.  

Furthermore, based on the combined input fuzzy membership values, three SWPC maps are created based on 

present and future scenarios at RCP 2.6 and RCP 8.5. The final output shows the locations of the sites with the 



 
 

highest soil-water conservation suitability (Fig.7a-c). According to the three models, approximately 41% of the total 

area (Figure 7a-c) is suitable for moderate SWPC. In contrast, 33% of the watershed is compatible with high and 

very high SWC sites. According to the present SWPC, most of the study area is in a low soil-water conservation 

potential zone. The moderate suitability zone covers approximately 125.82 km2 of the total SWPC area, followed by 

the low suitability zone (73.51km2). Simultaneously, high (46.92 km2) and very high (54.40 km2) suitability zones 

also cover a large area (Fig. 7a). Moreover, the area covered by the moderate SWPC increased in RCP 2.6 (129.98 

km2) and RCP 8.5 (128.99 km2). Deepor Beel, Kalmoni, and North-Guwahati have the lowest potential for soil-

water conservation, according to the three SWPC maps, followed by Kalmoni and North-Guwahati, due to the 

existing vegetational resources and low urban development (Nath et al., 2021). The coupling maps also depicted that 

the SWPC maps roughly corresponded to the soil erosion and sub-watershed prioritization maps. The sub-watershed 

of Bharalu and Silsako had high priority values, which resembled higher values on the soil-water conservation maps 

and the soil loss models. The results suggest that the sub-watershed with the maximum likelihood of soil erosion is 

the zones that need the most attention in soil-water conservation practices. Moreover, the three-coupling 

coordination degree model (CCDM) as per the present, and RCP 2.6 and RCP 8.5 indicates that the coupling degree 

is most significant in the Bharalu and North-Guwahati sub-watersheds. Deepor Beel and Kalmoni sub-watersheds, 

on the other hand, have very low coupling degrees. On the other hand, RCP 2.6 projections for 2040 show a 

moderate coupling degree for Deepor Beel and a very poor coupling degree for Silsako. In addition, the coupling 

degree for RCP 8.5 has changed and depicts a high coupling degree in Foreshore and North Guwahati (Figure 8a-c). 

Deepor Beel, on the other hand, has the lowest coordination degree, indicating a severe imbalance in the study area 

between soil-water suitability, soil loss, and watershed prioritization. On the other hand, Deepor Beel's lowest 

coordination degree suggests a severe imbalance between soil-water suitability, soil loss and watershed prioritization 

in the study area. Figure 9a-c clearly shows that due to extreme urbanization, the coordination of the variables 

extended to a greater extent to the northern, northeastern, and central parts of the Guwahati urban watershed (Pawe 

and Saikia, 2017). On the other hand, a lower degree of coordination is observed in the southwestern region of the 

urban watershed. The findings reveal several notable characteristics in the analyzed relationships. Also, for future 

development, there is a need to promote the management of sub-watersheds and their soil-water resources at the 

sub-watershed level. 

5. Conclusion 

In this study an attempt has been made to identify precise and mathematically robust areas for potential soil-

water conservation through coupling mechanisms in the urban watershed of Guwahati, Assam. To accomplish this, 

we used advanced statistical approaches to select the sub-watersheds, and then evaluated soil erosion using the 

RUSLE model for present and future scenarios based on RCP2.6 and RCP8.5, and lastly proposed a fuzzy logic-

based perspective soil-water conservation zone. Finally, we established a coupling-coordination mechanism for 

present and future scenarios between watershed priority, soil erosion model, and potential soil-water conservation 

model to identify exact sites for soil-water conservation. The result shows that the sub-watersheds Silsako and 

Bharalu is highly susceptible to soil erosion, followed by Deepor Beel and North Guwahati. This is because these 



 
 

sub-watersheds are highly urbanized which led to decrease in vegetation cover, making the sub-watersheds 

vulnerable to soil erosion. Thereafter, we estimated the soil erosion using RUSLE model for current (2020) and 

future scenario i.e. 2040 (RCP2.6 and RCP8.5). According to present situation by applying RUSLE model, soil 

erosion in the study area varies from 140 to 181.64 tonnes per hectare per year but by 2040, the study predicts soil 

erosion to a tune of 267 to 302 and 305 to 332 tonnes per hectare per year by using RCP2.6 and RCP8.5 

respectively.  As a result, it is seen that that soil erosion will fast increase in future.  Then, we proposed fuzzy logic-

based soil-water conservation suitability zones based on topographic, hydrologic, land cover, and climatic variables 

for current and future scenarios (2040) at RCP2.6 and RCP8.5. The result signifies high soil-water potential zones in 

the sub-watersheds of Silsako, Bharalu, and North Guwahati. Whereas, Deepor Beel sub-watershed shows least 

potentiality for conservation due to high urban development in the region in recent decades. Finally, we identified 

the precise areas that need to be conserved for soil-water erosion for current and future scenarios (2040) at RCP2.6 

and RCP8.5 based on coupling mechanism with the help of watershed priority model, soil erosion models, and soil-

water conservation suitability models. Moreover, when the final SWPC and soil erosion models for current and 

future scenarios were compared to the watershed priority map with the CCDM model, extremely accurate 

conservation areas for current and future scenarios were determined. Lastly, the degree of coupling and coordination 

reflected the intensity of cooperative development in the study area. Appropriate measures to reduce soil erosion and 

activities are required in these sub-watersheds to safeguard the remaining fertile land. To the author's knowledge, 

this is the first comprehensive research that considers several dimensions and incorporates all elements using 

standard approaches to identify soil-water conservation zones. This research proposes a novel strategy for 

identifying sites with high-priority soil-water conservation in urban watersheds. The outcome of this may widen 

research areas as a reference for future studies on assessing soil erosion in urban watersheds with similar geographic 

conditions. The outcome may help decision-makers to prepare sustainable urban development plans and 

policies. Although this research provides several scientific insights, it has some limitations too, which need to be 

done in the future research. This research used moderate 30 m spatial resolution satellite imageries, but by using 

higher resolution images like 10 m Sentinel-2 data we may get micro level soil erosion zones. Further, the sensitivity 

analysis may be improved by employing deep learning-based sensitivity and uncertainty analysis.  
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