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Abstract

This paper explores the problem of position and speed estimation of a target using satellite-based
measurements in a Lie Group Kalman-like filter. The filter employs an intrinsic formulation of
a nearly constant velocity model based on the Frenet-Serret frame, embedded in a Lie Group
structure. It stands as a more suitable model for the kinematics of a target in space than the usual
Euclidean model since it induces a banana-shaped distribution instead of the typical ellipsoidal
provided by Gaussian schemes. The paper presents numeric experiments using a real application
dataset to evaluate the proposed filtering scheme’s performance against the standard Euclidean
representation approach. A differential GNSS solution provided by commercial software furnishes
the ground truth. The results indicate a better performance of the proposed Lie Groups filtering

scheme.
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Today’s most commonly used navigation system is the
Global Navigation Satellite System (GNSS). It consists
of different constellations of satellites such as GPS,
GLONASS, Beidou, and Galileo (Subirana et al., 2013).
The main advantage of satellite-based navigation is that
it provides absolute positioning and global coverage with
long-term accuracy. Moreover, due to its relatively low cost,
this type of navigation is primarily adopted for commercial
use (Farrell, 2008).

The GNSS positioning principle relies on solving a geomet-
ric problem involving a user’s distances (ranges) to a set
of at least four satellites with known coordinates (Groves,
2013). The usual approach to obtaining a trajectory solu-
tion is using the Kalman Filter. The satellite measurements
are combined with a prior kinematic model to yield the
final solution in this approach.

Existent methods for solving the GNSS include the premise
that the system state follows a Gaussian distribution with
a representation in the Euclidean space. Some examples
are (Pulford, 2010; Takasu and Yasuda, 2007; Sahmoudi
and Landry, 2009). However, recent works have shown
that banana-shaped distributions for some systems, such
as differential-drive robots (Long et al., 2012) and aerial
targets (Magalhaes et al., 2018) and aerial targets more
appropriately represent the uncertainty in their movements.

For these cases, the Gaussian assumption can compromise
the filtering performance. In addition, (Long et al., 2012)
shows that although the use of exponential coordinates
yields a banana-shaped distribution in the Lie group, the
distribution in the respective algebra remains Gaussian.
Therefore, a representation of the system state in a matrix
Lie group structure instead of the Euclidean space is

bound to render a more suitable approach for scenarios in
which a rigid body performs simultaneous translations and
rotations.

Especially for aerial vehicle applications, e.g., drones
and airplanes, it is reasonable to expect that the state
distribution is banana-shaped. As described in detail in
(Magalhaes, 2021) for radar tracking application, the curved
shape of the state distribution could better explain the
simultaneous existence of uncertainties in speed and angular
velocity of the target movement.

Besides, filtering strategies usually neglect the geomet-
rical constraints associated with the system, while Lie
group-based filters can naturally consider such restrictions
(Barrau and Bonnabel, 2020).

From this standpoint, one can expect that the GINSS
processing could also benefit from the Lie group structure
to represent the kinematic states. Accordingly, this work
proposes applying the Lie group theory to the GNSS
processing problem to leverage the advantages above of the
Lie Group to satellite-based navigation systems.

More specifically, an intrinsic formulation of a nearly
constant velocity model is adopted based on the Frenet-
Serret frame. A matrix Lie Group accommodates the
uncertainties on position, speed, and the Frenet-Serret
frame orientation. After that, the filter is developed directly
on Lie groups. The noise considered is Gaussian in the Lie
algebra space, which induces a banana-shaped distribution
in the Lie group.

In the literature, one can find applications of the Lie
Group framework that combines GNSS solution (processed



separately with a Euclidean filter) with other sensors such
as IMU, cameras, Lidar, etc. (see (Cui, 2021; Barczyk and
Lynch, 2013; Barrau and Bonnabel, 2018)). However, to
the best of the authors’ knowledge, this is the first work
that directly employs a Lie Group structure on raw GNSS
data processing.

Finally, we compare the classic Kalman filter and the
one proposed here using raw data from a GNSS receiver
installed on a hexacopter. The performance is evaluated in
the position Root Mean Squared Error (RMSE) terms. As
ground truth, we consider the GNSS differential solution
from the commercial software Inertial Explorer®, which
provides centimeter-level precision.

This paper reads as follows. Section 1 briefly introduces
the main concepts of the Lie groups theory and filtering
algorithms on Lie Groups. Section 2 presents the equations
regarding the GNSS measurements. Section 3 describes an
intrinsic formulation of a nearly constant velocity model
on Lie Groups. This topic is followed by experimental
evaluations using a real dataset in Section 5. Concluding
remarks are provided in Section 6.

1. KALMAN FILTERING ON LIE GROUPS
1.1 Lie Group Theory

A Lie group is a mathematical structure that joins the
concept of a differentiable manifold with the idea of a group
(Hall, 2007). It is defined as a group whose set G has the
structure of a smooth manifold so that the group operation
is differentiable. The group elements are invertible square
matrices for a matrix Lie Group, and the group operation
is the usual matrix product.

A Lie algebra is a vector space equipped with the so-
called Lie bracket product [-,-]. The importance of the
Lie algebra lies in the fact that most of the properties of
the Lie group come from properties in the Lie algebra. In
addition, the vector space properties of the Lie algebra
enable a more convenient framework to perform many of
the manipulations on Lie group elements. For matrix Lie
groups, the associated Lie algebra is the vector space of
square matrices, and the Lie bracket is the commutator
[X,Y]=XY -YX.

The exponential map establishes the relationship between

the Lie group and its Lie algebra. For the matrix Lie group,

it reduces to the matrix exponential. Specifically, let G

be a matrix Lie group and let g be its Lie algebra, the

exponential map expg : g — G is given by g = exps(X) =
o X" where X € gand g € G.

In general, the exponential map is not bijective. However, it
is possible to show that there exist open neighborhoods of
the identity element I on the Lie group and of the identity
element 0 on the Lie algebra for which the exponential map
is a diffeomorphism ! . Restricted to these open sets, we
define the logarithm map log, : G — g as the inverse of
the exponential map.

1A diffeomorphism is an isomorphism between differentiable man-
ifolds. A differentiable invertible function between manifolds with
differentiable inverse.

Since the Lie algebra is a vector space, it can represent
any of its elements in the form, X = >% | 2, F; where
X €g,zi € Rand B={E,...,E,} form a basis for the
Lie algebra. The value p is said to be the dimension of the
Lie Group.

Therefore, when working on the Lie algebra, instead of
manipulating the elements X as matrices, one can work
with the exponential coordinates x; associated with the
basis B. With that in mind, the coefficients are written as
a vector x = [z1,...,7,]7, and the following isomorphism

is defined,
(1G9 — R [1G R —g (1)
X e [X]g x — [2]g
For brevity, the following notations are used hereafter,
expg (x) := expg([z]G), (2)
log&(g) = [loga(9)]é (3)

where x € RP and g € G.

The exponential map can be interpreted as a parameteri-
zation for the Lie Group in local coordinates around the
identity element. This parameterization can be extended
to the neighborhood of any element p € G in a con-
nected Lie group using the Left Translation as follows,
Zu(€) = pexpg(e), Ve € RP. Since the exponential map is
locally a diffeomorphism, there exist open neighborhoods
of u € G and of 0 in R? for which this parameterization is
one-to-one.

The Lie theory also defines two adjoint representations.
The first one represents the Lie group on its Lie algebra,
i.e. it is the linear map that takes an element of the Lie
group to a linear transformation in the Lie algebra, and it
is defined as (see (Chirikjian, 2011))

Ade(9)y = [9lylag ™ (4)
where g € G, y € RP. The second adjoint representation is
the representation of the Lie algebra on itself so that each
element of the Lie algebra defines a linear transformation
in the Lie algebra. This adjoint representation is defined
by the Lie bracket (Chirikjian, 2011) in the form

\

ad (2)y = [[al& 16 — W& RS) (5)

where z,y € RP.

Furthermore, in many applications of the Lie group,
particularly in filtering, one is interested in analyzing the
behavior of a Lie group element g € G as a function of time
and, naturally, it’s derivative regarding time, §¢(¢). From
the theory of differential manifolds, ¢(¢) is a vector in the
vector space tangent to the Lie group G at the element

g(t), ie. 4(t) € Ty G.

If we consider a local parameterization in the form g =
expgy(x), then the relation between the time variation of g
to the time variation of the local coordinates x, represented
in the Lie algebra, as follows,

g9 = (@)ilg (6)
where J,.(x) is refereed in the literature as right-Jacobian
matriz (Chirikjian, 2011) and it is computed as

(_71)16! adg(z)". (7)
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Figure 1. Concentrated Gaussian Distribution in the
neighborhood of the identity element. Note the curved
shape on the Lie Group but Gaussian in the tangent
space.

1.2 Random Variables on Lie Group

Given a Matrix Lie Group G C R™*" a random matrix
X € G with pdf p(X), mean p € G and covariance
P = PT > 0 is defined by

Onn = [ Jogl(n X0p(X)X. (®)
G

P=/ logéy (™' X) log s (' X)Tp(X)dX.  (9)
G

From this standpoint, the concept of Concentrated Gaus-
sian Distribution (CGD) (Bourmaud et al., 2014) is used to
define a probability density tailored to matrix Lie groups.
The mean is defined in the group and the covariance in the
Lie algebra. Accordingly, a random variable on a matrix
Lie group is expressed as

X = pexpg(e), €~ N(0,P), (10)
and the pdf of X takes the form
1 _
() = aow (~3llogb (e X)p- ) (D

where a € R is a normalizing factor.

Let ¢ = logl(u~'X) and assume that P has small
eigenvalues, then the probability p(uexpgi(e)) presents a
mass concentrated around the group identity. In this case,
the distribution of € in the Lie Algebra becomes the classical
Gaussian distribution, i.e. € ~ N (0, P). In correspondence,
the distribution of X is called a Concentrated Gaussian
Distribution (CGD) on G and it is denoted by X ~
N6 (u, P). Fig. 1 illustrates the tangent space and the
respective Gaussian distribution mapped to the Lie Group.
Note that the element from the tangent space is mapped
to the group through the exponential map, which results
in a curved distribution. The CGD requires the Lie group
to be unimodular and connected to allow the shift of any
element in the group via the group translation (Bourmaud
et al., 2013).
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Figure 2. Comparison between the usual Gaussian and the
Concentrated Gaussian distribution. Notice that the
CGD shows a banana-shaped form while the Gaussian
has an ellipsoidal shape.

Figure 2 shows a Monte Carlo simulation of a random
variable following a CGD. Note that, as expected, the
samples form a banana-shaped cloud.

1.8 Dynamic System

Once a r.v. is defined on a Lie Group, a stochastic dynamic
system can be modeled such that its states are embedded on
a matrix Lie Group G. Let X € G C R"*"™ be the system
state. Let the following stochastic differential equation
express the system state evolution,

X = X[Q(X,u) +w]} (12)

where Q : G x R™ — RP is the left velocity function and w
is a multidimensional white noise with covariance .. Also,
consider that measurements are available in discrete-time
instants in the form

Y1 = h(X) + vk (13)
where y, € R™ is the measurement vector, h : G — R™

is the measurement model and vy i N(0, R) is the
measurement noise. For a small sample time At, the discrete
form of the dynamic system Eq. (12) can be approximated
as,

Xir1 = X expgy (X, ug) At + wy), (14)

where wy, %IN(O, Q) and Q = Q.At. For convenience,
denote Qy, 1= Q( Xy, uy)At.

1.4 Kalman Filter on Lie Groups

Based on the definition of r.v. and stochastic dynamic
system on Lie Groups, one can employ the Kalman Filtering
framework to generate estimates of a dynamic system state
evolving on a Lie Group. The Discrete Extended Kalman
Filter (D-EKF) on Lie Group (Bourmaud et al., 2013, 2016)
is summarized by the following equations,



XkJrl\k = Xk\lc GXP@(Qk), (15a)
Pyyaje = FPup FT + o () Qu o ()T (15b)
K= Pk+1|k%T(Rk+1 + %Pk+1|k%-r)71 (150)

Xttt = X1 expy (K log & [h(Xigan) " yrt])
(15d)

Pryipprr = (I — KA)Pryi(9)T + KR KT (15e)
where

F = Adg(expg(—ﬂk)) + Jr(Qk)(fk (15f)
o N
= L% et ©)]] (158)
0 . .
H = aIOg\C/J[h(Xk+1|k)71h(Xk+1|k expg(e))] Y
(15h)

2. GNSS MODEL

The basic measurement provided by a GNSS system is
the travel time 07 of the signal to propagate from the
phase center of the satellite antenna (the emission time)
to the phase center of the receiver antenna (the reception
time). This value multiplied by the speed of light gives the
apparent range p = ¢dT between them. This measurement
is what is known as the pseudo-range (Subirana et al., 2013).
It is called pseudo-range because it does not match the
geometric distance due to, among other factors, atmosphere-
induced delays and time synchronization errors between
receiver and satellite clocks. The actual geometric range (p)
is the Euclidean distance between the satellite and receiver
antenna.

Therefore, the pseudo-range measurement (p) obtained
by the receiver includes, besides the geometric range,
other terms such as the ionosphere and troposphere delay,
relativistic effects, and instrumental delays (of satellite and
receiver), multipath and receiver noise. Taking explicitly
into account all these terms, as in (Subirana et al., 2013),
the pseudo-range model from the i-th visible satellite can
be stated as follows

Pr=p 4 0ply + AT + Tr' + I' + TGD' + € (16)
where

p" = |IPsas — Pll2 (17a)

AT = Atyey — Atlg o — At (17b)

Here, pi, stands for the i-th satellite position, p is
the desired receiver position, At,., is the receiver clock
synchronization error, Atlg . is the satellite clock drift,
TGD?! is the Total Group Delay and € is a white noise
accounting for multipath and receiver noise, §p’, and At?,
are the range and clock errors due to relativistic effects,
respectively, which are calculated from the satellite orbit.
Furthermore, Tr* and I’ stand for the troposphere and
ionospheric effects. These effects are the main source of
accuracy degradation in the GNSS measurements for open
sky applications.

The troposphere-induced error depends on the temperature,
pressure, humidity, time of the day, and transmitter and
receiver locations. In contrast, the ionospheric induced error
depends on the electron density in the atmosphere, which
is typically driven by sun radiation. Fortunately, both tro-
posphere and ionospheric effects can be partially mitigated
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Figure 3. Earth’s atmosphere consists of the ionosphere
and troposphere layers. Notice the difference between
the geometrical range and the pseudo-range.

using a mathematical model, for instance, the Klobuchar
model for the ionospheric part and the Saastamoine model
for the troposphere part (see (Grewal et al., 2013)).

Figure 3 depicts (without scale) the Earth atmosphere and
the geometric versus pseudo-range distances.

Accordingly, for a set of M visible satellites, the measure-
ment model can be written as

p
with U? = 6pl; — cAtl,, + Tr' + I' + TGD".

P! Pt — pll2 + cAL + UL + ¢

P’ Ipls, — plla + cA + W2 + €2
yi=1.|= | a8)

M IpM, — plla + cAt + UM 4 M

The satellite noises are assumed to be zero-mean Gaussian,
ie. € ~ N(0,(0%)") with its standard deviation in the
form, ‘ ‘

o = a+ bexp(—c¢') (19)
where ¢’ is the satellite elevation angle. Note that as the
elevation angle decreases, the noise variance increases. This
is because satellites with low elevation show higher noise
intensity.

3. KINEMATIC MODEL
3.1 Nearly Constant Velocity

For GNSS applications with moving targets defining a prior
kinematic model is common. The most used model is the
Nearly Constant Velocity (NCV) (Bar-Shalom et al., 2001)
due to its simplicity. In the Euclidean representation, it is
given as,

p=v (20a)

U =w (20b)
where p € R3 is the position, v € R? is the velocity, and
w € R? is a zero-mean Gaussian noise. This means that the
acceleration is nearly zero up to a zero-mean perturbation;
hence, the model represents a nearly constant velocity
target.



Figure 4. Frenet-Serret frame with ECEF as a reference
frame.

However, the Euclidean formulation (20) disregards any
geometrical property of the path. In contrast, this work,
motivated by the initial studies on radar tracking presented
in (Magalhaes, 2021), proposes the adoption of an alterna-
tive formulation of NCV based on the Frenet-Serret frame
embed on a Lie Group.

The advantage of the Frenet-Serret frame is that it allows
one to model the path independently of an external
coordinate system’s choice and summarize the course’s
characteristic exclusively through two scalar parameters:
curvature k£ and torsion 7.

The Frenet-Serret frame is defined by a tangent vector
T € R3, a normal vector N € R?, and a bi-normal vector
B € R3 Let F = [I' N B]T. Thus, the Frenet-Serret
dynamic model in compact form can be stated as

(21)

Accordingly, the position of a target can be determined by
the position of the Frenet-Serret frame in space regarding
a reference frame. For GNSS, the Earth-Centered-Earth-
Fixed (ECEF) is the most convenient reference frame, as
all satellite measurements are available in this frame.

Figure 4 illustrates the Frenet-Serret frame with the ECEF
as reference. It is important to stress that the orientation of
the Frenet-Serret frame is not necessarily the body frame,
which defines the target’s attitude. There is no information
about the target attitude in GNSS-only navigation with a
single antenna.

For the nearly constant velocity scenario, as described in
(Magalhées, 2021), one has 7 = k = 0, which results in the
following kinematic equations

C = Clwy], (22a)
15 = Cel'Us + Celwva (22b>
Vs = Wy (22c¢)

where C € SO(3) is the rotation matrix from the Frenet-
Serret to the ECEF frame, p = [z, vy, 2T € R? is
the receiver position in the ECEF frame, e; = [1 0 0]T,
we ~ N(0,02%), w, ~ N(0,0%),w, ~ N(0,02) are zero-
mean Gaussian noises accounting for uncertainties on
the Frenet-Serret orientation, velocity and acceleration,
respectively. Here, [w*] stands for the skew-symmetric
matriz and for any w € R3 is defined as

0 —Ws3 W2
[wX] = lwg 0 —wll . (23)

—Wy W1 0

An exciting feature of the model (22) is that the velocity
vector is constrained to always be tangent to the trajectory
even with the noise addition.

The Lie group structure SE(3) x T(2) is adopted to
represent the system state in the form

(24)

X7

In addition, vs = ||v|| € R is the target speed and cAt € R
is error due to the GNSS clock receiver offset (assumed
nearly constant, e.g. cAt = wq with wg ~ N (0, 03)). The
respective Lie Algebra element is, thus, in the form

where w € R3, 0, € R?, 0, € R and 65 € R. It is
straightforward to check that the left velocity function
for this case is

. O3><1
QX u) = [X'X]Y = |eqvs , (26)
0251 8x1
and the adjoint representations are
Ade(X) = : (27)
adg(z) = (28)

4. GNSS SOLUTION

After establishing the prior kinematic model for the target
and the measurement model for the GNSS, the Kalman
Filter can be implemented following Eq. (15).

Figure 5 shows the resulting GNSS system in action.
Notice that because of the adoption of the intrinsic nearly
constant velocity model, described in Section 3.1, the
position prediction will present a curved-shape distribution
by construction, a CGD created in the group.
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Figure 5. Simplified schematic of GNSS system using
intrinsic NCV model on Lie Groups.

5. EXPERIMENT

In order to evaluate the performance of the proposed
filtering scheme, a real dataset obtained from a hexacopter
flight is employed. The data comes from a single antenna
GNSS receiver ublox® ZED-F9 installed on a DJI® M600-
pro hexacopter. The receiver sample rate is 1Hz, and all
data are available in raw format. For simplicity, only the
GPS constellation is processed in this example.

The GPS satellite’s position is computed from the broad-
casted ephemeris data. Figure 6 shows the visible satellite
during the entire flight. An elevation mask of 12° is applied
to discard too low-elevation satellites during the filtering
process. The horizontal flight profile is shown in the Figure
7 and the vertical profile in Figure 8. All parameters
utilized in the filter algorithm are summarized in Table 1.

6

-20.0645

-20.065 -

-20.0655 -

-20.066 [

-20.0665 [

-20.067

-20.0675

Latitude (deg)

-20.068

-20.0685

-20.069

Y
L

-42.816

-20.0695 : 3 :
-42.821 -42.819 -42.818 -42.817

Longitude (deg)

-42.82 -42.81¢

Figure 7. Horizontal flight profile.

700

680 - 1

660 1

Height (m)
(2]
Y
o

(<2}
N
o
T
I

600 1

580 1

560 I I I I I
400 600 800 1000

Time (s)

1200

Figure 8. Vertical flight profile.
Table 1. Model parameters.

Parameter Value
Oa 3(m/s> N
oy T7(m/s)/\/s
Oec (]Jrad/\/g
(o] 30"”/\/5

a 0.1
b 5
c 2/(/2)

Moreover, the filter initial covariance was set to
Py = diag((10°)%,(10°)?, (20°)?,
(10m)?, (10m)?, (10m)?,
(1m/s)?, (1000m)?).
Two filters were implemented for this comparison. One was

based on the NCV model using Euclidean representation,
and the second was based on the NCV using the Frenet-



Table 2. RMSE comparison.

ECEF H Euclidean ‘ Lie-Group ‘ Gain
x 1.385m 1.278m 7.70%
y 1.428m 1.210m 15.27%
z 0.966m 0.900m 6.79%
p 1.277m 1.142m 10.59%

Serret frame on Lie Groups, described in Section 3. The
parameter’s values from Table 1 are the same for both
filters.

After processing the raw data using the Euclidean and
Lie Group filters, the error against the ground truth was
computed. The resulting RMSE, for each ECEF coordinate
and the position vector, are shown in Table 2 with the
respective performance gain. In addition, Figure 9 shows
the resulting error histogram for both filters. One can notice
that the red histograms (Lie Group filter) appear closer to
the normal distribution and show a smaller bias than the
blue one (Euclidean filter). This indicates an overall better
performance of the proposed Lie Group-based filter.

6. CONCLUSION

The paper proposed, implemented, and tested an alter-
native formulation of the usual nearly constant velocity
model for GNSS tracking. The formulation employs the
Frenet-Serret frame embedded in a Lie Group, furnishing
the dynamic model for a Kalman-like filter in Lie Groups.
As a result, the uncertainty distribution in position becomes
banana-shaped instead of ellipsoidal. This alternative for-
mulation is more appropriate for capturing the characteris-
tics of a rigid body performing simultaneous translations
and rotations in space, such as drones and airplanes. A
numeric experiment using raw data from an actual GNSS
receiver shows that the NCV Lie Group-based approach
yields better results (about 10% in position RMSE) than
the usual Euclidean method. The results demonstrate that
the proposed filtering scheme is applicable for real scenarios
and could help improve satellite-based navigation systems.

ACKNOWLEDGEMENTS

This work was supported in part by the Coordenacao de
Aperfeigoamento de Pessoal de Nivel Superior (CAPES),
Brazil Finance Code 001 under Grant 88887.342183/2019-
00; in part by the Conselho Nacional de Desenvolvimento
Cientifico e Tecnoldgico (CNPq) under Grant 303352/2018;
and in part by FAPESP under Grant 2016/08645-9.

The authors would like to thank the Radaz Industria e
Comércio de Produtos Eletronicos S.A. for providing the
GNSS data for this work.

REFERENCES

Bar-Shalom, Y., Li, X.R., and Kirubarajan, T. (2001). Es-
timation with Applications To Tracking and Navigation,
volume 9. John Wiley & Sons.

Barczyk, M. and Lynch, A.F. (2013). Invariant observer
design for a helicopter UAV aided inertial navigation sys-
tem. IEEE Transactions on Control Systems Technology,
21(3), 791-806.

Barrau, A. and Bonnabel, S. (2020). Extended Kalman Fil-
tering with Nonlinear Equality Constraints: A Geometric

X
0.6 . —
[ Euclidean
- [CLie Group
047 1
o
S
o
Lo2
0
-4
error (m)
y
0.6 " "
[ Euclidean
- [C"Lie Group
S04f
)
S
o
202
0
4 -2 0 2 4
error (m)
Z
0.8 T —
[ Euclidean
0.6 T Lie Group

frequency
o
N

o
(N

-4 -2 0 2 4
error (m)

Figure 9. Error histogram of each ECEF coordinate. Notice
that, for each coordinate, the red histogram is slightly
closer to a normal distribution compared with the blue
histogram, indicating a better estimation performance.

Approach. IEEFE Transactions on Automatic Control,
65(6), 2325-2338. doi:10.1109/TAC.2019.2929112.

Barrau, A. and Bonnabel, S. (2018). Invariant Kalman
Filtering. Annual Review of Control, Robotics, and
Autonomous Systems.

Bourmaud, G., Giremus, A., Berthoumieu, Y., and Bour-
maud, G. (2013). Discrete extended Kalman filter on lie
groups. In 21st European Signal Processing Conference.
Marrakech, Morocco.

Bourmaud, G., Mégret, R., Arnaudon, M., and Giremus,
A. (2014). Continuous-Discrete Extended Kalman Filter
on Matrix Lie Groups Using Concentrated Gaussian
Distributions. Journal of Mathematical Imaging and
Vision, 51(1), 209-228.

Bourmaud, G., Mégret, R., Giremus, A., and Berthoumieu,
Y. (2016). From Intrinsic Optimization to Iterated



Extended Kalman Filtering on Lie Groups. Journal
of Mathematical Imaging and Vision, 55(3), 284-303.
Chirikjian, G. (2011). Stochastic Models, Information The-
ory, and Lie Groups - vol2. Springer Science+Business

Media.

Cui, J. (2021). Lie group based nonlinear state errors
for MEMS-IMU / GNSS / magnetometer integrated
navigation. The Journal of Navigation, 1-14.

Farrell, J.A. (2008). Aided Navigation Systems: GPS and
High Rate Sensors. McGraw-Hill.

Grewal, M.S., Andrews, A.P., and Bartone, C.G. (2013).
Global Navigation Satellite Systems, Inertial Navigation,
and Integration. Wiley, 3th edition.

Groves, P.D. (2013). Principles of GNSS, Inertial, and
Multisensor Integrated Navigation Systems 2nd. Artech
House.

Hall, B. (2007). Lie Groups, Lie Algebras and Representa-
tions: An Elementary Introduction. Springer.

Long, A.W., Wolfe, K.C., Mashner, M.J., and Chirikjian,
G.S. (2012). The Banana Distribution Is Gaussian: A
Localization Study with Exponential Coordinates. In
Robotics: Science and Systems.

Magalhaes, G.d.M. (2021). Radar aerial target-tracking on
Lie groups. Master Thesis, UNICAMP.

Magalhaes, G.D.M., Dranka, E., Caceres, Y., Do Val, J.B.,
and Mendes, R.S. (2018). EKF on Lie Groups for radar
tracking using polar and Doppler measurements. In 2018
IEEFE Radar Conference, RadarConf 2018, volume 1573,
1573-1578.

Pulford, G.W. (2010). Analysis of a nonlinear least squares
procedure used in global positioning systems. IEEFE
Transactions on Signal Processing, 58(9), 4526-4534. doi:
10.1109/TSP.2010.2050061.

Sahmoudi, M. and Landry, R. (2009). A nonlinear filtering
approach for robust Multi-GNSS RTK positioning in
presence of multipath and ionospheric delays. IEEFE
Journal on Selected Topics in Signal Processing, 3(5),
764-776. doi:10.1109/JSTSP.2009.2033158.

Subirana, J., Zornoza, J., and Herndndez-Pajares, M.
(2013). Gnss Data Processing, volume I. ESA Com-
munications.

Takasu, T. and Yasuda, A. (2007). Development of the
low-cost rtk-gps receiver with an open-source program
package rtklib. Conference.



	Kalman Filtering on Lie Groups
	Lie Group Theory
	Random Variables on Lie Group
	Dynamic System
	Kalman Filter on Lie Groups

	GNSS Model
	Kinematic Model
	Nearly Constant Velocity

	GNSS Solution
	Experiment
	Conclusion
	Acknowledgements

