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Abstract 

Precedents and objectives: 

The sound wave is propagating in air and is received by the ear 
of the listener. 

Many models of voice production were done based on two-
mass model and source-filter. 

The resulted wave is impacted by excitation source properties, 
the properties of the medium which include vocal tract 
properties, damping forces, and initial and boundary conditions. 

A pathological voice is a sound wave that was impacted by one 
or more factors cited above. 

The objective of the present paper is to simulate the behavior of 
the fundamental frequency of utterance /a/ by using organ pipe 
model, In order to know the parameters that govern the behavior 
of /a/ utterance to be classified as pathological or normal voice 
of /a/, in order to fine-tune these parameters. 

Materials and methods: 

The modeling was carried out using the variations of sound 
pressure level function of difference radius, thickness and 
young’s module of the voice production apparatus. 

The used software is COMSOL. 

Results: 

The resonant frequency could be shifted according to the values 
of inner radius and thickness; thus a pathological voice can be 
transformed to normal voice upon fine-tuning these parameters 
or adjusting damping forces. 

Conclusion:  

A pathological voice as any voice can be described as a 
disturbance, a transfer of energy, which travels through the air 
from one location to another location. It is distinguished by its 
property: density, Young’s module, Poisson’s ratio. Such 
physical properties describe the material itself not the wave. An 
alteration in the properties of the medium will cause a change 
in the speed. 

 

Index Terms: Pathological voice, organ pipe mode, modeling, 
COMSOL, /a/ utterance. 

1. Introduction 

Mechanical and acoustical vibrations are the sources of sound 
in human body. Miklós et al.[1] 

 A familiar example that models the human sound production is 
the vibrations of air in the organ pipe, which is a topic that has 
already been examined by a number of researchers. The 
acoustic roles of organ-pipe have been relevantly recognized, 
such as determination of a pitch Tashiro et al.[2], and acting an 
organ pipe as resonators in many musical instruments. Rossing 
et al.[3] 

The Sound production in organ pipes is a complex matter 
involving interactions between flow fields and sound waves  

Angster et al.[4] 

Thus, the sound of a pipe organ is created by a jet of air blowing 
across its mouth and the column of air resonating inside it. 

Sound production in organ pipe depends upon the collective 
behavior of several vibrators, which may be weakly or strongly 
coupled together. This coupling may cause the apparatus as a 
whole to behave as a complex vibrating system, even though 
the individual elements are relatively simple vibrators. 

Based on studies of organ pipe, the resulted pitch of an organ 
pipe is impacted by: 

Pipe properties which include: its geometry, inner diameter, 
Young’s module, Poisson’s ratio, wall thickness and wall drag 
force. 

Fluid properties which cover: its temperature, absolute 
pressure, background velocity, density…etc. 

By analogy, pathological voice is a result of the way in which 
the mechanical and acoustical oscillators may be coupled 
together and the way in which they radiate sound. 

2. Related works 

Many researchers studied geometry of the organ pipe and its 
impact on its voicing such the influence of the organ pipe upper 
lip thickness on the sound frequency spectrum Štafura et al.[5] 
and how modifications of geometrical of the mouth parameters 
alter characteristics of the sound  , thus  the pitch of the pipe 
sound is determined by modifying the flow geometry. 



 

 

Außerlechner et al.[6] And Crighton [7]  have performed 
theoretical and experimental works to determine the relations 
between mode frequencies and flow parameters. 

Nakayama et al.[8] Studied the effect of the pipe geometry on 
the fundamental frequency. 

 Adachi [9], Außerlechner et al.[6] and Coltman [10] have 
simulated the complete sound generation mechanism in a 
stopped flue pipe. 

 A flue organ pipe can be excited in various acoustic modes by 
changing the air pressure supplied to it, and the timbre of the 
sound can be adjusted by adjusting the air flow parameters or 
jet-lip interaction as shown by Angster et al.[11]. 

 Nakayama et al.[8] Proposed a scaling in which the length of 
the pipe is calculated such that the pipe produces the desired 
pitch. 

Adachi et al.[12] Reported that adjusting the lip resonance 
frequency, would reproduce different acoustic modes of the 
resonator. 

 Adachi et al.[13] Performed experiences related to the 
perturbation of the length of the tract applied for male–female 
vocal tract shape conversion.  

As it will be demonstrated in this paper, the frequency of the 
sound produced by a pipe is primarily affected by the pipe’s 
length. Intuitively, increasing pipe length will lower the 
frequency while decreasing pipe length will raise the frequency. 
However, there are other ways of manipulating the frequency 
without changing physical pipe length. 

It is the case of harmonic pipes that sound an octave above 
where they should. That is, their length is double what it should 
be. 

For instance, a harmonic pipe will sound a C3 note instead of a 
C2 note. This is due to a small hole that is cut into the pipe at 
the first harmonic (an octave above). 

On the other hand, stopped pipes are closed on the top causing 
them to sound an Octave lower (they are half the length of a 
normal pipe). 

For instance, a stopped pipe will sound at C1 instead of C2. 

This is because stopping a pipe causes it to now become an 
open-closed pipe and thus, as described by [16]; changing pipe 
width also changes the timbre of the sound the pipe produces. 

As a general rule, the thinner the pipe, the “harsher” the timbre 
Rucz et al.[14] 

As shown by Miklos et al. [15] the mouth tone modes can be 
linearly frequency-shifted to reach a desired sound, and the 
main example of adjustments is to obtain the natural resonance 
frequency, thus, the resonators will be damped by inserting 
sound absorbing material into the open ends. 

And related to pipe with adjustable length, it was to be expected 
in theory that the fundamental frequency became continuously 
lower, the longer the resonator was, as the wave length of the 
standing wave changes in the resonator as notified by Christian 
[16]. 

 

3. Modeling  

 

3.1. Assumptions  

We have made the following assumptions:  

 The principle of conservation of mass is respected. 

 The sound of organ pipe can be considered periodic with 
small perturbations; thus, the steady state sound spectra 
of organ pipes are dominated by harmonic components.  

 The wavelength of acoustic waves in the organ pipe is 
long relative to the width of the pipe so that the acoustic 
waves are one-dimensional (they travel only lengthwise 
in the pipe). 

 The flow of the fluid in the pipe is laminar: 

 The pressure at the open is equal to the pressure of 
ambient air outside the pipe by satisfying the continuity 
of pressure.  

 In the frequency domain all sources and variations are 
assumed to be harmonic. The solved equations assume 
that the propagating waves are plane. 

 It is assumed that the sound propagates through pressure 
waves only, which means that other fluctuations of the 
quantities pressure, density and velocity caused by effects 
such as eddies are not regarded as sound, but 
perturbations out of the scope of the linear acoustic 
framework of this paper. 

 

3.2. Proposed model  

Consider a length L of pipe closed by rigid walls at one end. 
This is precisely analogous to the case of the human vocal 
apparatus, where there is a way to excite vibrations from lungs 
and a way for the energy to radiate from mouth, as shown in 
figure.1.

 

Figure 1 : Vocal apparatus,    Borden et al.[17] 

(λ: Wavelength, r,e,L: Radius ,thickness and  length, respictevely  of 
the organ pipe) 



 

 

The air jet drives the pipe at the pipe mouth. The driving jet 
produces a pressure fluctuation on the air inside the tube. The 
frequencies of natural resonance of the pipe are found where 
the pressure oscillations induce maximal response inside the 
tube. 

 

Figure 2 : Model of vocal apparatus (cylindric duct). 

 

Governing equation : 

It is assumed that the studied domain Ω in the  

d-dimensional space is considered Ω⊆ Rd 

And that the domain Ω is limited by the boundary Γ. 

The problem domain is defined as : 

Ω ={r / r<=a; 𝜃 ∈ [0,2𝜋], 𝑧 ∈ 𝑅 } 

  Whereas the boundary is given as: Γ={r / r=a}  

The Euler equation is linearized and simplified as: 

𝜌଴
డ௩෤

డ௧
+  ∇𝑝෤ = 0 (1) 

𝛻ଶ𝑝෤(𝑧, 𝑡) − 
ଵ

௖మ

డ మ௣෤(௭,௧)

డ௧మ  (2) 

Where:ρ଴ ∶  the density of air , 
p: pressure perturbaion of air  and v: the velocity of the air, 
inside the organ pipe. 

We are interested in steady-state processes, and we assumed a 
time-harmonic perturbation with an angular frequency 𝜔: 

𝑝(𝑧, 𝑡) = ∣ 𝑝(𝑧) ∣  cos൫𝜔𝑡 + ∅(𝑧)൯ = ℜ𝑒{∣ 𝑝(𝑧) ∣  𝑒௝(ఠ௧ା∅(௭) 
(3) 

𝑝෤(𝑧) =∣ 𝑝(𝑧) ∣ 𝑒௝ ∅(௭)   (4) 

We introduced complex amplitude  𝑝෤(𝑧, 𝜔) by using Fourier 
transformed variables. 

𝑝(𝑧, 𝑡) =
ଵ

ଶగ
∫ 𝑝෤(𝑧, 𝜔)𝑒ି௝ఠ௧ାஶ

ିஶ
𝑑𝜔  (5) 

The Fourier transformed variables can then be attained as: 

 

𝑝෤(𝑧, 𝜔) = ∫ 𝑝(𝑧, 𝑡)𝑒ି௝ఠ௧ାஶ

ିஶ
𝑑𝜔  (6) 

And assuming that the corresponding integral exists. 

We introduced Acoustic wave number: k = 
ఠ

௖
 (This model is 

naturally only valid under the cutoff frequency, i.e. ka < 
1.8412 as cited by Rucz [18] 

The homogeneous Helmoltz equation is obtained as: 

𝛻ଶ𝑝෤(𝑧, 𝜔) + 𝑘 ଶ𝑝෤(𝑧, 𝜔) = 0   (7) 

 The sound propagated in the vocal tract can be modeled as the 
wave propagated in a cylindric duct which is assumed with a 
rigid wall. 

The model used is a finite cylindric duct of inner radius a with 
its axis of symmetry located at the z-axis of the Cartesian 
coordinate system. 

The helmoltz equation is cylindrical coordinates: 

డ మ௣෤

డ௥మ
+

ଵ

௥

డ௣෤

డ௥  
+

ଵ

௥మ

డ మ௣෤

డఏమ
+

డ మ௣෤

డ௭మ
+ 𝑘 ଶ𝑝෤ = 0   r  ∈ Ω    (8) 

It is assumed that the normal component of the particle 
velocity 𝜗௡ vanished at r=a. making use of the linearized Euler 
equation : 

𝜗௡(𝑎, 𝜃, 𝑧) = −
ଵ

௝ఠ బ

డ௣

డ௥ ∣௥ୀ௔ = 0 if r  ∈ Γ   (9) 

The pipe is of  finite length. This means that pressure waves 
are reflected at the (open or closed) ends of the pipe.  



 

 

Let us consider a finite cylindrical tube that extends from z = 0 
to z = L terminated by the acoustic impedance ZL(𝜔) at  

Z = L. 

Since the unidimensional Helmholtz equation  is valid inside 
the pipe under the cutoff frequency, the resulting pressure 
field of the pipe is the superposition of two 
counterpropagating planar waves, as obtained by the 
d’Alembert form solution . 

డ మ௣෤(௭,ఠ)

డ௥మ
+  + 𝑘 ଶ𝑝෤(𝑧, 𝜔) = 0   r ∈ Ω   (10) 

The solution of 1D Helmholtz eq.  is given in d’Alembert 
form as : 

𝑝෤(𝑧, 𝜔)=𝑝ା𝑒ି௝௞௭+ 𝑝ି𝑒ି௝௞௭  (11) 

௉ෘ

௎ෙ

(௅,ఠ)

(௅,ఠ)
 = ZL(𝜔)  (12) 

Making use of the fact that : 

 ௣ష௘షೕೖ೥

௣శ௘షೕೖ೥
=  

௓ಽ(ఠ)ି௓బ

௓ಽ(ఠ)ା௓బ
   (13) 

With Z0 denoting the acoustic plane wave impedance of the 
tube.consequently,  

The input impedance of the pipe Zin is defined as the ratio of 
the complex amplitude of the pressure and volume velocity at 
z=0. This can be expressed: 

Input impedance  :  

Zin(𝜔) = 
௉ෘ

௎ෙ

(଴,ఠ)

(଴,ఠ)
 = 𝑍଴ 

௓ಽ(ఠ)ା௝௓బ௧௔௡௞௅ 

௓బା௝௓ಽ(ఠ) ௧௔௡௞௅
      (14) 

Since the system responds with maximal pressure to unit input 
volume velocity when Zin(𝜔)has a local maximum, the 
natural resonance and anti-resonance frequencies of the 
system can also be found as the local extrema of the input 
impedance or input admittance functions. 

Two extremal cases regarding the termination impedance ZL 
are of special interest. The first case is when the pipe is 
terminated by zero impedance. This corresponds to zero 
pressure at the pipe end, 𝑝(L, 𝜔) = 0. In this case the system 
can be considered ideally open and from equation, the input 
impedance is attained as : 

Zin(open)     = 𝑗𝑍଴tan (𝑘𝐿)   (15) 

The second case corresponds to the pipe being terminated by a 
rigid wall, meaning that ZL- ∞ 

And implying zero volume velocity at z=L. in this case the 
system is considered ideally closed and its input impedance 
can beexpressed by taking the limit  ZL - ∞  of the equation: 

Zin (closed)     =- 𝑗𝑍଴𝑐𝑜𝑡𝑎𝑛(𝑘𝐿) (16) 

Let us assume a simple model of a labial organ pipe. The jet 
drives the pipe at the pipe mouth. The driving jet produces a 
pressure fluctutation on the air inside the tube. 

The frequencies of natural resonance of the pipe are found 
where the pressure oscillations induce maximal response 
inside the tube i.e: when the acoustic input impedance of the 
pipe Zin is minimal. Hence the frequencies of natural 
resonance fn =  

௖

஛೙
 of the system are found by the 

corresponding wavelength λn  as 

Therefore, the cylindrical pipe open at both ends acts  as a 
half-wave resonator, whereas the pipe with one end open and 
the other end closed is a quarter-wave resonator. 

λn = ቐ

ସ௅

ଶ௡
if 𝑍௅ = 0

4
௅

ଶ௡ିଵ
if 𝑍௅ →  ∞   ( n = 1,2, … . ) 

   (17) 

Open-open pipe: 
௖

ଶ௅
 = f; λ= 2L   (18) 

Closed-open pipe: 
௖

ସ௅
 = f,c= λ. f   --->λ= 4L   (19) 

-The behavior of the resonator is determined by the input 
impedance function 

Sound pressure level (SPL) Sound pressure level, denoted Lp 
is defined by IEC [19] 

Where prms is the root mean square sound pressure;  

The commonly used reference sound pressure in air is Roeser 
et al.[20] 

Lp  = 10 log[ (
௉ೝ೘ೞ

௉ೝ೐೑
)2]        𝑃௥௠௦

ଶ =  
ଵ

ଶ
 𝑝 𝑝∗   (20) 

-The frequency response of the pipe is obtained by plotting the 
sound pressure level  Lp at the open pipe end ( at the mouth of 
the speaker)  

Where pref is the reference pressure for air 20 mPa and p* is 
the complex conjugate.  

-The limitations of the one-dimensional model are that (1) it is 
only capable of handling simple geometries, and (2) it is only 
applicable under the cutoff frequency of the system.  



 

 

3.3. Methods  

-The modeling was performed by COMSOL Multiphysics 
software version 5.0. using   pipe acoustic model. 

- In this model the pipe is driven at 440 Hz which is the A4 
note (or a’).  

-An airflow is pushed in at the bottom of the organ pipe, 
modeling the flow air from lungs, which is out via the mouth. 

-The vibrations will resonate with the organ pipe body to 
create the note of the pipe. 

-The organ pipe geometry as shown in figure.2 is defined in 
terms of its length L, inner pipe radius a, wall thickness e and 
cross section shape (here circular).  

-The elastic properties of the pipe wall are Young’s modulus 
Ew and Poisson’s ratio vw. The model parameters are given in 
the table.1 below. 

Table 1 : Initial data of the model. 

 

Parameter Value Description  

fn 440 Hz Frequency of normal 
/a/ utterance 

Lguess 𝐶

4 fn 
 

Quarter wavelength 
for open-closed pipe 
at  fn 

L 0.3715 m Pipe length giving a 
resonance at 440Hz 

a(r) 3 cm Pipe inner radius  

e 2 mm Vocal tract thickness 

Ew 109 Young’s module of 
the skin 

vw 0.4 Poisson’s ratio of the 
skin  

C0 343.1 m/s Speed of sound  

The algorithm of the adjustment is shown in figure 3:  

 

Figure 3 : Adjustment’s algorithm of length L , radius r  and 
thickness e. 

4. Results and Discussion 

4.1. Resonance peak of the fundamental frequency for 
different inner pipe radii 

The frequency response around the resonance frequency is 
plotted in Figure.4 for several values of the pipe radius. 
Changing the pipe radius clearly shifts the resonance 
frequency, which occurred when the frequency of the driving 
force becomes equal to the natural frequency of vibrating 
particle; the amplitude of oscillation of driven oscillator 
becomes maximum. The first resonant frequency is the 
fundamental frequency. Even though, other harmonics ( as 
shown in figures.7 and 8) can be more dominant during 
transient attacks it is the fundamental frequency which 
determines the tone of the pipe. 

Thus, a pathological voice can be transformed to normal one 
upon fine tuning of the radius. 



 

 

 
Figure 4 : Resonance peak of the fundamental frequency at 
880Hz for different inner pipe radii for open-closed pipe. 

 

We noted that the open pipe model gives a resonance peak of 
fundamental frequency at 440Hz. 

4.2. Resonance peak of the fundamental frequency for 
different pipe wall thickness  

 
Figure 5 : Resonance peak of the fundamental frequency at 880 
Hz for different pipe wall thickness for open-closed  pipe. 

The response for different values of the pipe wall width is 
plotted in Figure.5. It is here also seen that changing the pipe 
wall width will change the resonance slightly. This is because 
the elastic properties of the pipe wall have influence on the 
effective compressibility of the system in a given cross section. 
This in turn changes the effective speed of sound in the pipe and 
thus the resonance.  

4.3. Resonance peak of the fundamental frequency and 
frequencies  of the harmonics from 100 to 3000 Hz 

 

Figure 6 : Resonance peak  of the fundamental frequency and 
frequencies  of the harmonics from 100 to 3000 Hz  in opened-
closed pipe model 

 

 



 

 

Figure 7 : Resonance peak  of the fundamental frequency and 
frequencies  of the harmonics from 100 to 3000 Hz  in open pipe 
model with   L=0.1715[m]: less harmonics. 

In Figure.6 and Figure.7 the parameter values giving a 
fundamental resonance at 880 Hz are selected, and the response 
is plotted for frequencies from 100 Hz to 3000 Hz. The plot 
shows the fundamental resonance at 880 Hz as well as the first 
harmonics of the organ pipe. The shape of this curve is related 
to the pitch of the pipe. 

The sound is due to the vibratory movement.  
The air inside an organ pipe emitted a sound.In the speech,  
the oscillations occur in viscous media  which is air .Hence,  
a considerable fraction of the energy of the oscillating system  
is dissipated in the form of heat in overcoming these resistive  
forces.So  the mechanical energy of the body gradually decreases. 
Consequently, the amplitude of oscillations goes on  decreasing  
gradually with time and ultimately the oscillations  die out  
as shown in figure.6 and figure.7. 

The exact pitch of the organ pipe depends on the combination 
of the fundamental tone and all the harmonics. These depend on 
the shape of the pipe (the length and diameter) as well as on the 
elastic properties of the pipe walls and their thickness: 
Changing any of one of these parameters will result in changes 
in the damping and the frequency response resonance peaks of 
the organ pipe. This will in turn yield a different pitch. 
The pipe sounds in several different oscillation regimes. As the 
pressure is increased, the second and the third resonance modes 
are excited. A pipe can sound with much smaller pressure. In 
this case, the second and the first resonance modes are excited 
Delauro et al.[21]. 
The pitch sound is directly dependent of the frequency of the 
sound production device and is denoted by the frequency itself. 
The note produced by narrow organ pipe will be richer in 
harmonics and is on the other hand, the note emitted by a wider 
pipe will be poor in harmonics. 
According to Rayleigh’s end correction , the pitch of sound 
produced by two open organ pipe of same length but different 
diameters are different , the wider pipe gives the lower tone that 
the narrower pipe Prakashan [22] 
The fundamental frequency is less than the first resonance 
frequency. If we increase the length of the pipe, the pressure 
will decrease and the fundamental frequency also as described 
by Ruty [23] and  Lucero et al.[24]. 
The expected proportionality the dependence of the 
fundamental frequency on the length of the resonator is obvious 
as shown by Rucz [18] and Tilo [25] 
 
 

4.4. Resonance peak of the fundamental frequency for 
different young’s module values  

 

 
Figure 8: Study 4: Frequency for Different young module(1e9) 

 

 

Based on figure.8, if Ew increases, the generated harmonics 
increase. 

5. Conclusions 

A pathological voice as any voice can be described as a 
disturbance, a transfer of energy, which travels through the air 
from one location to another location. It is distinguished by its 
property: density, Young’s module, Poisson’s ratio. Such 
physical properties describe the material itself not the wave. An 
alteration in the properties of the medium will cause a change 
in the speed. 
A proposed model was presented in the present paper to 
simulate the fundamental frequency of /a/ alphabet, in order to 
compare its behavior for pathological and normal voices. 
One of the most important findings is the fact that the resonant 
frequency could be shifted according to the values of inner 
radius and thickness, thus a pathological voice can be 
transformed to normal voice upon fine-tuning these parameters 
or adjusting damping forces. 
The limitation of this model is that is capable of handling simple 
geometries however the voice apparatus is more complex. And 
it is only applicable under the cut off frequency. 
In order to overcome these limitations, labial organ pipe model, 
and simulation of two or three dimensional systems are 
proposed. 
In addition to that; more accurate result by using the end 
correction of effective length in case of open end. 
It is necessary to mention that each adjustment is considered in 
isolation from the others. Nevertheless that this separate 



 

 

treatment of each adjustment is somewhat artificial, since make 
several adjustments simultaneously in real situation. 
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