
EasyChair Preprint
№ 10457

Analysing and Alerting on Application Logs
Within Kubernetes Infrastructure

Danila Koryugin

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

June 28, 2023

Analysing and alerting on application logs within Kubernetes
infrastructure

Danila Koryugin
University of Twente

Drienerlolaan 5, 7522 NB Enschede
The Netherlands

d.koryugin@student.utwente.nl

Abstract

Software applications designed as a set of micro-services
constantly require supervision. Logging of applications can
help development teams explore and discover new insights in
the workflow within micro-services, in addition to errors,
exceptions, mistakes, and inefficiencies. Kubernetes is the
most popular technology to maintain, manage and work with
micro-services. Nevertheless, Kubernetes technology lacks in
ability to effectively and efficiently provide logging
information to the end-users. It is worth mentioning that
Kubernetes has its logging tools, however, they are inefficient
and not representative to obtain useful and insightful
information. To cope with this, there exist various solutions to
provide powerful logging capabilities. However, in this paper
main focus will be on two of the most popular stacks of
logging solutions that can also be integrated into Kubernetes
infrastructure, namely Elastic stack and PLG stack with
Prometheus. In addition to logging analysis, it is also necessary
to have an opportunity to alert on these logs based on specified
rules, e.g. alert on errors. The goal of this research paper is to
understand which stack is the most suitable for providing
application logging within Kubernetes infrastructure based on
chosen metrics for a Java logger application, as well as define
which stack is more relevant in terms of implementation based
on a literature review.

Keywords
Kubernetes, Logging, ELK stack, Elastic search, PLG stack,
Loki, Grafana, K8s, Elastic Stack, Docker, Promtail, Logstash,
Kibana, Prometheus

1. Introduction

Software applications play a huge role in people’s lives. Since
the beginning of software development, developers were
focusing on building monolithic applications, which [1] have a
single code base that includes multiple services. These services
can communicate with external systems or consumers via
different interfaces like Web services, TCP connection, and
REST API, as well as communicating with each other, for
instance, web application service most of the time requires
database service to store data. However, with the growth of
companies providing more and more software solutions, the
need for faster and more efficient development became
extremely important. In addition to switching from a more
conservative development method (Waterfall) to iterative and
[2] with emphasis on responding to change over following a
plan (Agile), and focusing on continuous integration and
continuous development (CI/CD), companies tend to switch
from monolithic software to micro-services. That is where
Kubernetes technology appears as one of the best for managing
and scaling micro-services applications.

Kubernetes is [3] an open-source system for automating the
deployment, scaling, and management of containerised
applications. Nevertheless, especially with Agile iterative
development, it is necessary to supervise the state of the
services, such as discovering potential errors, exceptions, the
overall behaviour of a micro-service application, and other
important information, that would help development teams to
understand what should be done to improve or fix the services.
This process is called logging. Kubernetes is a very popular
technology, but there is no unified solution for providing an
opportunity to effectively, efficiently, and easily apply logging
technologies in its infrastructure to analyse and store
application logs. Although Kubernetes has a built-in solution
for gathering such data, e.g. [10] writing to standard output and
standard error streams, it does not provide the possibility to
process these logs, filter, cluster, and visualise them. To cope
with this, there exist various solutions, and the most popular
are [4] Elastic stack (Elastic search, Logstash, Kibana,
Metricbeat) and the [5] PLG stack (Promtail, Loki, Grafana)
with Prometheus. These approaches can help enhance working
with logging, help to find useful and insightful patterns, and
explore application bottlenecks, errors, exceptions, and
inefficiencies. Moreover, these stacks provide opportunities to
alert on application logs to the end-user, the best examples
would be notifying users in Slack, Jira, and Email.
However, the application of the aforementioned logging tools
and technologies is popular among DevOps developers and in
general among programmers, it lacks scientific research. The
goal of this research paper is to analyse and compare these
stacks. The main focus of this research will be on the
implementation of both stacks within Kubernetes infrastructure
for a simple Java logger application on a physical device
MacBook Air 18. Moreover, the literature review analysis will
be conducted to discover which stack is more relevant in terms
of implementation for different use cases.

2. Background
2.1 Terminology

Before continuing with the problem statement section, it is
necessary to establish the terminology that will be used further
in this paper, so the reader not familiar with DevOps has an
idea of what was used during the research. Therefore, looking
ahead, in this section technologies used will be listed with their
tools and supported with respective documentation from
official sources. It is worth mentioning that in this section only
the description of technologies and tools will be observed, the
steps taken to implement them will be described in more detail
later in this paper.
The list of used technologies and tools:
• Docker
• Kubernetes
• ELK
• PLG & Prometheus

mailto:d.koryugin@student.utwente.nl

• Helm
• Java logger application

2.1.1 Docker

Docker [11] is an open platform for developing, shipping, and
running applications on a physical/cloud machine (here and
after physical/cloud machine will be referred to as the node). It
provides the ability to package the application called
containerisation. Docker consists of different objects, each
with its objective to make Docker work.

• Image is a read-only template with instructions for creating a
Docker container.

• Container is a runnable instance of an image. It can be
created, started, stopped, moved, or deleted using the Docker
API or CLI.

• Docker-compose is a tool for defining and running multi-
container Docker applications. In Docker-compose, a YAML
format file is used to configure the application’s services.

• Docker hub is a hosted repository service provided by
Docker for finding and sharing container images, as well as
pushing and pulling images.

2.1.2 Kubernetes

Kubernetes [3] or just K8s (here and after Kubernetes will be
referred to as K8s, official short name) was already defined in
the Introduction section. Here only the objects [12] used by
K8s will be described.

• Pod is a group of one or more containers, with shared storage
and network resources, and a specification for how to run the
containers. A Pod's contents are always co-located and co-
scheduled, and run in a shared context.

• Kube-proxy is a K8s network proxy that runs on each node.
This reflects services as defined in the K8s API on each node
and can do simple TCP, UDP, etc.

• Minikube is a lightweight K8s implementation that creates a
VM on a local machine and deploys a simple cluster
containing only one node.

2.1.3 ELK

ELK or Elastic stack [13] is a stack of logging solutions made
by Elasticsearch company. There exist different products,
however, in this paper, only 4 of them will be used.

• Elasticsearch is a distributed, RESTful search and analytics
engine capable of addressing a growing number of use cases.
Moreover, it centrally stores the data for lightning fast
search, fine-tuned relevancy, and powerful analytics that
scale with ease.

• Kibana is a free and open frontend application that provides
search and data visualisation capabilities for data indexed in
Elasticsearch and acts as the user interface for monitoring,
managing, and securing an Elastic Stack cluster.

• Logstash is a free and open server-side data processing
pipeline that ingests data from a multitude of sources,
transforms it, and then sends it to chosen stash.

• Metricbeat is a data shipper for collecting and shipping
various system and service metrics to a specified output
destination.

2.1.4 PLG & Prometheus

PLG stack [14] is a stack of logging solutions provided by
Grafana labs company. The company has various products,
however, in this paper only 3 will be used. In addition to that,

for purpose of retrieving the system metrics, Prometheus
technology [15] provided by SoundCloud company will be
used.

• Grafana is an open-source frontend application to query,
visualise, alert on, and understand data pipelined to it.

• Loki is a horizontally scalable, highly available, multi-tenant
log aggregation system inspired by Prometheus. It is
designed to be very cost effective and easy to operate.

• Promtail is an agent which ships the contents of local logs to
a private Grafana Loki instance. It primarily is able to
discover targets, attach labels to log streams, and push them
to the Loki instance.

• Prometheus is a free software application used for event
monitoring and alerting. It records metrics in a time series
database built using an HTTP pull model, with flexible
queries and real-time alerting

2.1.5 Helm

Helm [16] is a Kubernetes deployment tool for automating
creation, packaging, configuration, and deployment of
applications and services to Kubernetes clusters.

2.1.6 Java Logger application

Java logger application will be used for testing purposes and
represent the logs’ spamming application with different log
levels, namely info, warn, debug, and error, which is the most
popular and widely used. The program was created to spam
these logs with different chances of these logs appearing, thus
the probability of the log with info level is 50%, both warn and
debug levels are with a probability of 20%, and the error logs
are with a probability of 10%. Moreover, each level has its
number of times to be printed into the console log, namely info
- 100, debug - 50, warn - 30, and error - 10. The process
iterates infinitely until manually stopped with a delay of 5
seconds between each log’s print. There exist two applications,
with the same functionality for logging, but with different
configurations to connect to each stack.

3. Problem Statement

Software application development highly depends on logging
capabilities integrated into micro-services architecture. Finding
the right solution appears to be challenging and complex, as
existing solutions require different resources of a node, have
limitations on where they can be deployed, and require
substantive knowledge of the development team for proper
implementation.

The problem statement will lead to the following research
question:

What is the comparative performance for a Java logger
application and implementation relevance based on a
literature review for ELK and PLG stacks?

To answer this question, it is necessary to subdivide it into
smaller sub-questions. Each subquestion will explore the
problem statement in depth observed from different
perspectives, namely:

1. Is there a significant difference between stacks in terms
of performance for a Java logger application?

2. What is the prevalence and usage of the ELK stack and
PLG stack in various research papers, and how do they

https://kubernetes.io/docs/concepts/containers/

compare in terms of their implementations across
different domains and use cases?

4. Research Methods

This research will be divided into 2 stages according to the
subquestions mentioned above. The results of each subquestion
will help to answer the research question of this paper. For the
1st subquestion, it is necessary to analyse the performance of
each stack deployed on a shared single physical node when
integrated into K8s infrastructure for a Java logger application.
To conduct such analysis, specific metrics of a physical node
are chosen, including a hypothesis to be tested with these
metrics with the aforementioned logger application, providing
a practical foundation for the research. For the 2nd
subquestion, a systematic literature review will be conducted to
understand the relevance of each stack based on different
implementation scenarios. A literature review will help to
discover which stack is more popular for various
implementations. Thus, the focus will be made on the number
of appearances in chosen databases, as well as providing an
overview of the most popular IT-related sectors where the
combination of K8s and either of the stack is used and
deployed. It is necessary to mention, that only research papers
will be used in the literature review and not the documentation
of mentioned technologies and tools.

4.1 Performance Analysis

The performance analysis will consist of 3 hypothesises per
each chosen metric to be tested. These metrics are essential for
understanding the differences between stacks in terms of
performance. The chosen metrics are:

• CPU Usage: measure the percentage of the total CPU
capacity that is being used when the stacks are deployed.
Lower CPU capacity indicates that the stack requires fewer
node resources.

• Indexing Latency: measure the time taken by each stack to
process and index log events. Lower latency indicates faster
processing and indexing capabilities.

• System Load: system load is a measure of the amount of
computational work that a computer system performs. In this
case, the processes are running K8s and stacks.

All three metrics are available in Kibana for the ELK stack and
in Grafana for PLG. Each hypothesis will be tested with a
suitable statistical method. For research, it is intended to
conduct hypothesis testing with two data sets. There exist two
methods, i.e. two-sample t-test and paired t-test. According to
Xu M., et. al. (2017), the two-sample t-test is used when the
data of two samples are statistically independent, while the
paired t-test is used when data is in the form of matched pairs.
The data sets that will be gathered are independent of each
other, as they will be gathered separately concerning the setup
that will be running at that time, i.e. setup for ELK or setup for
PLG. Thus, the method is chosen to be a 2-sample t-test.
Moreover, the advantage of this method is that it will help to
understand if there is a significant difference between each
stack in terms of each metric. All tests will be conducted using
the MacBook Air 18 as the node where stacks will be
integrated. The data samples will be gathered in a timeframe of
10 minutes.

4.1.1 Setup limitations

Before continuing with the setup section, it is necessary to
mention the limitations with which I coped during the
integration of stacks on my node. The initial plan was to
integrate each stack into the K8s minikube cluster and run the
Java application at the same time, as stacks are better in
performance and simplicity of integration when deployed
within the same environment. However, during the integration
of the ELK stack into the minikube, it was found that there are
not enough resources on my node, as it requires higher CPUs
and RAM for deployment. Therefore, it was decided to run the
stack as the Docker-compose file within Docker and connect it
to the Java application within the minikube. To keep the stacks
within the same environment, i.e. in Docker, it was decided to
also run PLG in Docker as a Docker-compose file. However,
during the implementation of Promtail and the lack of
documentation on it, as well as the time limitation given on
research, I could not perform the connection between the Java
application inside of the minikube to the Promtail running
inside Docker. To make PLG work and save time, it was
decided to run PLG inside the minikube, as was intended
initially.

4.1.2 Setup

In this section, the setup, made for testing the hypothesises,
will be shortly described to give an overview of how Docker,
K8s, and both stacks operate with each other.
First of all, the Docker desktop application was installed on the
node. After that, the K8s’ minikube Docker image was pulled
into the Docker using the CLI in the node’s terminal. As it was
mentioned in the limitations section, the ELK stack was
deployed within Docker via the Docker-compose file,
containing the configurations for Elasticsearch, Kibana,
Logstash, and Metricbeat. After that, using the Helm package
manager the configuration file containing configurations for
Grafana, Loki, Promtail, and Prometheus was deployed as pods
within minikube using the CLI in the terminal. After that two
different Java applications were dockerised (containerised
using Docker), pushed to the Docker hub repository created in
my name, and then pulled with the help of a configuration file
as an image to run a Java application pod within minikube. As
it was mentioned earlier, both applications have the same
functionality, but different configurations according to
Promtail and Logstash documentation. The connection
between Logstash and Java application was established using
the TCP protocol and managed by kube-proxy for service
discovery. The connection between Promtail and Java
application was established automatically, as Promtail and Java
application are running on the same cluster, i.e. minikube. The
deployment of each stack was successful, so Logstash and
Promtail can gather Java logs and pipeline them to respective
services.

4.1.3 Hypothesis Description

In this section the description of the hypothesis will be shown
and the steps to perform the testing procedure will be listed.
The testing procedure will be the same for each metric with
respective data sets.

1. Model: two data samples will be gathered while the
application is running within the given timeframe with
respect to each stack per each metric

2. Hypothesis:
 2.1 H0: the mean (µelk) metric’s value of ELK is
 equal to the mean (µplg) metric’s value of PLG
 (µelk = µplg)

 2.2 H1: the mean (µelk) metric’s value of ELK is
 significantly different from the mean (µplg) metric’s
 value of PLG (µelk ≠ µplg)
3. Significance level: ɑ = 5%
4. Notation:

• Sample size - nx
• Sample mean - x̄x
• Sample standard deviation - sx

5. Test statistic:
Pooled standard deviation is a measure of the variation, spread
or dispersion of the data around the mean (see Fig. 1), sp:

 Fig. 1 Pooled standard deviation formula

Test statistic is a statistical test that is used to compare the
means of two groups (see Fig. 2), t:

 Fig. 2 T test formula

6. Compute p-value: reject H0 = if the p-value ≤ ɑ = 5%
7. Draw statistical conclusion.

Each hypothesis per each metric will be calculated and the
results evaluated in the section 5.

4.2 Literature review

In this section literature review analysis will be conducted. The
purpose of the analysis is to explore which stacks are more
relevant in terms of practical implementation on various cases
and to provide an overview of these cases. This will help to
provide a theoretical foundation for the research. As it is was
mentioned before, the method is chosen to be a literature
review, as it will help provide a summary and synthesis of the
existing knowledge.

4.2.1 Search terms

To conduct a literature review it is necessary to state the search
terms. In this research, the focus is mainly on two aspects: K8s
and both stacks. Since the objective is to analyse existing
literature, a state which stack is more relevant in terms of
implementation, and in what are these cases, the search terms
would contain “Kubernetes or K8s and” any of the following
terms:

• ELK
• PLG
• Elasticsearch
• Logstash
• Kibana
• Promtail
• Grafana
• Loki
• Prometheus

4.2.2 Database Search

In order to locate the relevant research papers, the search was
conducted in the following databases: IEEE, ScienceDirect,
Wiley, and JSTOR. Moreover, the filters were limited to find
ing papers starting from 2014, the year when Kubernetes was
officially published as open-source software, and to research
papers written in English.

4.2.3 Inclusion & Exclusion criteria

The inclusion and exclusion criteria are defined to find papers
focused on the implementation of ELK or PLG within
Kubernetes infrastructure in IT-related sector (see Table 1).

 Table 1.

4.2.4 Screening process

The screening process was conducted with an emphasis on
inclusion and exclusion criteria and used the aforementioned
search terms. Moreover, to filter the gathered research papers
PRISMA [17] four-phase flow diagram will be used and a
research paper by Carrera-Rivera A. (2022) was used as an
additional guidance. All articles were imported into the
Mendeley software for screening.

Following the four-phase flow diagram, the following steps
were conducted (see Fig. 3). The search resulted in 177 articles
from the aforementioned search terms. After that, 69 papers
were deleted as duplicates. Next, the papers were assessed and
checked for eligibility based on inclusion and exclusion
criteria. Out of 108 papers that were left after removing the
duplicates, 76 of the papers were removed as assessed as not
eligible for this study. Therefore, only 32 papers will be
analysed in the literature review.

Inclusion criteria Exclusion criteria

Research must contain
only research articles

Research must exclude
conference proceedings,
news, documentations,
and book chapters

Research must contain an
example of either of stack
implementation within
K8s

Research must be done in
English

Research must be done
after 2014

Full-text is available

 Fig. 3 Four-phase flow diagram

5. Results
5.1 Hypothesis analysis results

In the next 3 subsections, the hypothesis will be tested for each
metric. The data gathered is shown in Appendix A at the end of
the paper. All calculations are made according to formulas
stated in the testing procedure. The result of hypothesis testing
is then discussed according to the results provided in each
subsection.

5.1.1 CPU Usage

First, it is necessary to state the variables.
For ELK we have:
• nelk = 10
• x̄elk = 40.72
• selk = 15.659

For PLG we have:
• nplg = 10
• x̄plg = 43.92
• splg = 11.701

Second, compute sp: sp = 13.822

Third, compute t: t = -0.517682

Lastly, as we intend to find if there is difference between
stacks, we find two-tailed p-value = 0.610984

According to the testing procedure, we defined the significance
level to be equal to 5% or 0.05. Since p-value = 0.610984 is
not less than the significance level, we fail to reject the null
hypothesis H0. Thus, we can say that there is no significant

difference between the ELK and PLG stacks in terms of CPU
Usage.

5.1.2 Latency Indexing

First, it is necessary to state the variables.
For ELK we have:
• nelk = 41
• x̄elk = 9.3956
• selk = 12.529

For PLG we have:
• nplg = 41
• x̄plg = 7.8802
• splg = 11.431

Second, compute sp: sp = 11.9925

Third, compute t: t = 0.572097

Lastly, as we intend to find if there is difference between
stacks, we find two-tailed p-value = 0.568860

According to the testing procedure, we defined the significance
level to be equal to 5% or 0.05. Since p-value = 0.568860 is
not less than the significance level, we fail to reject the null
hypothesis H0. Thus, we can say that there is no significant
difference between the ELK and PLG stacks in terms of
Latency Indexing.

5.1.3 System Load

First, it is necessary to state the variables.
For ELK we have:
• nelk = 17
• x̄elk = 23.0317
• selk = 6.3111

For PLG we have:
• nplg = 17
• x̄plg = 23.5705
• splg = 7.5003

Second, compute sp: sp = 6.9312

Third, compute t: t = -0.226644

Lastly, as we intend to find if there is difference between
stacks, we find two-tailed p-value = 0.822142

According to the testing procedure, we defined the significance
level to be equal to 5% or 0.05. Since p-value = 0.822142 is
not less than the significance level, we fail to reject the null
hypothesis H0. Thus, we can say that there is no significant
difference between the ELK and PLG stacks in terms of
System Load.

5.1.4 Overall results

After the conduction of the hypothesis testing with the stated
testing procedure using a two-sample t-test and from the results
of testing each metric, we can conclude that concerning the
chosen metrics, there is no significant difference between
stacks deployed on the shared physical node. Both stacks were
deployed independently and could not affect the performance
of each other during the data gathering. All the data were
gathered as mentioned above in a timeframe of 10 minutes.
The results were expected, as they were deployed on a shared
physical node with limited resources and a single cluster. In
addition, the stacks are similar in terms of approaches to
building a logging solution, i.e. search engines on non-

relational databases, using JSON format files for faster and
more efficient parsing, etc. Two of the chosen metrics are
related to the performance of the physical node when stacks
are deployed, and the latency metric is mostly related to the
processing powers of the stack itself. From the results, it is
seen that even for different kinds of metrics there is no
sufficient evidence that there is a significant difference
between stacks. Nevertheless, section 7 (Limitations) will
describe how various aspects of deployment could have
affected the results.

5.2 Literature review results
5.2.1 Usage overview

The analysis of the included research papers shows that all of
the papers after 2017, with the biggest rate of 30.03% were
published in 2021. All of these papers contain information on
the implementation of Kubernetes and either stacks or any
technology from these stacks. In the analysis, the results were
categorised into either the full stack or some of the
technologies from these stacks, or the mix of technologies
from both stacks. The analysis concludes that in 53.1% ELK
stack or any technology included in the stack was used, in
31.3% PLG stack or any technology included in the stack was
used including Prometheus, and in 15.6% the mix of
technologies included in both stacks were used (see Fig. 4),
which mostly was the mix of Elasticsearch and Prometheus. It
can be seen that in over a half of use cases, the ELK stack was
implemented for particular solutions.

Fig. 4 Pie chart of technologies used in papers

5.2.2 Stacks’ Implementation

In this section, the included research papers were analysed in
terms of the use cases in which the stacks were implemented.
The analysis showed that the use cases’ topics are extremely
diverse and capture different domains. The largest number of
papers were related to the Monitoring and Cloud-edge
Environment (3 papers per each). The next were Security
Architecture, Data Analysis, Networking, Blockchain, and
VMi Management (2 papers per each). Lastly, the use
cases‘ topics that were mentioned only once in the research
papers’ list and couldn’t be clustered further are Trigger
System (Physics related), Data Visualisation, Data
Management, Automatic DFD Extraction, Machine Learning,
Log analysis, Malware Exposure, Cloud Scheduling,
Cloudification Middleware, Workload Simulation, Integration
with Raspberry Pi, Auto Scaling System, and Science Platform

(Astronomy) (1 paper per each). From such a distribution, we
can derive possible patterns if there is any trend for a particular
stack usage for particular use case (see Table 2), use cases
mentioned only once will not be considered.

Table 2.

It can be observed from the table that the prevailing stack is
ELK. For instance, in Data Analysis-, Security Architecture-,
and Blockchain-related use cases the authors of the research
prefer using either a full ELK stack or a combination of ELK
products. In the case of PLG, it can be seen that this stack and
its products separately prevail in Monitoring-related use cases.
For the other use cases, it can be seen that there is no specific
preference over the stack, so both ELK and PLG products were
used to implement particular use cases.

To summarise, the literature review was conducted, and out of
177 located research articles, 32 were eligible to be analysed
concerning the inclusion and exclusion criteria. Based on the
analysis, it can be concluded that ELK stack technologies,
either altogether or separately, prevail in terms of
implementation for various use cases. Moreover, although the
use cases are very different and could not be grouped any
further to gather similar use case topics, the prevalence of ELK
products can still be seen.

5.2.3 Overall Results

From the results of previous sections, the 2nd subquestion can
be answered as there is a large prevalence and usage of ELK
over PLG in various research papers (over a half = 53.1%).
Moreover, when compared to specific use cases, the ELK still
shows a higher rate of usability and implementation in similar
and different use case domains.

6. Recommendations

In this section, the recommendations concerning the stacks will
be discussed. ELK and PLG are both logging solutions, which
are capable of monitoring application logs, system metrics,
networking, etc. Both stacks have different implementations in
terms of the languages they were written on, thus they provide
different functionality as well as compatibility with other
technologies. Therefore, to implement a particular solution for
a specific use case, it is necessary to understand how each

Stack usage per 1 paper

Monitoring Prometheus
& Grafana

Mix of both
full stacks

Prometheus
& Grafana

Cloud-edge
Environment

Elasticsearch
& Kibana

Elasticsearch
& Kibana

Grafana

Security
Architecture

Full ELK
stack

Elasticsearch

Data Analysis Full ELK
stack

Full ELK
stack

Networking Grafana &
Prometheus

Elasticsearch
& Kibana

Blockchain Elasticsearch
& Kibana

Elasticsearch
& Logstash

VMi
Management

Full ELK
stack

Prometheus

product within the stack works, which functionality it provides,
and which resources are needed for deployment. It is needless
to say, that the substantive knowledge of Docker and
Kubernetes is required from the development team to be able
to manage the containers and pods and configure them. From a
personal perspective, the ELK stack seems more complete as
all solutions are part of a single stack and have their necessary
functionality, which helps to reach a goal without separate
products. Other products can be deployed as well if needed,
but usually, it is not the case. However, the PLG stack provides
a larger flexibility in terms of different implementations, as a
great number of products can be connected to Grafana, and
these products can be mixed to achieve a required objective.
Another advantage of Grafana against Kibana is the dashboard
flexibility since it provides the opportunity to create
dashboards with required metrics and parameters.
Nevertheless, to be able to create such a dashboard it is
required to know Grafana QL language, which is very time-
consuming and was a limitation during this research (see
section 7). It is certain that stacks serve the common solution
and are extremely popular among developers, to be able to
efficiently and correctly deploy them, it is required to refer to
its documentation.

7. Evaluation

This section elaborates on the limitations faced during the
research.

The main limitation is undoubtedly related to the given
timeframe of the research. Within the 8 weeks provided to
conduct the research, 4 were spent on getting acquainted with
the aforementioned stacks of technologies, namely Docker,
Kubernetes, ELK, and PLG products, and for the deployment
of it on my node. Docker and Kubernetes are the backbones of
DevOps development, and it is crucial to obtain enough
knowledge to be able to deploy applications as well as
configure them. Apart from the particular technologies,
DevOps requires substantive knowledge of networking, as all
the Docker and Kubernetes objects, especially minikube, have
their networking parameters, such as IP addresses, ports, etc.,
to be able to connect them and manage them. For instance, one
of the huge problems was that Loki could not listen to the
application logs deployed within minikube until I found that it
is necessary to port-forward the minikube pod to expose it to
the local network.

(Regarding the 1st subquestion)
• Another huge limitation is concerning the resources of my

MacBook Air 18, as it is not new and not powerful enough
for quick and efficient manipulations with the Docker and
Kubernetes objects, such as starting pod/container, stopping
it, restarting, deleting, etc. Sometimes the process of
stopping the set of containers where ELK was deployed
could take up to 15-20 minutes or even stuck in an infinite
loop of being stopped, which could only be resolved by
restarting the Docker engine. After realising that node’s
resources are not enough for ELK deployment within
Kubernetes, it was decided to switch to AWS infrastructure.
However, the nodes with needed resources are expensive, so
it was decided to switch to the setup mentioned in section
4.1.2 concerning the limitation mentioned in 4.1.1.

• Another limitation regards the ELK and PLG capability to
provide needed metrics. In this sense, Grafana and Kibana
have different implementations on it, and while Kibana has
a default set of dashboards with important metrics to explore
the performance of either CPU usage or Networking,
Grafana does not have such default dashboards. Such

dashboards can only be either manually created (within a
given timeframe it would impossible) or found suitable in
the dashboard marketplace (dashboards are free).
Nevertheless, searching for dashboards that would match the
ones Kibana provides was hard, as most of them require
their own tools setup, such as InfluxDB and Telegraf, which
are not included in this research.

(Regarding the 2nd subquestion)
• The only limitation faced was the sample size for the

literature review due to the given timeframe. During the
research conduct, only specific libraries were chosen
according to chosen methodology, and during the screening
(without duplicates) 108 research papers that are related to
Kubernetes and both stacks. However, there undeniably
exist a greater amount of research papers mentioning needed
technologies, for instance, the search made via Google
Scholar scientific browser gave thousands of results.
Needless to say, such an amount could not be processed by a
single person within the given timeframe. Without this
limitation, the research might have been statistically more
accurate due to the larger sample size, thus, be more
representative not only in terms of the stacks’ usage and
implementation, but also in which domains these stacks
were deployed.

8. Conclusion

In this paper, the two most popular stacks of logging solutions
were considered and analysed from two different perspectives.
First of all, the necessary information, such as introduction and
background, was presented to the reader to get familiar with
the purpose of this research and to get familiar with the objects
and technologies that were required for the research.
Second of all, the research was conducted to analyse these
stacks from both practical and theoretical foundations.
For the practical foundation, the statistical analysis was
conducted based on the chosen metrics to establish if there is
any significant difference between the stacks in terms of
performance. These metrics were chosen to be CPU usage,
System Load, and Latency Indexing. The statistical analysis
was conducted with the help of hypothesis testing concerning
the testing procedure. The statistical method chosen was a two-
sample t-test, as it helps to discover the significant differences
between the two samples. The results of the hypothesis testing
showed, that for each metric there is no significant difference
between the stacks.
For the theoretical foundation, the literature review was
conducted to establish which stack prevails in terms of
usability in various research papers, and compare them in
terms of their implementations across different domains and
use cases. From the literature review based on PRISMA's our-
phase flow diagram and inclusion and exclusion criteria, 32
research papers were found where Kubernetes and any of the
stacks, or a separate product of these stacks were used. The
analysis showed that the ELK stack prevails in terms of
usability across different research papers showing 53.1%,
whereas the PLG showed only 31.3%, and the mix of the
products implemented showed 15.6%. From the clustering of
the use cases where the stacks were implemented, it was
discovered that the ELK also prevails in terms of usability,
especially in such cases as Data Analysis, Security
Architecture, and Blockchain, whereas PLG products were
used with the same amount of appearance as ELK (for
instance, in Networking it is 50/50: Grafana and Prometheus
and Elasticsearch and Kibana).
Thus, answering the main research question of this paper, the
results showed that in terms of practice, there is no significant
difference between the stacks, and at the same time there is a

large prevalence and usage of ELK over PLG in various
research papers, as well as when compared to specific use
cases, the ELK still shows a higher rate of usability and
implementation in similar and different use case domains.

8.1 Future work

I n t he p roces s o f wr i t i ng t he L imi t a t i ons and
Recommendations sections, 3 points were formulated to
enhance the research and go deeper into the analysis.

1. It is needless to say that the timeframe should be
extended, as it would extensively help for proper research
conduct.

2. The researchers should either be professionals in the
DevOps field or have a team of such developers to be
able to ask for a piece of advice and recommendation on
how to properly setup the technologies and deploy them.

3. A larger group of people should conduct the literature
review to be able to capture a larger sample size of
research papers to further enhance the theoretical
foundation of the analysis.

I believe that with these suggestions, the analysis would be
highly improved and show useful and valuable results.
Moreover, I believe that in the future, such analysis would help
to formulate a methodology for developers, such as guidance
on how to deploy and in which domains which stack is more
suitable.

References

1. O. Al-Debagy & P. Martinek, (2018). “A Comparative
Review of Microservices and Monolithic
Architectures," 2018 IEEE 18th International
Symposium on Computational Intelligence and
Informatics (CINTI), pp. 000149-000154, doi: 10.1109/
CINTI.2018.8928192.

2. Shore, J., & Warden, S. (2021). “The art of agile
development”, O'Reilly Media, Inc., link: https://
books.google.nl/books?
id=kXZIEAAAQBAJ&lpg=PP1&ots=M1TeAuVz4b&
dq=agile%20development&lr&pg=PP1#v=onepage&q
=agile%20development&f=false

3. Official Kubernetes Website. Link: https://
kubernetes.io/

4. Gupta, Y., & Gupta, R. K. (2017). “Mastering Elastic
Stack”. Packt Publishing Ltd., link: https://
books.google.nl/books?
id=EVQoDwAAQBAJ&lpg=PP1&ots=-0K4beEdeo&d
q=Mastering%20Elastic%20Stack%20By%20Yuvraj%
20Gupta%2C%20Ravi%20Kumar%20Gupta&lr&pg=P
P1#v=onepage&q=Mastering%20Elastic%20Stack%20
By%20Yuvraj%20Gupta,
%20Ravi%20Kumar%20Gupta&f=false

5. Holopainen, M. (2021). “Monitoring Container
Environment with Prometheus and Grafana”,
Metropolia University of Applied Sciences, link: https://
www.theseus.fi/bitstream/handle/10024/497467/
Holopainen_Matti.pdf?sequence=2

6. Horalek, J., Urbanik, P., Sobeslav, V., Svoboda, T.
(2023). “Proposed Solution for Log Collection and
Analysis in Kubernetes Environment”, Nature of
Computation and Communication. ICTCC 2022.

Lecture Notes of the Institute for Computer Sciences,
Social Informatics and Telecommunications
Engineering, vol 473. Springer, Cham. https://doi.org/
10.1007/978-3-031-28790-9_2

7. M. Imran, et. al. (2023). “Evaluation and
Implementation of Various Persistent Storage Options
for CMSWEB Services in Kubernetes Infrastructure at
CERN”, Journal of Physics: Conference Series, Ser.
2438 012035, doi: 10.1088/1742-6596/2438/1/012035

8. N. Sukhija & E. Bautista, (2019).“Towards a
Framework for Monitoring and Analyzing High
Performance Computing Environments Using
Kubernetes and Prometheus”, IEEE SmartWorld,
Ubiquitous Intelligence & Computing, Advanced &
Trusted Computing, Scalable Computing &
Communications, Cloud & Big Data Computing,
Internet of People and Smart City Innovation, pp.
257-262, doi: 10.1109/SmartWorld-UIC-ATC-
SCALCOM-IOP-SCI.2019.00087.

9. M. Dávideková & M. Gregu Ml, (2016).“Software
Application Logging: Aspects to Consider by
Implementing Knowledge Management," 2nd
International Conference on Open and Big Data
(OBD), pp. 102-107, doi: 10.1109/OBD.2016.22.

10. Official Kubernetes documentation on built-in logging
solutions, url: https://kubernetes.io/docs/concepts/
cluster-administration/logging/

11. Official Docker documentation, url: https://
docs.docker.com/

12. Official Kubernetes documentation, url: https://
kubernetes.io/docs/home/

13. Official Elastic stack documentation, url: https://
www.elastic.co/guide/index.html

14. Official Grafana labs documentation, url: https://
grafana.com/docs/

15. Official Prometheus documentation, url: https://
prometheus.io/docs/introduction/overview/

16. https://helm.sh/docs/ helm
17. Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G.,

Prisma Group. (2009). Preferred reporting items for
systematic reviews and meta-analyses: the PRISMA
statement. PLoS medicine, 6(7), e1000097. https://
journals.plos.org/plosmedicine/article?id=10.1371/
journal.pmed.1000097

18. Carrera-Rivera A., Ochoa W., Larrinaga F., and Lasa G.,
(2022). “How-to conduct a systematic literature review:
A quick guide for computer science research”,
MethodsX. doi: 10.1016/j.mex.2022.101895

https://books.google.nl/books?id=kXZIEAAAQBAJ&lpg=PP1&ots=M1TeAuVz4b&dq=agile%20development&lr&pg=PP1#v=onepage&q=agile%20development&f=false
https://books.google.nl/books?id=kXZIEAAAQBAJ&lpg=PP1&ots=M1TeAuVz4b&dq=agile%20development&lr&pg=PP1#v=onepage&q=agile%20development&f=false
https://books.google.nl/books?id=kXZIEAAAQBAJ&lpg=PP1&ots=M1TeAuVz4b&dq=agile%20development&lr&pg=PP1#v=onepage&q=agile%20development&f=false
https://books.google.nl/books?id=kXZIEAAAQBAJ&lpg=PP1&ots=M1TeAuVz4b&dq=agile%20development&lr&pg=PP1#v=onepage&q=agile%20development&f=false
https://books.google.nl/books?id=kXZIEAAAQBAJ&lpg=PP1&ots=M1TeAuVz4b&dq=agile%20development&lr&pg=PP1#v=onepage&q=agile%20development&f=false
https://kubernetes.io/
https://kubernetes.io/
https://books.google.nl/books?id=EVQoDwAAQBAJ&lpg=PP1&ots=-0K4beEdeo&dq=Mastering%20Elastic%20Stack%20By%20Yuvraj%20Gupta%2C%20Ravi%20Kumar%20Gupta&lr&pg=PP1#v=onepage&q=Mastering%20Elastic%20Stack%20By%20Yuvraj%20Gupta,%20Ravi%20Kumar%20Gupta&f=false
https://books.google.nl/books?id=EVQoDwAAQBAJ&lpg=PP1&ots=-0K4beEdeo&dq=Mastering%20Elastic%20Stack%20By%20Yuvraj%20Gupta%2C%20Ravi%20Kumar%20Gupta&lr&pg=PP1#v=onepage&q=Mastering%20Elastic%20Stack%20By%20Yuvraj%20Gupta,%20Ravi%20Kumar%20Gupta&f=false
https://books.google.nl/books?id=EVQoDwAAQBAJ&lpg=PP1&ots=-0K4beEdeo&dq=Mastering%20Elastic%20Stack%20By%20Yuvraj%20Gupta%2C%20Ravi%20Kumar%20Gupta&lr&pg=PP1#v=onepage&q=Mastering%20Elastic%20Stack%20By%20Yuvraj%20Gupta,%20Ravi%20Kumar%20Gupta&f=false
https://books.google.nl/books?id=EVQoDwAAQBAJ&lpg=PP1&ots=-0K4beEdeo&dq=Mastering%20Elastic%20Stack%20By%20Yuvraj%20Gupta%2C%20Ravi%20Kumar%20Gupta&lr&pg=PP1#v=onepage&q=Mastering%20Elastic%20Stack%20By%20Yuvraj%20Gupta,%20Ravi%20Kumar%20Gupta&f=false
https://books.google.nl/books?id=EVQoDwAAQBAJ&lpg=PP1&ots=-0K4beEdeo&dq=Mastering%20Elastic%20Stack%20By%20Yuvraj%20Gupta%2C%20Ravi%20Kumar%20Gupta&lr&pg=PP1#v=onepage&q=Mastering%20Elastic%20Stack%20By%20Yuvraj%20Gupta,%20Ravi%20Kumar%20Gupta&f=false
https://books.google.nl/books?id=EVQoDwAAQBAJ&lpg=PP1&ots=-0K4beEdeo&dq=Mastering%20Elastic%20Stack%20By%20Yuvraj%20Gupta%2C%20Ravi%20Kumar%20Gupta&lr&pg=PP1#v=onepage&q=Mastering%20Elastic%20Stack%20By%20Yuvraj%20Gupta,%20Ravi%20Kumar%20Gupta&f=false
https://books.google.nl/books?id=EVQoDwAAQBAJ&lpg=PP1&ots=-0K4beEdeo&dq=Mastering%20Elastic%20Stack%20By%20Yuvraj%20Gupta%2C%20Ravi%20Kumar%20Gupta&lr&pg=PP1#v=onepage&q=Mastering%20Elastic%20Stack%20By%20Yuvraj%20Gupta,%20Ravi%20Kumar%20Gupta&f=false
https://books.google.nl/books?id=EVQoDwAAQBAJ&lpg=PP1&ots=-0K4beEdeo&dq=Mastering%20Elastic%20Stack%20By%20Yuvraj%20Gupta%2C%20Ravi%20Kumar%20Gupta&lr&pg=PP1#v=onepage&q=Mastering%20Elastic%20Stack%20By%20Yuvraj%20Gupta,%20Ravi%20Kumar%20Gupta&f=false
https://www.theseus.fi/bitstream/handle/10024/497467/Holopainen_Matti.pdf?sequence=2
https://www.theseus.fi/bitstream/handle/10024/497467/Holopainen_Matti.pdf?sequence=2
https://www.theseus.fi/bitstream/handle/10024/497467/Holopainen_Matti.pdf?sequence=2
https://doi.org/10.1007/978-3-031-28790-9_2
https://doi.org/10.1007/978-3-031-28790-9_2
https://kubernetes.io/docs/concepts/cluster-administration/logging/
https://kubernetes.io/docs/concepts/cluster-administration/logging/
https://kubernetes.io/docs/concepts/cluster-administration/logging/
https://docs.docker.com/
https://docs.docker.com/
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/
https://www.elastic.co/guide/index.html
https://www.elastic.co/guide/index.html
https://grafana.com/docs/
https://grafana.com/docs/
https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/overview/
https://helm.sh/docs/
https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1000097
https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1000097
https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1000097

Appendix A

