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1 INTRODUCTION

The structural flexibility and oscillations present significant challenges for the precise and accurate control
of mobile machines and heavy equipment, such as excavators, flexible robotic manipulators, and space-
crafts [1]. These challenges arise from the uncertain and nonlinear nature of the oscillations that occur in
these structures. This problem is magnified by strain sensors installation in such applications, which may
contribute to the implementation and economic difficulties. To solve this, this study introduces an auto-
mated hyperparameter-tuned deep neural network (DNN) approach [2] to predict uncertain oscillations in a
system. The proposed DNN is applied to predict the uncertain oscillations of a mass in a nonlinear oscillator.

2 METHODS

Figure 1 demonstrates the architecture of DNN with automated hyperparameter tuning. This DNN, designed
for regression tasks, learns the behavior of a system Y by utilizing the input vector X within a history
window of ¢.
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Figure 1: Architecture of a deep neural network Figure 2: Uncertain mass oscillations in a one-
with automated hyperparameter. dimensional nonlinear oscillator.

The regression relationship between X and Y can be explained as [3],
Vig1 = N(X1.;9), (1)

where N is the feedforward neural network (FFN) and W is the vector of trainable parameters. The hyper-
parameters in the DNN architecture are searched using random optimization algorithm [2]. These hyperpa-
rameters include learning rate, number of layers, dropout, and activation function. The history window ¢ de-
pends upon the number of the steps observed for damped oscillations in a system.

Figure 2 shows a nonlinear oscillator. This system results in uncertain oscillations u in mass m = 1 kg due
to the linear spring coefficient k = 1.6 x 10 N/m, damping coefficient ¢ = 8 Ns/m and the random base
movement u,.. The force F' in the nonlinear oscillator is described as,

F =k(u—u,) + kko(u — u,)? +cu+ Fy, 2)



where ky = 2 m~2 is coefficient of cubic stiffness and F), is the Stribeck frictional force [4] in the damper.
The proposed DNN is trained, using Eq. (1), X = wu,,,, in a history window ¢ = 200 for the damped
oscillations and Y = w;4.

3 RESULTS AND CONCLUSIONS

Simulation data was obtained from the open source multibody Exudyn software [4] on the Windows Linux
Subsystem, taking approximately 45 s. The training data set comprises 1024 simulations, while the vali-
dation set includes 256 simulations. This simulation data is used in a standard Keras Python environment
to search hyperparameters with the random optimization algorithm. The hyperparameters search resulted
in 3 hidden layers with tanh activation function, where each hidden layer has 64 nodes, dropout 0.1 and
learning rate of 0.003. The DNN is trained with the tuned hyperparameter, and its training performance
on the training and validation data is described in Figure 3. The proposed DNN took 3059 epochs in the
training process, which took approximately 114 seconds. After verification, the trained DNN model is used
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Figure 3: Training performance of DNN. Figure 4: Predicting uncertain mass oscillations.

to estimate the uncertain oscillations of the mass, @. During this simulation experiment, the base of the non-

linear oscillator is excited via a base motion u,. = 0.2 { sin % + cos (i) , where h is
100—80 s1n( 1000) 700

the simulation step size. The input data is arranged in layers within a continuous frame, utilizing the history
window ¢ for faster computations. As depicted in Figure 4, the proposed DNN can predict @ with a relative
mean absolute error of 0.010, achieving faster than real-time simulations. The proposed approach offers
promising prospects for enhancing the control and structural health monitoring of machines and equip-
ment. Further research, however, is needed to explain this study in details, implications and broaden its
applications to a multibody system, control algorithms and structural health monitoring in these domains.
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