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Abstract

For a multi-set A\ = {kq,ko,...,kq} of positive integers, let ky = 37 k. A A-list
assignment of G is a list assignment L of G such that the colour set Uyey (¢ L(v) can
be partitioned into the disjoint union Ci uCyu. ..Uy of ¢ sets so that for each 7 and
each vertex v of G, |L(v) nCj| > k;. We say G is A-choosable if G is L-colourable for
any A-list assignment L of G. The concept of A-choosability puts k-colourability and
k-choosability in the same framework: If A = {k}, then A-choosability is equivalent
to k-choosability; if A consists of k copies of 1, then A-choosability is equivalent to
k-colourability. If G is A-choosable, then G is kj-colourable. On the other hand,
there are ky-colourable graphs that are not A-choosable, provided that A contains an
integer larger than 1. Let ¢(\) be the minimum number of vertices in a ky-colourable
non-A-choosable graph. This paper determines the value of ¢(\) for all A.

DOI: https://doi.org/10.5817/CZ.MUNI . EUROCOMB23-000

1 Introduction

A proper colouring of a graph G is a mapping f : V(G) - N such that f(u) # f(v) for
any edge uv of E(G). The chromatic number x(G) of G is the minimum positive integer
k such that G is k-colourable, i.e., there is a proper colouring f of G using colours from
{1,2,...,k}. The choice number ch(G) of G is the minimum positive integer k such that
G is k-choosable, i.e., if L is a list assignment which assigns to each vertex v a set L(v) ¢ N
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of at least k integers as permissible colours, then there is a proper colouring f of G such
that f(v) e L(v) for each vertex v.

It follows from the definitions that x(G) < ch(G) for any graph G, and it was shown
in [5] that bipartite graphs can have arbitrarily large choice number. An interesting prob-
lem is for which graphs G, x(G) = ch(G). Such graphs are called chromatic-choosable.
Chromatic-choosable graphs have been studied extensively in the literature. There are a
few challenging conjectures that assert certain families of graphs are chromatic-choosable.
The most famous problem concerning this concept is perhaps the list colouring conjecture,
which asserts that line graphs are chromatic-choosable [1]. Another problem concerning
chromatic-choosable graphs that has attracted a lot of attention is the minimum order of
a non-chromatic-choosable graph with given chromatic number. For a positive integer k,
let

¢(k) =min{n : there exists a non-k-choosable k-chromatic n-vertex graph}.

Ohba [20] conjectured that ¢(k) > 2k + 2. In other words, k-colourable graphs on at most
2k + 1 vertices are k-choosable. This conjecture was studied in many papers [14,16,18-22,
24,25], and was finally confirmed by Noel, Reed and Wu [18]. This lower bound is tight if
k is even, i.e., ¢(k) = 2k + 2 when k is even. Noel [17] further conjectured that if k is odd,
then k-colourable graphs on at most 2k + 2 vertices are also k-choosable. Recently, the

authors of this paper confirmed Noel’s conjecture 28], and determined the value of ¢(k)
for all k.

Theorem 1. [28] For k > 2,

o(k) = {2]{: +2, sz: z:s even,
2k+3, if ks odd.

The concept of A-choosability is a refinement of choosability introduced in [32]. Assume
that A\ = {k1,ko,...,k,} is a multi-set of positive integers. Let ky = X7, k; and |\ =¢. A
A-list assignment of G is a list assignment L such that the colour set Uyey (o) L(v) can be
partitioned into the disjoint union Cy uCyu...u C, of ¢ sets so that for each ¢ and each
vertex v of G, |[L(v) nCy| > k;. Note that for each vertex v, |L(v)| > X%, ki = kx. So a A-list
assignment L is a ky-list assignment with some restrictions on the set of possible lists. We
say GG is A-choosable if GG is L-colourable for any A-list assignment L of G.

For a positive integer a, let my(a) be the multiplicity of a in A. If my(a) = m, then
instead of writing m times the integer a, we may write a * m. For example, A = {1 » k1,2 %
k2,3} means that A is a multi-set consisting of k; copies of 1, ko copies of 2 and one copy
of 3. If A = {k}, then A-choosability is the same as k-choosability; if A = {1 % k}, then
A-choosability is equivalent to k-colourability [32]. So the concept of A-choosability puts
k-choosability and k-colourability in the same framework.

Assume that A = {ki, ko, ... k} and N = {k{,k3,... k) }. We say X is a refinement of
A if p > ¢ and there is a partition [y ulyu... U, of {1,2,...,p} such that ¥, &k} = K
for t = 1,2,...,q. We say X\ is obtained from A by increasing some parts if p = ¢ and
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ke <k for t =1,2,...,q. We write A < X if X is a refinement of \”, and A" is obtained
from A\ by increasing some parts. It follows from the definitions that if A\ < X/, then
every A-choosable graph is A'-choosable. Conversely, it was proved in [32] that if A £ |
then there is a A-choosable graph which is not A-choosable. In particular, A-choosability
implies ky-colourability, and if A # {1 » k,}, then there are kjy-colourable graphs that are
not A-choosable.

All the partitions A\ of a positive integer k are sandwiched between {k} and {1 x k}
in the above order. As observed above, {k}-choosability is the same as k-choosability,
and {1 * k}-choosability is equivalent to k-colourability. For other partitions A of k, \-
choosability reveals a complex hierarchy of colourability of graphs sandwiched between k-
colourability and k-choosability. The framework of A\-choosability provides room to explore
generalizations of colourability and choosability results or problems (see [8,10,32|)

2 Preliminaries

In this paper, we are interested in Ohba type question for A-choobility. Similar to the
definition of ¢(k), for a multi-set A of positive integers, we define ¢(\) as follows:

Definition 1. Assume X is a multi-set of positive integers. Let
¢(N\) =min{n: there exists a non-A-choosable ky-chromatic n-vertex graph}.

If A = {1k}, then A-choosable is equivalent to k-colourable. In this case, we set
¢(A) = oo. We call such a multi-set A trivial. In the following, we only consider non-trivial
multi-sets of positive integers.

If A ={k}, then ¢(\) = ¢(k). The value of ¢(k) is determined in Theorem 1. For
general multiset A of positive integers, the function ¢(\) was first studied in [30]. Let
my(odd) be the number of odd integers in A\. The following result was proved in [30].

Theorem 2. For any non-trivial multi-set A of positive integers,
2]6)\ + m,\(l) +2< ¢(/\) < m1n{2k:,\ + m,\(odd) + 2, Qk‘)\ + 5m>\(1) + 3}

If my(1) = my(odd) =t, then it follows from Theorem 2 that ¢(\) = 2ky+t+2. However,
when my (1) and my(odd) — my(1) are both large, then the gap between the upper and
lower bounds for ¢(\) in Theorem 2 becomes large.

3 Main result

This paper proves Theorem 3 below, which strengthens Theorem 1 and Theorem 2 and
determines the value of ¢(\) for all .

Theorem 3. Assume A is a non-trivial multi-set of positive integers. Then

d(N) = min{2ky + my(odd) + 2,2k + 3m,(1) + 3}.
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Below is a sketch of the proof of Theorem 3.

By Theorem 2, to prove Theorem 3, it suffices to consider the case that my(odd) >

First we consider the case that my(1) = 0 and my(odd) > 0. In this case, we need to
show that ¢(\) = 2k, + 3.

Let ky = k. By Theorem 2, 2k+2 < ¢(\) < 2k+3. So it suffices to show that ¢(\) # 2k+2,
i.e., any graph G with x(G) < k and |V (G)| < 2k+2 is A-choosable. We only need to consider
the case that G is a complete k-partite graph. The following result was proved in [29].

Theorem 4. Assume G is a complete k-partite graph with |V (G)| < 2k +2. Then G is
k-choosable, unless k is even and G = Ky, (k-1 01 G = K3, (k/241),14(k/2-1) -

Thus we may assume that & is even and G = Ky 9. (x-1) OF G = K3, (kj241),14(kj2-1)- We say
a k-list assignment L of G is bad if G is not L-colourable. All bad assignments for Ko, (x-1)
and K. (k/2+1)1+(k/2-1) are characterized in [4] and [29], respectively and we can verify that
such bad list assignments is not A-list assignment (using the assumption m(odd) > 0). This
implies that all graphs Ky s.(x-1) and Kz, (k/2+1),1+(k/2-1) are A-choosable. This completes
the proof for the case my(1) = 0.

Next we consider the case that m,(1) = a > 1 and my(odd) - my(1) = ¢ > 1. We need
to show that ¢(\) = min{2k + a + ¢+ 2,2k + 3a + 3}. First, we prove the upper bound, i.e.,

d(N) <min{2k +a + ¢+ 2,2k + 3a + 3}.

By Theorem 2, ¢(\) < 2k + a + c+2. It remains to show that ¢(\) < 2k + 3a + 3. Observe
that ky = k, mx(1) = a and my(odd) = a + ¢ implies that {1 xa,2* (k—a-3c)/2,3xc} is a
refinement of A. Hence it suffices to prove the following lemma.

Lemma 5. Assume A = {1 xa,2*b,3xc} and k = a+2b+ 3c (and hence my(1) = a,
mx(odd) = a+c and k) = k). Then there exists a k-chromatic graph G with |V (G)| =
2k + 3a + 3 which is not A-choosable.

Let G' = K5, (a+1),2+(k-a—1) be the complete k-partite graph with partite sets U; = {win, wio, wiz, wia, uis}
where i =1,2,...,a+ 1, and V; = {v;1,v,2} where j=1,2,... . k-a-1.

Let S; ={si1,Si2,-.., 8.6} be pairwise disjoint sets of size 6 where i =1,2,...,c and let
T; ={ti1,ti2, ti3,t;a} be pairwise disjoint sets of size 4 where ¢ =1,2,...,b. Let E be a set
of a colours, and the sets F, S;,T; are pairwise disjoint and let

C C C C
A = U{Si,lysi,375i5}7 Ay = U{Sm, 3i,375i,6}7 As = U{Sz’,la 54,2, 52‘,4}, Ay = U{Si,275i,37 81‘,4}7
i=1 i=1 i=1 i=1
Cc Cc C
As = U{Si,27 Si,5, 32‘,6}7 Ag = U{Sm, 5,2, Si,3}, A7 = U{SiAa S35, 5@',6}7
i=1 i=1 i=1
b b b b
By =U{tia tis}, Bo=U{tiz,tin}, Bs=\U{ti1.tin}, Ba=U{tix,tis},
i=1 i=1 i=1 i=1

b b b
Bs =\ {ti1,tia}, Be=\U{ti1,tio}, Br=J{tis tia}.
-1 =1 -1
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Let L be the A-list assignment of G defined as follows:

L() AjuB;UE, fvo=u;;,1<i<a+1,1<75<5,
V)=
AjsUBjsUE, ifv=v;1<i<k-a-11<75<2,

It can be proved that L is A\-list assignment and G is not L-colourable. The proof is a
little complicated, and the details are omitted.

It remains to prove the lower bound that ¢(\) > min{2k + 3a + 3,2k + a + c + 2}.

Assume to the contrary that ¢(\) < min{2k+a+c+2,2k+3a+3} for some A\. We choose
such a multi-set A = {ky, ko, ..., k,} with |A\| = ¢ minimum. Assume that ky =ky=... =k, =1
and 3 < kg1 < koo < ... < kgye are the odd integers in A.

Let n = min{2k + a + ¢ + 2,2k + 3a + 3}. Then there is a k-chromatic graph G with
[V(G)| < n -1 which is not A-choosable. We may assume that G is a complete k-partite
graph with |V (G)| = n—1 and with partite sets Py, Ps, ..., P, such that |Py| > |Pa| > ... > | Pyl
For a positive integer i, let

Li={j:|P| =1}.
Note that |Pi| > 3 (as |V(G)| > 2k). Using the assumption my(1) > 1 and the minimality
of |A|, we can conclude that |P| <4, and if ¢ < 2a + 1, then |Pj| < ¢—2a+ 3. Since a > 1, we
know that ¢ > 2a > 2, and if ¢ =2, then a =1 and |Py| = 3.

Definition 2. A 4-tuple (a1, as,a3,a4) of integers is reducible if
4 4
0<a; <\, Zai =kos1 and 2k 1 +1 < Zz’ai < 2kyiq + 2.
i=1 i=1
Combining with Theorem 4 and the minimality of |A|, we conclude that
Claim 6. There is no reducible 4-tuple.

It follows from Claim 6 that |I5| < k.41 -2 and if ¢ > 3, then |[;]| > %kml and if ¢ = 2, then
|I1] > (ka+1 — 1)/2. Recall that 3 < |Py| < 4. By Claim 6, we can conclude that if |Py| = 4,
then |I| < [fetg2ll | 7| < [RentslBEABIL) 4y and if [Py] = 3, then |I] < [l 4,
This contradicts to |V (G)| =n—12 2k + 1. This completes the proof of Theorem 3.
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