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Abstract—Autonomous drones have been studied in a variety
of industries including delivery services and disaster protec-
tion. As the supply of low-cost drones has been increasing, a
CUAS (Counter unmanned aerial systems) is critical to manage
autonomous drone traffic control and prevent drone flights in
secured areas. For these systems, drone detection is one of
the most important steps in the overall process. The goal of
this paper is to detect a drone using the microphone and the
camera by training deep learning models based on image and
acoustic features. For evaluations, three methods are used: visual-
based, audio-based, and the decision fusion of both features. The
decision fusion of audio and vision-based features is used to
obtain higher performance on drone-to-drone detection. Image
and audio data were collected from the detecting drone, by flying
two drones in the sky at a fixed Euclidean distance of 20m. In
addition, deep learning methods are applied to investigate an
optimal performance. CNN (Convolutional Neural Network) was
used for acoustic data, and YOLOv5 was used for computer
vision. From the result, the decision fusion of audio and vision-
based features showed the highest accuracy among the three
evaluation methods.

Index Terms—drone detection, audio classification, computer
vision, counter unmanned aerial systems, deep learning

I. INTRODUCTION

Recently, the demand for drones has been increasing signif-
icantly. With the growing number of drones, the importance
of small and low-cost drones has considerably been expanded.
The benefits of drones are enormous: operating without a pilot,
applying diverse fields, no high-cost infrastructure, etc. As re-
ported by global market research publishing and management
consulting firm Grand View Research, the size of the global
commercial drone market is expected to flourish to a CAGR
(compound annual growth rate) of 57.5% from 2021 to 2028
[1].

As many drones are commercialized, these are also used for
malicious reasons. Drones have been used to attack and invade,
such as an assassination attempt on the president of Venezuela
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in 2018 [2]. To prevent similar events from occurring, CUAS
has been further developed. In CUAS, it is critical to detect,
track, and eventually destroy malicious drones [3]. Hence, it is
needed to detect drones in order to solve problems of detecting,
tracking, and removing malicious drones, etc.

Researchers have shown that cameras or microphones,
placed on the ground, were handled for malicious drones [4].
However, little is researched based on both vision and acoustic.
Hence, an unprecedented drone detection system using the two
features is introduced. The proposed system detects a flying
drone in the air via image and acoustic data. It is conducted
in the moving area, expanding the CUAS invasion system
between moving drones with a fusion of two methodologies.

Overall, the main contributions of this work can be summa-
rized as follows:

• The high quality of drone-to-drone audio and image data
were collected by distance of 20 to 100 meters manually.

• This paper proposes a novel drone detection scheme that
reduces the error rate, which using decision fusion.

II. RELATED WORK

A. CUAS (Counter Unmanned Aerial Systems)

In recent years, drone flights in the AEZ (Air Exclusion
Zone) have repeatedly occurred. In 2015, a man was detained,
since he flew his drone 100 feet above Lafayette Park near
the White House [5]. Hence, CUAS has been conducted to
prevent these occurrences. To illustrate, the largest air show
in Europe, Airpower 22, successfully provided two eight-hour
performances to 275,000 spectators with AARTOS, which is
the world’s best anti-drone system [6]. CUAS is a system to
detect and track drones that approach protected or secure areas.
Following [7], researchers present a study on a shooting sys-
tem using Class 1 drones, defined as small and transportable,
with a human-in-loop, an autonomous and vision-based sys-
tem. If a target drone is continuously captured in several



Fig. 1. Overview of the drone detection system

frames, a drone pilot changes the mode to autonomous, and
the detecting drone approaches the target drone. A complete
procedure is to move the detecting drone towards the target
drone and put the target drone into an inoperable status. This
research demonstrates that the proposed system depends on a
pilot to be practiced or skilled.

B. Drone Detection using Sensors

1) Radar: Various methods have been used for drone detec-
tion, including Radar, LiDAR, Computer vision, and Acoustic
sensor. Each method has its own strengths and limitations
when detecting drones. Most commercial products that are
widely utilized for drone detection are based on radar. More
specifically, radar is used for binary drone and multi-drone
detection. However, radar is not optimized for detecting drone
made of plastic material or small drones at widely varying
ranges [8]. Furthermore, a lot of false positives are recorded
as it is difficult to distinguish the difference between drones
and other flying objects such as birds [9]. On the other hand,
in this paper, acoustic and vision-based features, which are not
significantly affected by the size or the materials of drones,
are used for drone detection.

2) Camera: In the past few decades, studies related to
drone detection using computer vision have already been
conducted [10][11]. Vision-based object detection method is
accurate enough to classify the binary classes (drone, no
drone) and can localize the actual location. Moreover, a single
camera, a small, self-contained, and portable device, is even
more accessible to perform detection tasks rather than LiDAR
or Radar. Craye [10] and Ulzhalgas [11] used a single camera
to detect drones on the ground, using a computer vision
method. Each author generated an accuracy of 73.5%, and
74.2% respectively on detecting objects from particular frames
of image data based on CNN.

3) Microphone: Using a iPhone as a microphone is easy
to utilize and more affordable for drone detection than other
sensors, such as radar, LiDAR, etc. The author in [4] presented
a drone detection system using multiple acoustic nodes along
with machine learning models. This system evidences that the
models are able to recognize the acoustic signals in a wider
range under 3-dimensional spaces. By using the low-priced
multiple acoustic nodes, this technique can detect drones up
to 75m. Additionally, the paper above deduces that based

on audio features, a method using deep learning has higher
performance than that of machine learning.

4) Fusion: As previously stated, diverse sensors can be
employed to detect drones. As proposed by several papers,
a fusion technique of more than two domains critically influ-
enced academic dialogues on improving the performances of
drone detection. The combination of radar and audio sensors,
the suggested method in [12], can detect and track rotor types
of drones. An electro-optical and acoustic-based fusion system
were deployed to detect, localize, and track drones [13]. In
[14], vision information and IMU (inertial measurement unit)
were collected using a monocular camera. Collected data
processed by end-to-end deep neural network architecture with
feature fusion resulted in less than error of 3%. Also, [15]
achieved an accuracy of 75% that shows the feasibility of a
sensor fusion (RF data and image data) based technique for
drone detection.

III. METHODOLOGY

Fig. 2. A view of two drones while flying at the same time

A. System Overview

Drone data was sectioned into two classes: drone and no
drone. Drone classification was performed to identify the exis-
tence of drones. A required processing flow can be segmented
into five parts displayed in Fig 1.

The proposed system has a single camera and microphone.
The data was collected using a camera of a drone. iPhone
6 was also used as an microphone to record acoustic data.



The conducted experiments were assigned to two drones to
encounter each other in the air. Acoustic and image data were
collected by the detecting drone while hovering. The target
drone moved with a fixed euclidean distance as Fig 2.

Fig. 3. iPhone 6 attached to DJI Mavic 2 Pro

B. Data Collection

1) Environment setting: DJI Matrice 200 V2 and DJI Mavic
2 Pro were used to collect acoustic and image data. Acoustic
data were collected using iPhone 6 attached to Mavic 2 Pro
as shown in Fig 3, and image files were collected using the
built-in camera, while both drones were flying in the air. DJI
Mavic 2 Pro, which has a built-in camera and a microphone,
is defined as a Detecting Drone, and DJI Matrice 200 V2 is
defined as a Target Drone. This paper analyzes not only the
hovering data but also the data with the target drone moving
within the screen of the detecting drone.

The acoustic signal was recorded in a “wav” format, and
the sampling rate is 44.1kHz. The noises contain the sounds
of insects, airplanes, human voices, animals including birds,
and ground vehicles such as tractors and trucks. For the vision
part, the image data were recorded in the same environment
with different weather conditions.

C. Feature extraction

1) Audio: In [16], splitting acoustic data into one second
showed the highest performance than other time intervals when
training the deep learning model. Therefore, the acoustic data
are split into one second for audio segmentation [17]. Pitch
shifting is used for data augmentation. Pitch shifting is a
method to raise or lower the pitch of the audio sample without
affecting the speed of the sound. In [18], pitch shifting aug-
mentation showed the greatest positive impact on performance
and is the only one that does not have any negative impact
on any classes of environmental sound classification. In order
to classify the drone sound, MFCC (Mel Frequency Cepstral
Coefficients) is used, which is a non-linear mapping of the
original frequency according to the auditory mechanism of
the human ear [8].

Furthermore, MFCC is widely used for audio classification
and successfully used with machine learning [19][20] and deep
learning approaches [21][22]. Also, it offers useful features
for capturing periodicity from the fundamental frequencies
brought on by the rotor blades of a drone [23]. In the acoustic
analysis, the MFCC features are extracted using Librosa[24]
from the Python package. In [21][23], an experiment was

conducted with various numbers of MFCC such as 20 or
40, by extracting various features. In this paper, results are
extracted with four different sizes of MFCC features. These
values include 20, 40, 80, and 120 sizes to obtain diverse
results. Each data for one second is composed of 44xN size.

Fig. 4. YOLOv5 Architecture

2) Vision: In order to train the model for drone detection,
all the ground truth objects in the images need to be labeled
first. This dataset is labeled using the “LabelImg” [25], which
is an open source tool.

To extract image features, CBL (Convolution with Batch
normalization and Leaky ReLU), SPP (Spatial Pyramid Pool-
ing), and CSP (Cross Stage Partial) were used in the back-
bone layer of YOLOv5 [26]. The backbone network extracts
feature maps of various sizes from input images through the
convolution layer and pooling layer. The overall structure is
shown in Fig 4. First, CBL is a block that is essentially used
to extract features consisting of the convolution layer, batch
normalization, and leaky ReLU. SPP improves performance
by pooling various sizes of feature maps with filters and then
merging them again. The CSP divides the feature map of the
base layer into two parts to reduce the heavy inference compu-
tations caused by duplicate gradient information. Then, it was
combined again in the cross-stage hierarchy method proposed
in [27]. This way, the extended gradient information can have
a large correlation difference by switching the concatenation
and transformation steps. Furthermore, CSP can significantly
reduce computational effort and improve inference speed and
accuracy.

5 Backbone networks - YOLOv5-n,s,m,l,x are used. Each
model is distinguished by depth multiple and width multiple.
The larger the depth multiple value, the more BottleneckCSP()
is repeated to become a deeper model. The larger the
width multiple, the higher Convolution filter number of the
corresponding layer.

D. Deep learning models

1) Audio: Among various classifiers, CNN is used as shown
high performance in audio signal classification with spectral
features such as MFCC [28]. The architecture of our CNN
model is shown in Table I.

The learning rate set 0.0001 with TensorFlow Keras op-
timizer, Adam. In addition, Early Stopping is used for pre-
venting the model from being overfitted. The two activation



functions, sigmoid and softmax, are used for evaluating final
performance. The activation function of Sigmoid shows the
best performance.

TABLE I
THE CNN MODEL SUMMARY WITH 44X80 INPUT SIZE

Layer Type Output Shape Parameters
Conv2D (None, 44, 80, 32) 832
Conv2D (None, 44, 80, 32) 25632

MaxPooling2D (None, 22, 40, 32) 0
Dropout (None, 22, 40, 32) 0
Conv2D (None, 22, 40, 64) 18496
Conv2D (None, 22, 40, 64) 36928

MaxPooling2D (None, 11, 20, 64) 0
Dropout (None, 11, 20, 64) 0
Flatten (None, 14080) 0
Dense (None, 256) 3604736

Dropout (None, 256) 0
Dense (None, 2) 514

2) Vision: Image classification generally refers to images
in which only one object is visible and analyzed. In contrast,
object detection includes classification and localization tasks
for analyzing more realistic situations where multiple objects
may be present in an image [29].

The object detection model can be divided into two main
types: one-stage model and two-stage model. Compared to
other two-stage object detection models including R-CNN[30]
and Faster R-CNN [31], one-stage models such as YOLO [32]
can calculate fast enough to conduct real-time object detection
tasks. Therefore, YOLOv5 is selected as the appropriate model
for drone detection in this research. Since object detection for
CUAS have to be implemented in real-time.

The YOLOv5 model can be represented by YOLOv5-
n,s,m,l,x depending on the capacity of the model and the
number of parameters. Models with large capacities such as
YOLOv5x can increase accuracy but have a slow operation.
Conversely, a lightweight model such as YOLOv5n is fast, but
it can not get outstanding performance in accuracy.

IV. EXPERIMENT

TABLE II
THE NUMBER OF ENTIRE DATASET

Type of data Class Audio Image Augmented Total times (s)
Train drone 1055 1055 1055 4220

no drone 1055 1055 1055
Validation drone 300 300 300 1200

no drone 300 300 300
Test drone 154 154 - 308

no drone 154 154 -

A. Audio

1) setup: In total, there are 4220 samples for training, 1200
samples for validation, and 308 samples for testing. For CNN
model, the input data size is 44xN which is the same as each

size of MFCC features. The CNN model is trained with a
different number of MFCC features and activation functions.
Fig 5. shows the result of confusion matrix.

Fig. 5. Result of Confusion Matrix of Acoustic data

2) training & testing: The overall results are described
in Table III with the different activation functions and the
number of MFCC features. From the results, the model with
the highest performance showed an accuracy of 88.9%. Also,
the model was well trained without being overfitted by using
early stopping technique.

TABLE III
RESULTS FOR CNN MODELS IN ACCURACY

Activation n mfcc 20 n mfcc 40 n mfcc 80 n mfcc 120
Softmax 0.866 0.886 0.886 0.866
Sigmoid 0.870 0.873 0.879 0.889

B. Vision

1) setup: The training and validation dataset for the vision
task includes 5420 images, and the dataset for testing includes
308 images, totally equaled with the number of acoustic data.
In addition, data augmentation was introduced to prevent
overfitting. Three types of methods, horizontal flip, noising,
and blur, were mixed. Input images are fixed with the size of
640 x 640 demanded by YOLOv5. For the hyperparameters,
the batch size is 16, and epochs are 50. SGD (Stochastic
Gradient Descent) is used for YOLOv5 as an optimizer. In
this paper, the comparison of experiments with 5 different
YOLOv5 models figures out which model is appropriate for
the drone-to-drone detection tasks.

2) training & testing: In order to compare five different
YOLOv5 models, all experiment environments were totally
set to be same, shown to Table IV and Table V. Comparing
among five models with Model inference time, the YOLOv5n
model showed the best performance.



TABLE IV
TRAINING RESULTS FOR YOLOV5 MODELS IN MAP, PRECISION,

RECALL, F1-SCORE

Models mAP 0.5 mAP 0.5:0.95 Precision Recall F1-score
YOLOv5n 0.840 0.390 0.780 0.861 0.82
YOLOv5s 0.870 0.377 0.763 0.870 0.81
YOLOv5m 0.860 0.378 0.806 0.944 0.81
YOLOv5l 0.821 0.358 0.784 0.991 0.79
YOLOv5x 0.851 0.372 0.835 0.991 0.80

TABLE V
TESTING RESULTS FOR YOLOV5 MODELS IN MAP, PRECISION, RECALL,

F1-SCORE

Models mAP 0.5 mAP 0.5:0.95 Precision Recall F1-score
YOLOv5n 0.904 0.574 0.940 0.696 0.82
YOLOv5s 0.922 0.583 0.855 0.824 0.81
YOLOv5m 0.904 0.570 0.793 0.809 0.81
YOLOv5l 0.822 0.602 0.694 0.971 0.79
YOLOv5x 0.902 0.636 0.669 0.926 0.80

C. Result

Therefore, the decision fusion of vision and acoustic fea-
tures is considered the stronger drone detection method that
can compensate for each other’s shortcomings. Also, this
method shows higher accuracy compared to the results of each
previous experiment.

For the decision fusion, “OR” operation is used to fuse
the final result of CNN and YOLOv5, which is referred to
[33]. Before processing the fusion, the accuracy for vision is
90.26% and the accuracy for acoustic is 88.96%. However,
after applying the OR function to the result of vision and
acoustic, the accuracy is improved to 92.53%. The result can
be also described as a graph shown in Fig 6.

Fig. 6. The graph showing the result of OR function

V. CONCLUSION AND FUTURE WORK

A. Conclusion

Utilizing both the acoustic and vision-based features en-
abled the drone detection system that is indispensable for
CUAS. Two drones were flying at the same time for drone

detection, rather than recording from the ground. The result
shows that it is possible to classify the target drone sound
regardless of the noise of the detecting drone.

B. Limitation

The proposed research has a limitation of hovering a detect-
ing drone at the same location rather than moving in the air. In
addition, the microphone of the iPhone 6 for audio recording
had a lower performance than that of the latest iPhones, or
other professional microphones. Nevertheless, this is also a
disproof that the drone-to-drone detection task could still show
sufficient results only by using the acoustic device with low
performance.

C. Future work

It is necessary to develop a complete real-time method
connected to one end-to-end process detection system through
further research. Moreover, drone detection, using different
numbers of drones by changing the movement of drones, needs
to be researched to make future research applicable in a real
environment or general situations.

Indeed, the range of availability of the drone-to-drone task
needs to be specified. Expanding the experiments based on the
paper, a wider range of Euclidean distance, rather than 20m,
would be conducted to collect target drone data. Eventually,
finding the maximum Euclidean distance range available for
drone detection can be researched.
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