
EasyChair Preprint
№ 8249

Applying Consensus and Replication Securely with
FLAQR

Priyanka Mondal, Maximilian Algehed and Owen Arden

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

June 10, 2022

Applying consensus and replication securely with
FLAQR

Priyanka Mondal
University of California, Santa Cruz

pmondal@ucsc.edu

Maximilian Algehed
Chalmers University of Technology

algehed@chalmers.se

Owen Arden
University of California, Santa Cruz

owen@soe.ucsc.edu

Abstract—Availability is crucial to the security of distributed
systems, but guaranteeing availability is hard, especially when
participants in the system may act maliciously. Quorum repli-
cation protocols provide both integrity and availability: data
and computation is replicated at multiple independent hosts,
and a quorum of these hosts must agree on the output of all
operations applied to the data. Unfortunately, these protocols
have high overhead and can be difficult to calibrate for a
specific application’s needs. Ideally, developers could use high-
level abstractions for consensus and replication to write fault-
tolerant code by that is secure by construction.

This paper presents Flow-Limited Authorization for Quorum
Replication (FLAQR), a core calculus for building distributed
applications with heterogeneous quorum replication protocols
while enforcing end-to-end information security. Our type system
ensures that well-typed FLAQR programs cannot fail (experi-
ence an unrecoverable error) in ways that violate their type-
level specifications. We present noninterference theorems that
characterize FLAQR’s confidentiality, integrity, and availability
in the presence of consensus, replication, and failures, as well as
a liveness theorem for the class of majority quorum protocols
under a bounded number of faults.

I. INTRODUCTION

Failure is inevitable in distributed systems, but its conse-
quences may vary. The consequences of failure are particularly
severe in centralized system designs, where single points-of-
failure can render the entire system inoperable. Even distributed
systems are sometimes built using a single, centralized authority
to execute security-critical tasks. If this trusted entity is
compromised, the security of the entire system may be
compromised as well.

Building reliable decentralized systems, which have no
single point-of-failure, is a complex task. Quorum replication
protocols such as Paxos [1] and PBFT [2], and blockchains such
as Bitcoin [3] replicate state and computation at independent
nodes and use consensus protocols to ensure the integrity and
availability of operations on system state. In these protocols,
there is neither centralization of function nor centralization of
trust: all honest nodes work to replicate the same computation
on the same data, and this redundancy helps the system tolerate
a bounded number of node failures and corruptions.

Within a single trust domain such as a corporate data
center, replicas likely have uniform trust relationships and
may be treated interchangeably. However, many large-scale
systems depend on services hosted by multiple external services.
Even when a service’s internal components are replicated,

developers must take into account the failure properties of
external dependencies when considering their own robustness.

Information flow control (IFC) has been used to enforce
decentralized security in distributed systems for confidentiality
and integrity (e.g., Fabric [4] and DStar [5]). Less attention has
been paid to enforcing decentralized availability policies with
IFC. In particular, no language (or protocol) we are aware of
addresses systems that compose multiple quorums or consider
quorum participants with arbitrary trust relationships.

To build a formal foundation for such languages, we present
FLAQR, a core calculus for Flow-Limited Authorization [6] for
Quorum Replication. FLAQR uses high-level abstractions for
replication and consensus that help manage tradeoffs between
the availability and integrity of computation and data.

Consider the scenarios in Figure 1. Shaded boxes represent
hosts in a distributed system. Dashed lines denote outputs that
contribute to the final result, a value v. Dotted lines denote
ignored outputs and solid lines indicate the flow of data from
an initial expression e distributed to hosts to the collected
result. Results are accompanied by labels that indicate which
hosts influenced the final result.

In Figure 1a, e is distributed to hosts alice and bob. The
hosts’ results are compared and, if they match, the result is
produced. Since a value is output only if the values match, we
can treat the output of this protocol as having more integrity
than just alice or bob. While both alice and bob technically
influence the output, neither host can unilaterally control its
value. However, either host can cause the protocol to fail.

By contrast, the protocol in Figure 1b prioritizes availability
over integrity: if either alice or bob produce a value, the
protocol outputs a value—in this case alice’s. Here, neither
host can unilaterally cause a failure; the protocol only fails if
both alice and bob fail. Either alice or bob (but not both)
has complete control over the result in the event of the other’s
failure, so we should treat the output as having less integrity
than just alice or bob.

With an adequate number of hosts, we can combine these
two techniques to form the essential components of a quorum
system. In Figure 1c, e is replicated to alice, bob, and carol.
This protocol outputs a value if any two hosts have matching
outputs. Since alice and bob both output v, the protocol
outputs v and attaches alice and bob’s signatures. The non-
matching value v′ from carol is ignored. Hence, this protocol
prevents any single host from unilaterally controlling the failure

(a) More Integrity (b) More Availability (c) More Integrity and Availability (d) Heterogeneous trust

Fig. 1: Integrity-Availability Trade-off

of the protocol or its output.
Figure 1c is similar in spirit to consensus protocols such as

Paxos or PBFT where quorums of independent replicas are
used to tolerate a bounded number of failures. FLAQR also
permits us to write protocols where principals have differing
trust relationships. Figure 1d illustrates a protocol that tolerates
failure (or corruption) of either alice or bob, but requires
dave’s output to be part of any quorum. This protocol will fail
if both alice and bob fail to produce matching outputs, but
can also fail if dave fails to produce a matching output. This
example illustrates the distributed systems where the hosts do
not have homogeneous trust.

The main contributions of this paper are as follows:

• An extension of the static fragment of the Flow Limited
Authorization Model (FLAM) [6] with availability policies
and algebraic operators representing the effective authority
of consensus and replication protocols (§III-§V).

• A formalization of the FLAQR language (§IV) and
accompanying results:
– A liveness theorem for majority-quorum FLAQR proto-

cols (§VII-A) which experience a bounded number of
faults using a novel proof technique: a blame semantics
that associates failing executions of a FLAQR program
with a set of principals who may have caused the failure.

– Noninterference theorems for confidentiality, integrity,
and availability (§VII-B).

Non-goals: The design of FLAQR is motivated by
application-agnostic consensus protocols such as Paxos [1] and
PBFT [2], but our present goal is not to develop a framework
for verifying implementations of such protocols (although it
would be interesting future work). Rather, the goal is to develop
security abstractions that make it easier to create components
with application-specific integrity and availability guarantees,
and compose them in a secure and principled way.

In particular, the FLAQR system model lacks some features
that a protocol verification model would require, most notably
a concurrent semantics, asynchronous message delivery, and
arbitrary communication patterns. Although this simplifies some
aspects of consensus protocols, our model retains many of
the core challenges present in fault tolerance models. For
example, perfect fault detection is impossible and faulty nodes
can manipulate data to cause failures to manifest at other hosts.
We argue that even in a synchronous, deterministic model
with RPC-style communication, the challenges of specifying
and enforcing policies remain quite difficult to solve, and are

1 getBalance(acct):
2 bal_a = fetch bal(acct) @ alice;
3 bal_b = fetch bal(acct) @ bob;
4 bal_c = fetch bal(acct) @ carol;
5
6 if (bal_a==bal_b && bal_a != fail)
7 return bal_a;
8 else if (bal_b==bal_c && bal_b != fail)
9 return bal_b;

10 else if (bal_c==bal_a && bal_c != fail)
11 return bal_c;
12 else return fail;

Fig. 2: Majority quorum

among the primary security concerns of high-level application
developers.

II. MOTIVATING EXAMPLES.

In this section we present two motivating examples. The
first example highlights the trade-off between integrity and
availability. The second example highlights the need for
availability policies in distributed systems.

A. Tolerating failure and corruption

If a bank’s deposit records are stored in a single node, then
customers will be unable to access their accounts if that node is
unavailable or is compromised. To eliminate this single point-
of-failure, banks can replicate their records on multiple hosts
as illustrated in Figure 1c. If a majority of nodes agree on an
account balance, then the system can tolerate the remaining
minority of nodes failing or returning corrupted results.

Consider a quorum system with three nodes: alice, bob,
and carol. To tolerate the failure of a single node, balance
queries attempt to contact all three nodes and compare the
responses. As long as the client receives two responses with
the same balance, the client can be confident the balance is
correct even if one node is compromised or has failed.

Figure 2 illustrates a pseudocode implementation of
getBalance in this system. The code fetches balances from
the three nodes (lines 2-4). The function returns the balance if
two of the fetched values match, otherwise the function returns
fail (lines 6-12).

The downside of this approach is that it is quite verbose
and repetitive compared to a single-line fetch without any fault
tolerance. Small mistakes in any of these lines could have
significant consequences. For example, suppose a programmer
typed bal_b instead of bal_c on line 8. This small change
gives bob (or an attacker in control of bob’s node) the ability

1 highestBalance(acct_1, acct_2):
2 bal_1:= fetch getBalance(acct_1) @ b;
3 bal_2:= fetch getBalance(acct_2) @ b’;
4
5 if (bal_1==fail) and (bal_2==fail) then
6 return fail;
7 else if (bal_1==fail) then
8 return acct_2;
9 else if (bal_2==fail) then

10 return acct_1;
11
12 if (bal_1 > bal_2) then
13 return acct_1;
14 else
15 return acct_2;

Fig. 3: Available largest balance

to unilaterally choose the return value of the function, even
when alice and carol agree on a different value.

B. Using best available services

Real world applications often consist of communication
between entities with mutual distrust. The pseudocode in Figure
3 communicates with two banks, represented by b and b’,
during a distributed computation. A user has two accounts
acc 1, and acc 2 with b and b’ respectively. The user has
linked both accounts to a service and specifies the bill should
be paid

1) as long as at least one account is available
2) using the highest-balance account, if available

Lines 7-10 take care of point(1), ensuring the comparison on
line 12 does not get stuck if a fetch returns fail. Lines
12-15 cover point (2), returning the account with the highest
balance when both balances are available.

This example shows how availability of data can effect the
final result of an application and thus highlights the importance
of enforcing availability in distributed computations. As in the
previous example, the programmer must reason about failures
due to unavailable hosts and make the correct comparisons
to implement the (implicitly) desired policy. Furthermore, the
programmer may be unaware of the availability guarantees
offered by b and b’. For example, if b and b’ rely on the
same replicas to implement getBalance, the availability of
highestBalance may be lower than expected.

Finally, in both of the above examples, an attacker should
not be able to read an account balance, or infer which
account balance was greater. With the FLAQR type-system,
programmers can not only specify and enforce availability
and integrity, but also confidentiality—crucial for dealing with
sensitive information. Moreover, FLAQR enables programmers
to write fault-tolerant code concisely, with explicit primitives
for consensus and replication operations that clarify the
programmer’s intentions.

III. SPECIFYING FLAQR POLICIES

FLAQR policies are specified using an extension of the
FLAM [6], [7] principal algebra that includes availability

policies.1 FLAM principals represent both the authority of
entities in a system as well as bounds on the information flow
policies that authority entails. For example, Alice’s authority
is represented by the principal alice. Authority projections
allow us to refer to specific categories of Alice’s authority. The
principal alicec refers to Alice’s confidentiality authority: what
Alice may read. Principal alicei refers to Alice’s integrity
authority: what Alice may write or influence.2 Principal alicea

refers to her availability authority: what Alice may cause to
fail. A principal always acts for any projection of its authority,
so for example alice < alicea. We refer to the set of all
primitive principals such as alice and bob as N .

We can write the conjunction of two principals with the
Boolean connective ∧ as alice∧ bob, denoting the combined
authority of Alice and Bob. Put another way, alice ∧ bob
is a principal both Alice and Bob trust. The disjunction of
two principals’ authority is written using the connective ∨ as
alice ∨ bob. This is a principal whose authority is less than
both Alice and Bob; either Alice or Bob can act on behalf of
the principal alice ∨ bob. Put another way alice ∨ bob is a
principal that trusts both Alice and Bob. Authority projections
distribute over ∧ and ∨, so for example (alice ∧ bob)i ≡
alicei ∧ bobi.

The confidentiality, integrity, and availability authorities
make up the totality of a principal’s authority, so writing
alicec ∧ alicei ∧ alicea is equivalent to writing alice.
For brevity, we sometimes write aliceci as a shorthand for
alicec ∧ alicei when we wish to include all but one kind
of authority. Due to space constraints, we refer the reader
to FLAC [7] and our expanded technical report [8] for the
complete formalization of the < relation. In this article, we
present only the extensions to this relation introduced by
FLAQR.

In addition to conjunctions and disjunctions of authority,
FLAQR also introduce two new operators: partial conjunction
(�), and partial disjunction (�). These operations are necessary
to represent the tradeoffs between integrity and availability
mediated by consensus and replication. Consider the “more
integrity” protocol from Figure 1a. It is reasonable to think
of the consensus value v as having more integrity than (or at
least, “not less integrity than”) Alice or Bob alone, but it turns
out to be useful to distinguish between this authority and the
combined integrity authority of Alice and Bob, (alicei∧bobi).
A principal with integrity authority (alicei ∧ bobi) may act
arbitrarily on behalf of both Alice and Bob since it is trusted
by them. In contrast, the integrity of the value produced in
Figure 1a is not fully trusted by Alice and Bob. Instead, Alice
and Bob only trust the value when Alice and Bob agree on it. If
they do not agree, that trust is revoked and no value is produced.
For this reason, we describe the integrity of consensus values
such as v as the partial conjunction of Alice and Bob, written
alicei � bobi.

1Specifically, we extend the static fragment of FLAM’s principal algebra
defined by FLAC [7].

2Prior FLAM-based formalizations have used → and ← for confidentiality
and integrity, respectively.

Similarly, for replication protocols like that in Figure 1b,
we want to distinguish the integrity of values that may have
been received from either Alice or Bob due to failure, from the
integrity of values that may have been influenced by both Alice
and Bob: alicei ∨ bobi. The integrity of a value produced
by either Alice or Bob is written as the partial disjunction
alicei�bobi. This principal does not have the same integrity
authority as Alice or Bob alone since we cannot guarantee
which host’s value will be used in the event of a failure.
However, the value does have more integrity than alicei∨bobi,
since only Alice or Bob (and not both) may have influenced it.

We compare the authority of principals using the acts-for
relation <, which partially orders (equivalence classes of)
principals by increasing authority. We form the set of all
principals P as the closure of the set {N ,>,⊥} over the
operations ∧, ∨, � , � , and authority projections c, i and a.
We say Alice acts for Bob (or equivalently, Bob trusts Alice)
and write alice < bob when Alice has at least as much
authority as Bob. The < relation forms a lattice with join ∧,
meet ∨, greatest element >, and least element ⊥.

In addition to the trust relationships such as p ∧ q < p and
p < pi implied by the principal algebra, explicit delegations of
trust such as p < q (for any p, q in P) may expressed using
a delegation context Π. An acts-for judgment has the form
Π
 p < q and means that p acts for q in context Π. While
FLAC has a feature that allows dynamic extensions of Π, for
simplicity we fix Π to a static set of delegations in FLAQR.

We extend the acts-for relation defined by Arden et al. [7]
with new rules for availability authority and partial conjunction
and disjunction. Figure 4 presents a selection of these rules—we
have omitted the distributivity rules for brevity. The complete
rule set is presented in Figure 23 in the appendices. In Figure 4,
an acts for judgement of form Π
 p < q, states that p has
at least as much authority as q in delegation context Π.

As a consequence of these new acts-for rules we have
additional distinct points in the authority lattice. Figure 5
illustrates the authority sublattice over elements {⊥, x, y,>}.
Figure 5 shows the trust ordering of all possible distinct
combinations of elements that can be formed on the set
{⊥, x, y,>} with operations ∧, ∨, � and � over them. The
relationship between principals ⊥, x, y, x ∧ y, x ∨ y, and > is
the same as that in FLAM, but Figure 5 also includes principals
constructed using partial conjunctions and disjunctions. For
example, x ∧ (x� y) is the least upper bound of x ∧ (x� y)
and x�y. This is due to rule PANDPOR (see Figure 4), which
lets us simplify x ∧ (x� y) ∧ x� y to x ∧ (x� y).

To compare the restrictiveness of information flow policies,
we use the flows-to relation v, which partially orders principals
by increasing policy restrictiveness, rather than by authority.
For example, we say Alice’s integrity flows to Bob’s integrity
and write alicei v bobi if Bob trusts information influenced
by Alice at least as much as information he influenced himself.
Likewise, we write alicec v bobc if Alice trusts Bob to protect
the confidentiality of her information, and alicea v boba if
Bob is trusted to keep Alice’s data available. The flows-to
relation behaves similarly to a sub-typing relation. Treating

information labeled alicecia (i.e. alice) as though it was
labeled bobcia (i.e. bob) is only safe (doesn’t violate anyone’s
policies) if alicecia v bobcia (i.e. alice v bob).

One advantage of the FLAM principal algebra is that we
can define the flows-to relation, as well as the upper and lower
bounds of information flow policies, in terms of the acts-for
relation, simplifying our formalism.

p v q ⇔ qc < pc and pi < qi and pa < qa

p t q , (pc ∧ qc) ∧ (pi ∨ qi) ∧ (pa ∨ qa)
p u q , (pc ∨ qc) ∧ (pi ∧ qi) ∧ (pa ∧ qa)

Based on this, the equivalence classes of < and v are identical,
meaning that the lattice formed by v with joins t and meets
u has the same elements as the acts-for lattice. A flow from
p to q is secure only when qc is at least as confidential as pc,
qi trusts information influenced by pi, and qa cannot cause
failures that pa cannot.

IV. FLAQR SYNTAX AND SEMANTICS

Figures 6 and 7 present the FLAQR syntax and selected
evaluation rules. For space and exposition purposes, we omit
some term annotations and standard lambda calculus rules in
order to focus on FLAQR’s contributions, but the complete,
annotated FLAQR syntax and semantics can be found in the
extended technical report [8].

FLAQR is based on FLAC [7], [9], a monadic calculus in the
style of Abadi’s Polymorphic DCC [10]. In addition to standard
extensions to System F [11]–[13] such as pairs and tagged
unions, an Abadi-style calculus supports monadic operations
on values in a monad indexed by a lattice of security labels.
Such a value has a type of the form ` says τ , meaning that it
is a value of type τ , protected at level `, where ` is an element
of the security lattice. Here we focus on FLAQR’s additions
to FLAC and DCC, and refer readers to the techical report [8]
for our complete formalization.

FLAQR builds on FLAC’s expressive principal algebra
and type system to model distributed security policies for
applications that use replication and consensus. FLAC supports
arbitrary policy downgrades through dynamic delegations of
authority, but for simplicity we omit these features in FLAQR.

The monadic unit or return term η` e protects the value that
e evaluates to at level ` (E-SEALED).3 Protected values, (η` v)
cannot be operated on directly. Instead, a bind expression must
be used to bind the protected value to a variable whose scope
is limited to the body of the bind term (E-BINDM). The body
performs the desired computation and “returns” the result to
the monad, ensuring the result is protected. These rules (E-
SEALED and E-BINDM) FLAQR inherits from FLAC. The
remaining rules of Figure 7 are specific to FLAQR.

The primary novelty in the FLAQR calculus is the introduc-
tion of compare and select terms for expressing consensus

3Polymorphic DCC does not define a term similar to (η` v) and thus
does not have an rule equivalent to E-SEALED. This approach enables us to
distinguish where a value may be created (e.g., on a host authorized to read
and create values protected at `) and use more permissive rules to control
where a sealed value may flow.

[PANDL]

Π
 pi < p
k ∈ {1, 2}

Π
 p1 � p2 < p
[PANDR]

Π
 p < p1
Π
 p < p2

Π
 p < p1 � p2
[ANDPAND] Π
 p ∧ q < p� q

[PANDPOR] Π
 p� q < p� q [PROJPANDL] Π
 pπ � qπ < (p� q)π [PROJPANDR] Π
 (p� q)π < pπ � qπ

[PROJPORL] Π
 pπ � qπ < (p� q)π [PROJPORR] Π
 (p� q)π < pπ � qπ [POROR] Π
 p� q < p ∨ q

Fig. 4: Selected acts-for rules for partial conjunction and disjunction.

Fig. 5: The FLAQR authority lattice for the principal set {⊥, x, y,>}.
and replication operations. We represent the consensus problem
as a comparison of two values with the same underlying type
but distinct outer security labels. In other words, we want
to check the equality of values produced by two different
principals. If the values match, we can treat them as having
the (partially) combined integrity of the principals. If not, then
the principals failed to reach consensus.

Rule E-COMPARE defines the former case: two syntactically
equal values protected at different labels evaluate to a value
that combines labels using the compare action on labels ⊕ .
Intuitively, `1 ⊕ `2 determines the increase in integrity and the
corresponding decrease in availability inherent in requiring a
consensus. We define ⊕ formally in Definition 1.

Definition 1 (Compare action on principals).

`1 ⊕ `2 , (`c1 ∧ `c2) ∧ (`i1 � `
i

2) ∧ (`a1 ∨ `a2)

We also lift this notation to says types by defining

`1 says τ ⊕ `2 says τ , (`1 ⊕ `2) says τ

As discussed in Section III, the integrity authority of
compare is not as trusted as the conjunction of `1 and
`2’s integrity. Instead, we represent the limited “increase” in

π ∈ {c, i, a} (projections)
n ∈ N (primitive principals)
x ∈ V (variable names)

p, `, pc ::= n
∣∣ > ∣∣ ⊥ ∣∣ pπ ∣∣ p ∧ p ∣∣ p ∨ p∣∣ p t p
∣∣ p u p ∣∣ p� p

∣∣ p� p
τ ::= unit

∣∣ X ∣∣ (τ + τ)
∣∣ (τ × τ)∣∣ τ

pc−→ τ
∣∣ ∀X[pc]. τ

∣∣ ` says τ
v ::= ()

∣∣ (η` v)
∣∣ inj(τ+τ)i v

∣∣ 〈v, v〉τ∣∣ λ(x :τ)[pc]. e
∣∣ ΛX[pc]. e

f ::= v
∣∣ failτ

e ::= f
∣∣ x ∣∣ e e ∣∣ e τ ∣∣ η` e ∣∣ 〈e, e〉τ∣∣ proji e

∣∣ inj(τ+τ)i e
∣∣ bind x = e in e∣∣ caseτ e of injτ1(x).e | injτ2(x).e∣∣ runτ e@p

∣∣ ret e@p ∣∣ expectτ∣∣ selectτ e or e
∣∣ compareτ e and e

Fig. 6: FLAQR Syntax. Shaded terms are new to FLAQR. Underlined
terms are used during evaluation and not available at the source level.

integrity authority4 using a partial conjunction in Definition 1.
In contrast, the decrease in availability is represented by a
(full) `a1 ∨ `a2 since either `1 or `2 could unilaterally cause the
compare expression to fail.

The decreased availability resulting from applying
compare is more apparent in rules E-COMPAREFAIL, E-
COMPAREFAILL and E-COMPAREFAILR. In E-
COMPAREFAIL, two unequal values are compared, resulting
in a failure. Failure is represented syntactically using a
failτ term. We use a type annotation τ on many terms in
our formal definitions so that our semantics is well defined
with respect to failure terms, but we omit most of these
annotations in Figure 7. These annotations are only necessary
for our formalization and would be unnecessary in a FLAQR
implementation.

A compare term may also result in failure if either subexpres-
sion fails. Rule E-COMPAREFAILL and E-COMPAREFAILR,
defines how failure of an input propagates to the output. In fact,
most FLAQR terms result in failure when a subexpression fails.
Figure 8 presents selected failure propagation rules (remaining

4Strictly speaking, x� y is not an increase in integrity over x (or y); x� y
and x are incomparable.

[E-SEALED] η` v −→ (η` v)

[E-BINDM] bind x = (η` v) in e −→ e[x 7→ v]

[E-COMPARE] compare (η`1 v) and (η`2 v) −→ (η`1⊕`2 v)

[E-COMPAREFAIL]
v1 6= v2 τ = (`1 ⊕ `2) says τ ′

compare (η`1 v1) and (η`2 v2) −→ failτ

[E-COMPAREFAILL]

f2 =

{
(η`2 v)

fail
`2 says τ

τ1 = `1 says τ τ ′ = (`1 ⊕ `2) says τ

compare (failτ1) and f2 −→ failτ
′

[E-COMPAREFAILR]
τ2 = `2 says τ τ ′ = (`1 ⊕ `2) says τ

compare (η`1 v) and failτ2 −→ failτ
′

[E-SELECT]

f2 =

{
(η`2 v2)

fail
`2 says τ

select (η`1 v1) or f2 −→ (η`1	`2 v1)

[E-SELECTR] select (fail`1 says τ) or (η`2 v) −→ (η`1	`2 v)

[E-SELECTFAIL]

∀i ∈ {1, 2} τi = `i says τ
τ ′ = (`1 	 `2) says τ

select (failτ1) or (failτ2) −→ failτ
′

[E-RETSTEP]
e −→ e′

ret e@c −→ ret e′@c
[E-STEP]

e −→ e′

E[e] −→ E[e′]

E ::= [·]
∣∣ E e

∣∣ v E ∣∣ η` E ∣∣ bind x = E in e∣∣ ret E@p
∣∣ select E or e ∣∣ select f or E∣∣ compare E and e

∣∣ compare f and E
Fig. 7: FLAQR local semantics and evaluation context

[E-APPFAIL] λ(x :τ)[pc]. e failτ −→ e[x 7→ failτ]

[E-SEALEDFAIL] η` fail
τ −→ fail` says τ

[E-INJFAIL] inj
(τ1+τ2)
i fail

τi −→ fail(τ1+τ2)

[E-PROJFAIL] proji fail
(τ1×τ2) −→ failτi

[E-PAIRFAILL] 〈failτ1 , f2〉(τ1×τ2) −→ fail(τ1×τ2)

Fig. 8: fail propagation rules.

failure propagation rules are presented in Figure 19). Note that
fail terms are treated similarly to values, but are distinct from
them. For example, in E-APPFAIL, applying a lambda term to
a fail term substitutes the failure as it would a value, but in
E-SEALEDFAIL the failure is propagated beyond the monadic
unit term. This latter behavior captures the idea that failures
cannot be hidden or isolated in the same way as secrets or
untrusted data.

Failures are tolerated using replication. A select term will
evaluate to a value as long as at least one of its subexpressions
does not fail. For example, rule E-SELECTR returns its right
subexpression when the left subexpression fails. In contrast
to compare, applying select increases availability since
either subexpression can be used, but reduces integrity since
influencing only one of the subexpressions is potentially
sufficient to influence the result of evaluating select. The
effect of a select statement on the labels of its sub-expressions
is captured with the select action 	 .

Definition 2 (Select action on principals).

`1 	 `2 , (`c1 ∧ `c2) ∧ (`i1 � `
i

2) ∧ (`a1 ∧ `a2)

We define the select action on types similarly to compare:

`1 says τ 	 `2 says τ = (`1 	 `2) says τ

The end result of a select statement,
select (η`1 v) or (η`2 v), will have integrity of either `1 or
`2 since only one of the two possible values will be used. We
use a partial disjunction to represent this integrity since the
result does not have the same integrity as `1 or `2, but does
have more integrity than `1 ∨ `2 since it is never the case that
both principals influence the output.

A. Global semantics

We capture the distributed nature of quorum replication by
embedding the local semantic rules within a global distributed
semantics defined in Figure 9. This semantics uses a config-
uration stack s = 〈e, c〉 & t (Figure 10) to keep track of
the currently executing expression e, the host on which it is
executing c, and the remainder of the stack t. We also make
explicit use of the evaluation contexts from Figure 7 to identify
the reducible subterms across stack elements.

The core operation for distributed computation is runτ e@p
which runs the computation e of type τ on node p. Local
evaluation steps are captured in the global semantics via rule
E-DSTEP. This rule says that if e steps to e′ locally, then E[e]
steps to E[e′] globally.

Rule E-RUN takes an expression e at host c, pushes a new
configuration on the stack containing e at host c′ and places
an expect term at c as a place holder for the return value.

Once the remote expression is fully evaluated, rule E-RETV
pops the top configuration off the stack and replaces the expect
term at c with the protected value (ηpcia v). Rule E-RETFAIL
serves the same purpose for fail terms, but is necessary since
fail terms are not considered values (see Figure 6). The label
pcia reflects both the integrity and availability context of the

[E-DSTEP]
e −→ e′

〈E[e], c〉 & t =⇒ 〈E[e′], c〉 & t
[E-RUN] 〈E[runτ e@c′], c〉 & t =⇒ 〈ret e@c, c′〉 & 〈E[expectτ], c〉 :: t

[E-RETV] 〈ret v@c, c′〉 & 〈E[expectpc
ia says τ ′

], c〉 :: t =⇒ 〈E[(ηpcia v)], c〉 & t

[E-RETFAIL] 〈ret (failτ
′
)@c, c′〉 & 〈E[expectpc

ia says τ ′
], c〉 :: t =⇒ 〈E[failpc

ia says τ ′
], c〉 & t

Fig. 9: Global semantics

s ::= 〈e, c〉 & t

t ::= empty
∣∣ 〈E[expectτ], c〉 :: t

Fig. 10: Global configuration stack

caller (c) as well as the integrity and availability of the remote
host (c′). We discuss this aspect of remote execution in more
detail in Section V.

V. FLAQR TYPING RULES

As we have a local and global semantics, we have two
corresponding forms of typing judgements: local typing judg-
ments for expressions and global typing judgments for the
stack. Local typing judgments have the form Π; Γ; pc; c ` e : τ .
Π is the program’s delegation context and is used to derive
acts-for relationships with the rules in Figures 4 and 23. Γ
is the typing context containing in-scope variable names and
their types. The pc label tracks the information flow policy
on the program counter (due to control flow) and on unsealed
protected values such as in the body of a bind.

Figure 11 presents a selection of local typing rules. Each
typing rule includes an acts-for premise of the form Π
 c < pc.
This enforces the invariant that each host principal c has control
of the program it executes locally. Thus for any judgment
Π; Γ; pc; c ` e : τ , the pc should never exceed the authority of c,
the principal executing the expression. Rules FAIL and EXPECT
type fail and expect terms according to their type annotation
τ . Rule LAM types lambda abstractions. Since functions are
first-class values, we have to ensure that the pc annotation
on the lambda term preserves the invariant Π
 c < pc. The
clearance of a type τ , written C(τ), is an upper bound on the
pc annotations of the function types in τ . By checking that

Π
 c < C(τ1
pc′−−→ τ2) holds (along with similar checks in

RUN and RET), we ensure the contents of the lambda term is
protected when sending or receiving lambda expressions, and
that hosts never receive a function they cannot securely execute.
Due to space constraints, the definition of C(·) is presented
in Appendix A, Figure 18. The APP rule requires the pc label
at any function application to flow to the function’s pc label
annotation. Hence the premise Π
 pc v pc′.

Protected terms η` e are typed by rule UNITM as ` says τ
where τ is the type of e. Additionally, it requires that Π

pc v `. This ensures that any unsealed values in the context
are adequately protected by policy ` if they are used by e. The
SEALED rule types protected values (η` v). These values are
well-typed at any host, and does not require Π
 pc v ` since

no unsealed values in the context could be captured by the
(closed) value v.

Computation on protected values occurs in bind terms
bind x = e′ in e. The policy protecting e must be at least
as restrictive as the policy on e′ so that the occurrences of
x in e are adequately protected. Thus, rule BINDM requires
Π
 ` t pc v τ , and furthermore e is typed at a more restrictive
program counter label `t pc to reflect the dependency of e on
the value bound to x.

Rule RUN requires that the pc at the local host flow to the
pc′ of the remote host, and that e be well-typed at c′, which
implies that c′ acts for pc′. Additionally, c must act for the
clearance of the remote return type τ ′ to ensure c is authorized
to receive the return value. The type of the run expression
is pc′ia says τ ′, which reflects the fact that c′ controls the
availability of the return value and also has some influence on
which value of type τ ′ is returned. Although c′ may not be
able to create a value of type τ ′ unless pc′ia flows to τ ′, if c′

has access to more than one value of type τ ′, it could choose
which one to return. Rule RET requires that expression e is
well-typed at c and that c′ is authorized to receive the return
value based on the clearance of τ .

The COMPARE rule gives type (`1 ⊕ `2) says τ to the
expression compare e1 and e2 where e1 and e2 have types
`1 says τ and `2 says τ respectively. Additionally, it requires
that c, the host executing the compare, is authorized to fully
examine the results of evaluating e1 and e2 so that they
may be checked for equality.5 This requirement is captured
by the premise Π
 c B `i says τ , pronounced “c reads
`i says τ”. The inference rules for the reads judgment are
found in Figure 21 in Appendix A.

Finally, the SELECT rule gives type (`1 	 `2) says τ to
the expression select e1 or e2 where e1 and e2 have types
`1 says τ and `2 says τ respectively.

The typing judgment for the global configuration is presented
in Figure 12 and consists of three rules. Rule HEAD shows
that the global configuration 〈e, c〉 & t, is well-typed if the
expression e is well-typed at host c with program counter pc′

where Π
 pc v pc′ and the tail t is well-typed. [τ ′]τ means
that the tail of the stack is of type τ while the expression
in the head of the configuration is of type τ ′. We introduced
rules TAIL(when t 6= empty) and EMP(when t = empty) to
typecheck the tail t.

5Assuming a more sophisticated mechanism for checking equality that
reveals less information to the host such as zero-knowledge proofs or a trusted
execution environment could justify relaxing this constraint.

Π; Γ; pc; c ` e : τ

[UNIT]
Π
 c < pc

Π; Γ; pc; c ` () : unit
[FAIL]

Π
 c < pc

Π; Γ; pc; c ` failτ : τ
[EXPECT]

Π
 c < pc

Π; Γ; pc; c ` expectτ : τ

[LAM]

Π; Γ, x :τ1; pc′;u ` e : τ2 Π
 c < pc

u = C(τ1
pc′−→ τ2) Π
 c < u

Π; Γ; pc; c ` λ(x :τ1)[pc′]. e : τ1
pc′−→ τ2

[APP]

Π; Γ; pc; c ` e1 : τ ′
pc′−→ τ

Π; Γ; pc; c ` e2 : τ ′ Π
 pc v pc′

Π
 c < pc

Π; Γ; pc; c ` e1 e2 : τ

[UNITM]

Π; Γ; pc; c ` e : τ Π
 pc v `
Π
 c < pc

Π; Γ; pc; c ` η` e : ` says τ
[SEALED]

Π; Γ; pc; c ` v : τ Π
 c < pc

Π; Γ; pc; c ` (η` v) : ` says τ

[BINDM]

Π; Γ; pc; c ` e′ : ` says τ ′ Π
 ` t pc v τ
Π; Γ, x :τ ′; ` t pc; c ` e : τ Π
 c < pc

Π; Γ; pc; c ` bind x = e′ in e : τ
[RUN]

Π; Γ; pc′; c′ ` e : τ ′ Π
 pc v pc′
Π
 c < pc Π
 c < C(τ ′)

τ = pc′ia says τ ′

Π; Γ; pc; c ` runτ e@c′ : τ

[RET]

Π; Γ; pc; c ` e : τ Π
 c′ < C(τ)
Π
 c < pc

Π; Γ; pc; c ` ret e@c′ : pcia says τ
[COMPARE]

∀i ∈ {1, 2}.Π; Γ; pc; c ` ei : `i says τ
Π
 cB `i says τ Π
 c < pc

Π; Γ; pc; c ` compare e1 and e2 : (`1 ⊕ `2) says τ

[SELECT]

∀i ∈ {1, 2}.Π; Γ; pc; c ` ei : `i says τ
Π
 c < pc

Π; Γ; pc; c ` select e1 or e2 : (`1 	 `2) says τ

Fig. 11: Typing rules for expressions

Π; Γ; pc ` 〈e, c〉 & t : τ

[HEAD]

Π; Γ; pc′; c ` e : τ ′ Π; Γ; pc ` t : [τ ′]τ
Π
 pc v pc′ Π
 c < pc

Π; Γ; pc ` 〈e, c〉 & s : τ

Π; Γ; pc ` 〈e, c〉 :: t : [τ ′]τ

[TAIL]

Π; Γ; pc′; c ` E[expectτ
′
] : τ̂ Π; Γ; pc ` t : [τ̂]τ

Π
 pc v pc′ Π
 c < pc

Π; Γ; pc ` 〈E[expectτ
′
], c〉 :: t : [τ ′]τ

[EMP] Π; Γ; pc ` empty : [τ]τ

Fig. 12: Typing rules for configuration stack

〈E[expectτ
′
], c〉 :: t is well-typed with type [τ ′]τ , if

expression E[expectτ
′
] is well-typed with type τ̂ at host c.

And, the rest of the stack t needs to be well-typed with type
[τ̂]τ . Rule EMP says the tail is empty and the type of the
expression in the head of the configuration is τ , in which case
the type of the whole stack is [τ]τ .

VI. AVAILABILITY ATTACKERS

Availability attackers are different from traditional integrity
and confidentiality attackers. While an integrity attacker’s goal
is to manipulate data and a confidentiality attacker’s goal is to
learn secrets, an availability attacker’s goal is to cause failures.
In our model, an availability attacker can substitute a value

only with a fail term. Integrity attackers may also cause
failures in consensus based protocols when consensus is not
reached because of data manipulation. In FLAQR this scenario
is relevant during executing a compare statement: if one of the
values in the compare statement is substituted with a wrong
(mismatching) value then a fail term is returned. Thus we
need to consider an availability attacker’s integrity authority
when reasoning about its power to fail a program. Specifically,
the authority of principal ` as an availability attacker is `ia.

We consider a static but active attacker model similar to
those used in Byzantine consensus protocols. By static we mean
which principal or collection of principals can act maliciously
is fixed prior to program execution. By active we mean that
the attackers may manipulate inputs (including higher-order
functions) during run time. We formally define the power of
an availability attacker with respect to quorum systems.

Availability attackers in FLAQR are somewhat different
than integrity and confidentiality attackers because we want to
represent multiple possible attackers but limit which attackers
are active for a particular execution. This goal supports the
bounded fault assumptions found in consensus protocols where
system configurations assume an upper bound on the number
of faults possible.

A quorum system Q is represented as set of sets of hosts (or
principals) e.g. Q = {q1, q2, . . . , qn}. Here each qi represents
a set of principals whose consensus is adequate for the system
to make progress. We define availability attackers in terms of
the toleration set JQK of a quorum system Q. The toleration

[A-PAIR]
Π
 ` m τi i ∈ {1, 2}

Π
 ` m (τ1 × τ2)
[A-SUM]

Π
 ` m τi i ∈ {1, 2}
Π
 ` m (τ1 + τ2)

[A-FUN]
Π
 ` m τ2

Π
 ` m τ1
pc′−−→ τ2

[A-TYPE]
Π
 ` m τ

Π
 ` m `′ says τ

[A-AVAIL]
Π
 `a < `′a

Π
 ` m `′ says τ
[A-INTEGCOM]

Π
 `i < `j
i, j ∈ {1, 2}

Π
 ` m (`1 ⊕ `2) says τ

Fig. 13: fails judgments.

set is a set of principals where each principal represents an
upper bound on the authority of an attacker the quorum can
tolerate without failing.

Example 1.
1) The toleration set for quorum Q1 = {q1 := {a, b}; q2 :=
{b, c}; q3 := {a, c}} is JQ1K = {aia, bia, cia},

2) For heterogeneous quorum system Q2 = {q1 := {p, q}; q2 :=
{r}} the toleration set is JQ2K = {pia ∧ qia, ria}

3) For Q3 = {q := {alice}} the toleration set is JQ3K = {}, i.e.
Q3 can not tolerate any fault.

An availability attacker’s authority is at most equivalent to
a (single) principal’s authority in the toleration set. We define
the set of all such attackers for a quorum Q as

AJQK = {` | ∃`′ ∈ JQK.Π
 `′ < `}.

which includes weaker attackers who a principal in the
toleration set may act on behalf of.

The fails relation (m) determines whether a principal can
cause a program of a particular type to evaluate to fail. Similar
to the reads judgment, the fails judgment not only considers the
outermost says principal, but also any nested says principals
whose propagated failures could cause the whole term to fail.
Figure 13 defines the fails judgment, written Π
 lm τ , which
describes when a principal l can fail an expression of type τ
in delegation context Π.

Consider an expression η` (η`′ e) and an attacker principal
la. If Π
 lca < `

′c, and Π 1 lca < `
c, then the attacker learns

nothing by evaluating η` (η`′ e). Similarly, if Π
 lia < `′i

and Π 1 lia < `
i, then the attacker cannot influence the value

η` (η`′ e).
In contrast, if Π
 la

a < `′a, and Π 1 laa < `
a, an availability

attacker may cause η`′ e to evaluate to fail`
′ says τ , which

steps to fail` says (`′ says τ) by E-SEALEDFAIL. The fails
relation reflects this possibility. Using A-TYPE and A-AVAIL
(or A-INTEGCOM if `′ was of form (`1 ⊕ `2)) we get
Π
 la m ` says (`′ says τ).

We use the fails relation and the attacker set to define which
availability policies a particular quorum system is capable of
enforcing. We say Q guards τ if the following rule applies:

[Q-GUARD]
∀` ∈ AJQK .Π 1 `m τ

Π
 Q guards τ

Definition 3 (Valid quorum type). A type τ is a valid quorum
type with respect to quorum system Q and delegation set Π if
the condition Π
 Q guards τ is satisfied.

C ::= F = ∅
∣∣ B

B ::= ` ∈ F
∣∣ B1 OR B2

∣∣ B1 AND B2

Fig. 14: Blame constraint syntax

[C-IN]
Π
 `′ < `

`′ ∈ F � ` ∈ F
[C-OR]

C1 � ` ∈ F C2 � ` ∈ F
C1 OR C2 � ` ∈ F

[C-ANDL]
∃i ∈ {1, 2}. Ci � ` ∈ F
C1 AND C2 � ` ∈ F

Fig. 15: Blame membership

Example 2. If Q = {q1 := {a, b}; q2 := {b, c}; q3 := {a, c}} and
`Q = (a⊕ b)	 (b⊕ c)	 (a⊕ c) then `Q says (a says τ) is not
a valid quorum type because Π 1 Q guards (`Q says (a says τ))

as Π
 aia m `Q says (a says τ) and aia ∈ AJQK. But it is a
valid quorum type for heterogeneous quorum system Q′ = {q1 :=

{a, b}; q2 := {a, c}} as aia /∈ AJQ′K.

VII. SECURITY PROPERTIES

To evaluate the formal properties of FLAQR, we prove that
FLAQR preserves noninterference for confidentiality, integrity,
and availability (section VII-B). These theorems state that
attackers cannot learn secret inputs, influence trusted outputs,
or control the failure behavior of well-typed FLAQR programs.
In addition, we also prove additional theorems that formalize
the soundness of our type system with respect to a program’s
failure behavior.

A. Soundness of failure
FLAQR’s semantics uses the compare and select security

abstractions and the failure propagation rules to model failure
and failure-tolerance in distributed programs, and FLAQR’s
type system lets us reason statically about this failure behavior.
To verify that such reasoning is sound, we prove two related
theorems regarding the type of a program and the causes of
potential failures.

In pursuit of this goal, this section introduces our blame
semantics which reasons about failure-causing (faulty) princi-
pals during program execution. The goal is to record the set of
principals which may cause run-time failures as a constraint
on the set of faulty nodes F . Figure 14 presents the syntax of
blame constraints, which are boolean formulas representing a
lower bound on the contents of F . Atomic constraints ` ∈ F
denote that label ` is in faulty set F . This initial blame
constraint (Cinit) is represented using the toleration set of
the implied quorum system.

Definition 4 (Initial blame constraint). For toleration set JQK of
the form {(p11 ∧ ... ∧ p1m1

)
ia
, ..., (pk1 ∧ ... ∧ pkmk

)
ia} the initial

blame constraint Cinit is defined as a (logical) disjunction of
conjunctions:

Cinit , (p11 ∈ F AND ... AND p1m1
∈ F) OR ...

OR (pk1 ∈ F AND ... AND pkmk
∈ F)

Each disjunction represents a minimal subset of a possible
satisfying assignment for the faulty set F . For brevity, we will

refer to these subsets as the possible faulty sets implied by a
particular blame constraint. Observe that for quorum system Q,
there is a one-to-one correspondence between every ti ∈ JQK
and every possible faulty set F1, ...,Fk in Cinit where Fi is the
set implied by the ith disjunction in Cinit such that ti = bi

ia,
where bi =

∧
p∈Fi

p.
Evaluation rule C-COMPAREFAIL, in Figure 16, shows how

function L (discussed below) updates the blame constraint from
C to C′. We omit the blame-enabled versions of other evaluation
rules since they simply propagate the blame constraint without
modification.

Example 3.
1) Quorum system Q1 = {q1 = {a, b}; q2 = {b, c}; q3 =
{a, c}} has toleration set JQ1K = {aia, bia, cia} and three
possible faulty sets in Cinit: F = {a} or F = {b} or
F = {c}

2) Quorum system Q2 = {q1 := {p, q}; q2 := {r}} has
toleration set JQ2K = {pia ∧ qia, ria} and two possible
faulty sets in Cinit: F = {p, q} or F = {r}.

While Cinit is defined statically according to the type of
the program, rule C-COMPAREFAIL updates these constraints
according to actual failures that occur during the program’s
execution. This approach identifies “unexpected” failures not
implied by Cinit.

For example, Q2 = {q1 := {p, q}; q2 := {r}} has two
possible faulty sets F = {p, q} or F = {r}. The initial blame
constraint is Cinit ::= (p ∈ F AND q ∈ F) OR (r ∈ F)

Placing blame for a specific failure in a distributed system
is challenging, (and often impossible!). For example, when a
comparison of values signed by `1 and `2 fails, it is unclear
who to blame since either principal (or a principal acting on
their behalf) could have influenced the values that led to the
failure. We do know, however, that at least one of them is
faulty; recording this information helps constrain the contents
of possible faulty sets.

We can reason about principals that must be in F by
considering all possible faulty sets implied by the blame
constraints. We write C � ` ∈ F (read as C entails ` ∈ F),
when every possible faulty set in C, has the ` ∈ F clause.
Figure 15 presents inference rules for the � relation.

For example, since `1 is included in all satisfying choices
of F below, we can say C � `1 ∈ F .

C =(`1 ∈ F AND `2 ∈ F) OR (`1 ∈ F AND `3 ∈ F)

OR (`1 ∈ F AND `4 ∈ F) OR (`1 ∈ F AND `5 ∈ F)

The L function (full definition in Figure 22) is used by rule
C-COMPAREFAIL to update C. For an expression:

compare (η`1 v1) and (η`2 v2)

with v1 6= v2, L(v1, v2, C, `1, `2) updates the formulas in C to
reflect that either `1 or `2 is faulty. If `1 or `2 already must
be faulty, specifically if C � `1 ∈ F or C � `2 ∈ F , then the
function does not update any formulas. This approach avoids

blaming honest principals when the other principal is already
known to be faulty.

If neither `1 nor `2 are known to be faulty. then function L is
called recursively on inner layers (i.e., nested (η) expressions)
of v1 and v2 until a subexpression protected by a known-
faulty principal is found. If no such layer is present, then
the principal protecting the innermost layer is added to C (or
the outer principals if there are no inner layers). Only this
principal has seen the unprotected value and thus could have
knowingly protected the wrong value. Observe that for well-
typed compare expressions, only the outer layer of compared
terms may differ in protection level, so there is less ambiguity
when blaming an inner principal.

Updated constraints are kept in disjunctive normal form.
Specifically, for compared terms (η`1 v1) and (η`2 v2), with
v1 6= v2, with initial constraint: Cinit ::= (p ∈ F AND q ∈
F) OR (r ∈ F), then L(v1, v2, Cinit, `1, `2) returns

C′ =(p ∈ F AND q ∈ F AND `1 ∈ F)

OR (p ∈ F AND q ∈ F AND `2 ∈ F)

OR (r ∈ F AND `1 ∈ F) OR (r ∈ F AND `2 ∈ F)

We can now state the soundness theorem for our blame
semantics, and apply it to prove a liveness result. Theorem 1
states that for any well-typed FLAQR program with a failing
execution, and the faulty sets Fi implied by C′ (the final
constraint computed by the blame semantics), it must be
the case that the program’s type τ reflects the ability of the
(possibly colluding) principals in Fi to fail the program.

Theorem 1 (Sound blame). Given,
1) Π; Γ; pc; c ` 〈〈e, c〉 & empty〉Cinit : τ
2) 〈〈e, c〉 & empty〉Cinit −→∗ 〈〈failτ , c〉 & empty〉C′

where e is a source-level expression,6

then for each possible faulty set Fi implied by C′, there is
a principal bi =

∧
p∈Fi

p such that Π
 bi
ia m τ .

Proof. Either e takes single step or multiple steps to produce
the failτ term as the end result. For both the cases we prove
it by induction over structure of e. See [8] for full proof.

While Theorem 1 characterizes the relationship between
a program’s type and the possible faulty sets for a failing
execution, it does not explicitly tell us anything about the
fault-tolerance of a particular program. Since the type of a
FLAQR program specifies its availability policy (in addition to
its confidentiality and integrity), different FLAQR types will
be tolerant of different failures. Below, we prove a liveness
result for a common case, majority quorum protocols.

Definition 5 (Majority quorum system). An m/n majority
quorum system is a quorum system that always requires at
least m of its hosts to reach consensus, where m > n−m.

Theorem 2 (Majority Liveness). If e is a source-level expres-
sion and:

1) Π; Γ; pc; c ` 〈〈e, c〉 & empty〉Cinit : τ

6In other words, e does not contain any fail terms.

[C-COMPAREFAIL]
v1 6= v2 C′ := L(v1, v2, C, `1, `2)

〈〈compare (η`1 v1) and (η`2 v2), c〉 & s〉C =⇒ 〈〈fail(`1⊕`2) says τ , c〉 & s〉C
′

Fig. 16: E-COMPAREFAIL with Blame Semantics.

2) Π
 Q guards τ
3) Q is a m/n majority quorum system
4) 〈〈e, c〉 & empty〉Cinit −→∗ 〈〈failτ , c〉 & empty〉C′

then for every possible faulty set F ′ implied by C′, |F ′| >
(n−m).

Proof. From given condition (2), we know τ is a valid quorum
type for Q so ∀` ∈ AJQK .Π 1 `m τ . Since AJQK is a superset
of JQK, we also have ∀t ∈ JQK.Π 1 tm τ . Furthermore, from
Definition 4, for each possible faulty set Fi implied by Cinit,
we know there is a principal ti ∈ JQK such that ti = bi

ia,
where bi =

∧
p∈Fi

p. Therefore, for each such bi, we know
Π 1 bi

ia m τ .
Since Q is an m/n majority quorum system, every quorum

is of size m and every faulty set in Cinit is of size (n−m).
For contradiction, assume there exists a faulty set F ′ satisfying
C′ that has size (n − m). Then by the definition of L, all
possible faulty sets implied by C′ also have size (n−m) since
L monotonically increases the size of all possible faulty sets
or none of them. Furthermore, each possible faulty set implied
by Cinit is a subset (or equal to) a possible faulty set implied
by C′, so |F ′| = (n−m) implies Cinit = C′.

From Theorem 1 we know for every possible faulty set F ′i
implied by C′, it must be the case that Π
 b′i

ia m τ , where∧
p∈F ′

i
p. However, since Cinit = C′, we have a contradiction

since condition (2) implies Π 1 b′i
ia m τ . Thus there cannot

exist a possible faulty set of size (at least) (n −m) implied
by C′, and all possible faulty sets must have size greater than
(n−m).

B. Noninterference

We prove noninterference by extending the FLAQR syntax
with bracketed expressions in the style of Pottier and Si-
monet [14]. Figure 25 shows selected bracketed evaluation rules
and Figure 24a and 24b show the typing rules for bracketed
terms. The soundness and completeness of the bracketed
semantics are proved in [8].

Noninterference often is expressed with a distinct attacker
label. We use H to denote the attacker. This means the attacker
can read data with label ` if Π
 `c v H c and can forge or
influence it if Π
 H i v `i and can make it unavailable if
Π
 H a v `a

An issue in typing brackets is how to deal with fail
terms. Our confidentiality and integrity results are failure-
insensitive in the sense that they only apply to terminating
executions. This is similar to how termination-insensitive
noninterference is typically characterized for potentially non-
terminating programs.

Traditionally, bracketed typing rules require that bracketed
terms have a restrictive type, ensuring that only values derived
from secret (or untrusted) inputs are bracketed. In FLAQR,

there are several scenarios where a bracketed value may not
have a restrictive type. For example, when a run expression
is evaluated within a bracket, it pushes an element onto the
configuration stack, but only in one of the executions. Another
example is when a bracketed value occurs in a compare
expression, but the result is no longer influenceable by the
attacker H . For these scenarios, several of the typing rules in
Figure 24a permit bracketed values to have less restrictive types.
Because of these rules, subject reduction does not directly imply
noninterference as it does in most bracketed approaches, but
the additional proof obligations are relatively easy to discharge.

Can have less restrictive type
Term π = i π = a

(v | v′) No Yes
(v | failτ) Yes No

(v | v) Yes Yes
(failτ | failτ) Yes Yes

The table above summarizes how bracketed terms are typed
depending on whether we are concerned with integrity or
availability. For integrity, unequal bracketed values must have
a restrictive type (i.e., one that protects H), but equal bracketed
values may have a less restrictive type. For availability, only
bracketed terms where one side contains a value and the other
a failure must have a restrictive type.

1) Confidentiality and Integrity Noninterference: To prove
confidentiality (integrity) noninterference we need to show that
given two different secret (untrusted) inputs to an expression
e the evaluated public (trusted) outputs are equivalent. Equiva-
lence is defined in terms of an observation function O adapted
from FLAC [7] (see Figure 26 in Appendix A).

Theorem 3 (c-i Noninterference). If Π; Γ, x : `′ says τ ′ `
〈e, c〉 & empty : ` says τ where

1) Π; Γ; pc; c ` vi : `′ says τ ′, i ∈ {1, 2}
2) 〈e[x 7→ (v1 | v2)], c〉 & empty −→∗ 〈v, c〉 & empty
3) Π
 Hπ v `′ and Π 1 Hπ v `, π ∈ {c, i}.

then, O(bvc1,Π, `, π) = O(bvc2,Π, `, π)

Proof. From subject reduction we can prove that bvc1 and bvc2
have same type. By induction over the structure of projected
values, bvci, we can show O(bvc1,Π, `, π) = O(bvc2,Π, `, π)
See our technical report [8] for full proof.

2) Availability Noninterference: Similar to [15] our end-to-
end availability guarantee is also expressed as noninterference
property. Specifically, if one run of a well-typed FLAQR
program running on a quorum system terminates successfully
(does not fail), then all other runs of the program also terminate.

This approach treats “buggy” programs where every ex-
ecution returns fail regardless of the choice of inputs as
noninterfering. This behavior is desirable because here we are
concerned with proving the absence of failures that attackers

can control. For structured quorum systems with a liveness
result such as Theorem 2 for m/n majority quorums, we
can further constrain when failures may occur. For example,
Theorem 2 proves failures can only occur when more than
(n−m) principals are faulty. In contrast, Theorem 4 applies to
arbitrary quorum systems provided they guard the program’s
type, but cannot distinguish programs where all executions fail.

Theorem 4 (Availability Noninterference). If
Π; Γ, x : ` says τ ′ ` 〈e, c〉 & empty : `Q says τ where

1) Π; Γ; pc; c ` fi : ` says τ ′, i ∈ {1, 2}
2) 〈e[x 7→ (f1 | f2)], c〉 & empty −→∗ 〈f, c〉 & empty
3) Π
 H m ` says τ ′ and H ia ∈ AJQK and

Π
 Q guards (`Q says τ)

then bfc1 6= fail
`Q says τ ⇐⇒ bfc2 6= fail

`Q says τ

Proof. From subject reduction (see [8]) we know, Π; Γ; pc; c `
bfci : `Q says τ . Because Π
 Q guards (`Q says τ) and
H ia ∈ AJQK we can write Π 1 H iam `Q says τ from rule Q-
GUARD. This ensures if bfc1 6= fail

`Q says τ , then bfc2 6=
fail`Q says τ , and vice-versa.

VIII. EXAMPLES REVISITED

We are now ready to implement the examples from section
II with FLAQR semantics. To make these implementations
intuitive we assume that our language supports integer (int)
types, a mathematical operator > (greater than), and ternary
operator :?. Beacuse int is a base type C(int) returns ⊥.
The examples also read from the local state of the participating
principals. Which is fine because there are standard ways to
encode memory (reads/writes) into lambda-calculus.

A. Tolerating failure and corruption

In this FLAQR implementation (Figure 17a) of 2/3 ma-
jority quorum example of section II-A, we refer principals
representing alice, bob and carol as a, b and c respectively.
The program is executed at host c′ with program counter pc.
Which means condition Π
 c′ < pc holds. The program
body consists of a function of type τf =(τa

pc−→ τb
pc−→ τc

pc−→
(((aia ⊕ bia)	 (bia ⊕ cia)	 (aia ⊕ cia)) says τ)) and the three
arguments to the function are run statements. Here τ is
(a∧b∧c)c says int. Which means C(τf) = pc. The function
body can be evaluated at c′, as condition Π
 c′ < pc is true.

Here ea, eb and ec are the expressions that read the balances
for account acct from the local states of a, b and c respectively.
The program counter at a, b, and c are a, b and c respectively.
The data returned from a has type τa, which is basically
aia says τ . Similarly τb is bia says τ and τc is cia says τ .
Because each run returns a balance, the base type of τ is an int
type, and it is protected with confidentiality label (a ∧ b ∧ c)c,
meaning anyone who can read all the three labels (a, b and c),
can read the returned balances.

In order to typecheck the run statements the conditions
Π
 pc v a, Π
 pc v b, and Π
 pc v c need to hold.
The condition Π
 c′ < C(τa) is trivially true as C(τa) = ⊥.
Similarly C(τb) = ⊥ and C(τc) = ⊥ as well.

1 (λ(x :τa)[pc]. λ(y :τb)[pc]. λ(z :τc)[pc].
2 (select
3 (compare x and y)
4 or
5 (select
6 (compare y and z)
7 or
8 (compare x and z))))
9 (runτa ea@a) (runτb eb@b) (runτc ec@c)

(a) FLAQR implementation of majority quorum example

1 (λ(arg1 :τb)[pc]. (λ(arg2 :τb′)[pc].
2 (select
3 (bind x = arg1 in (bind y = arg2 in
4 (bind x′ = x in (bind y′ = y in
5 (ηd (η(bc∧b′c) (x′ > y′ ? x′ : y′)))))))
6 or
7 (select (arg1) or (arg2)))))(runτb′ e′@b′))(runτb e@b)

(b) FLAQR implementation of available largest balance example

The host executing the code need to be able to read the
return values from the three hosts. This means conditions
Π
 c′ B aia says τ Π
 c′ B bia says τ and Π
 c′ B
cia says τ need to hold in order to typecheck the compare
statements. The type of the whole program is (((aia ⊕ bia)	
(bia ⊕ cia)	 (aia ⊕ cia)) says τ) , which is a valid quorum
type for Q = {q1 := {a, b}; q2 := {b, c}; q3 := {a, c}}.

Based on the security properties defined in section VII this
program offers the confidentiality, integrity and availability
guaranteed by quorum system Q. Therefore, the result cannot
be learned or influenced by unauthorized principals, and will be
available as long as two hosts out of a, b, and c are non-faulty.

The toleration set here is JQK = {aia, bia, cia}. So, the
program is not safe against an attacker with label la = aia∧ bia
(or, ai∧ba), for example. This is because @t ∈ JQK.Π
 t < la.
Since Π
 la < aia, principal la can fail two compare
statements on lines 3 and 8. And, because Π
 la < bia, la
can also fail another two compare statements (one overlapping
compare statment) on lines 3 and 6. Thus the whole program
evaluates to fail. This FLAQR code also helps prevent
incorrect comparisons. For instance, replacing z with y on
line 8 will not typecheck.

B. Using best available services

The code in Figure 17b is the FLAQR implementation of
Figure 3. The program runs at a host c with program counter pc.
The expressions e and e′ read account balances from principals
b and b′, representing the banks. The values returned from b
and b′ have types τb = (bia says (bc ∧ b′c) says int) and
τb′ = (b′ia says (bc ∧ b′c) says int) respectively.

The type of the whole program is ((d	bia 	 b′ia) says (bc∧
b′c) says int). Here d = pc t b t b′. In order to typecheck
the run statements, the conditions Π
 pc v b and Π

pc v b′ need to hold. The program counter at b is b and
b′ is b′. The bind statements (lines 3-4) typecheck because
conditions Π
 pc t bia v d, Π
 pc t bia t b′ia v d, Π

pc t bia t b′ia t bc v d, and Π
 pc t bia t b′ia t bc t b′c v d
hold, because of our choice of d.

IX. RELATED WORK

FLAM [6] [16] offers an algebra to integrate authorization
logics and information flow control policies. FLAM also
introduces a security condition, robust authorization, that is
useful to ensure security when delegations and revocations
change the meaning of confidentiality and integrity policies.
In FLAQR we extend FLAM algebra with availability policies,
and new binary operations to represent integrity and availability
policies of the output of quorum based protocols. FLAC [9] [7]
embeds its types with FLAM information flow policies. FLAC
supports dynamic delegation of authority, but this feature is
omitted in FLAQR.

A limited number of previous approaches [15], [17] combine
availability with more common confidentiality and integrity
policies in distributed systems. Zheng and Myers [17] extend
the Decentralized Label Model [18] with availability policies,
but focus primarily tracking dependencies rather than applying
mechanisms such as consensus and replication to improve
availability and integrity. Zheng and Myers later introduce the
language Qimp [15] with a type system explicitly parameterized
on a quorum system for offloading computation while enforcing
availability policies. Instead of treating quorums specially,
FLAQR quorums emerge naturally using compare and select
and enable application-specific integrity and availability policies
that are secure by construction.

Hunt and Sands [19] present a novel generalisation of
information flow lattices that captures disjunctive flows similar
to the influence of replicas in FLAQR on a select result.
Our partial-or operation was inspired by their treatment of
disjunctive dependencies.

Models of distributed system protocols are often verified
with model checking approaches such as TLA+ [20]. Model
checking programs is typically undecidable, making it ill-suited
to integrate directly into a programming model in the same
manner as a (decidable) type system. To make verification
tractable, TLA+ models are often simplified versions of
the implementations they represent, potentially leading to
discrepancies. FLAQR is designed as a core calculus for a
distributed programming model, making direct verification of
implementations more feasible.

BFT protocols [2], [21] use consensus and replication to
protect the integrity and availability of operations on a system’s
state. Each instance of a BFT protocol essentially enforces a
single availability policy and a single integrity policy. While
composing multiple instances is possible, doing so provides no
end-to-end availability or integrity guarantees for the system
as a whole. FLAQR programs, by constrast, routinely compose
consensus and replication primitives to enforce multiple policies
while also providing end-to-end system guarantees.

Our blame semantics presented in Section VII-A has some
resemblance to the idea of blame used to detect contract
violations [22] and applied to gradual typing [23]. In our system,
blame is necessarily ambiguous since perfect fault detection is
not possible. Hence, rather than identifying a single program
point responsible for a contract or type violation, our semantics

builds constraints that specify a set of principals that may be
responsible for a given failure.

X. CONCLUSION

In this work, we extend Flow Limited Authorization Model
[6] with availability policies. We introduce a core calculus and
type-system, FLAQR, for building decentralized applications
that are secure by construction. We identify a trade-off relation
between integrity and availability, and introduce two binary
operations partial-and and partial-or, specifically to express
integrities of quorum based replicated programs. We define
fails relation and judgments that help us reason about a
principal’s authority over availability of a type. We introduce
blame semantics that associate failures with malicious hosts
of a quorum system to ensure that quorums can not exceed a
bounded number of failures without causing the whole system
to fail. FLAQR ensures end-to-end information security with
noninterference for confidentiality, integrity and availability.

XI. ACKNOWLEDGEMENTS

Funding for this work was provided in part by NSF CAREER
CNS-1750060 and IARPA HECTOR CW3002436.

REFERENCES

[1] L. Lamport, “The Part-time Parliament,” ACM Trans. on Computer
Systems, vol. 16, no. 2, pp. 133–169, May 1998.

[2] M. Castro and B. Liskov, “Practical Byzantine fault tolerance and
proactive recovery,” ACM Trans. on Computer Systems, vol. 20, 2002.

[3] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Consulted,
vol. 1, no. 2012, p. 28, 2008.

[4] J. Liu, O. Arden, M. D. George, and A. C. Myers, “Fabric: Building
open distributed systems securely by construction,” J. Computer Security,
vol. 25, no. 4–5, pp. 319–321, May 2017.

[5] N. Zeldovich, S. Boyd-Wickizer, and D. Mazières, “Securing distributed
systems with information flow control,” in 5th USENIX Symp. on
Networked Systems Design and Implementation (NSDI), 2008.

[6] O. Arden, J. Liu, and A. C. Myers, “Flow-limited authorization,” in 28th

IEEE Symp. on Computer Security Foundations (CSF), Jul. 2015, pp.
569–583.

[7] O. Arden, A. Gollamudi, E. Cecchetti, S. Chong, and A. C. Myers, “A
calculus for flow-limited authorization: Technical report,” 2021.

[8] P. Mondal, M. Algehed, and O. Arden, “Applying consensus and
replication securely with flaqr,” Tech. Rep., 2022.

[9] O. Arden and A. C. Myers, “A calculus for flow-limited authorization,”
in 29th IEEE Symp. on Computer Security Foundations (CSF), Jun. 2016,
pp. 135–147.

[10] M. Abadi, “Access control in a core calculus of dependency,” in 11th

ACM SIGPLAN Int’l Conf. on Functional Programming. New York,
NY, USA: ACM, 2006, pp. 263–273.

[11] J.-Y. Girard, “Une extension de l’interpretation de gödel a l’analyse, et
son application a l’elimination des coupures dans l’analyse et la theorie
des types,” in Studies in Logic and the Foundations of Mathematics.
Elsevier, 1971, vol. 63, pp. 63–92.

[12] ——, “Interpretation fonctionelle et elimination des coupure dans
l’arithmetic d’ordre superieur,” Ph. D. Thesis, L’universite Paris VII,
1972.

[13] J. C. Reynolds, “Towards a theory of type structure,” in Programming
Symposium. Springer, 1974, pp. 408–425.

[14] F. Pottier and V. Simonet, “Information flow inference for ML,” in 29th

ACM Symp. on Principles of Programming Languages (POPL), 2002,
pp. 319–330.

[15] L. Zheng and A. C. Myers, “A language-based approach to secure
quorum replication,” in 9th ACM SIGPLAN Workshop on Programming
Languages and Analysis for Security (PLAS), Aug. 2014.

[16] O. Arden, J. Liu, and A. C. Myers, “Flow-limited authorization: Technical
report,” Cornell University Computing and Information Science, Tech.
Rep. 1813–40138, May 2015.

[17] L. Zheng and A. C. Myers, “End-to-end availability policies and
noninterference,” in 18th IEEE Computer Security Foundations Workshop
(CSFW), Jun. 2005, pp. 272–286.

[18] A. C. Myers and B. Liskov, “Protecting privacy using the decentral-
ized label model,” ACM Transactions on Software Engineering and
Methodology, vol. 9, no. 4, pp. 410–442, Oct. 2000.

[19] S. Hunt and D. Sands, “A quantale of information,” in 2021 IEEE 34th
Computer Security Foundations Symposium (CSF), 2021.

[20] L. Lamport, “The pluscal algorithm language,” in Theoretical Aspects of
Computing - ICTAC 2009, M. Leucker and C. Morgan, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2009, pp. 36–60.

[21] A. Bessani, J. Sousa, and E. E. Alchieri, “State machine replication for
the masses with bft-smart,” in Dependable Systems and Networks (DSN),
2014 44th Annual IEEE/IFIP International Conference on. IEEE, 2014,
pp. 355–362.

[22] R. B. Findler and M. Felleisen, “Contracts for higher-order functions,”
SIGPLAN Not., vol. 37, no. 9, p. 48–59, sep 2002.

[23] P. Wadler and R. B. Findler, “Well-Typed Programs Can’t Be Blamed,”
in Programming Languages and Systems, G. Castagna, Ed. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2009, pp. 1–16.

APPENDIX

C(τ1
pc−→ τ2) = C(τ1) t pc t C(τ2)

C(∀X[pc]. τ) = pc t C(τ)
C(` says τ) = C(τ)

C((τ1 + τ2)) = C(τ1) t C(τ2)
C((τ1 × τ2)) = C(τ1) t C(τ2)
C(unit) = ⊥

Fig. 18: Clearance function

[E-APPFAILL] λ(x :τ)[pc]. failτ
pc−→τ ′ e −→ failτ

′

[E-TAPPFAIL] fail
∀X[pc]. τ τ ′ −→ failτ [X 7→τ

′]

[E-CASEFAIL] caseτ failτ
′
of inj1(x).e1 | inj2(x).e2 −→ failτ

[E-PAIRFAILL] 〈failτ1 , f2〉(τ1×τ2) −→ fail(τ1×τ2)

[E-PAIRFAILR] 〈f1, failτ2〉(τ1×τ2) −→ fail(τ1×τ2)

Fig. 19: Remaining cases for propagation of fail terms.

C (unit) = unit

C ((τ1 + τ2)) = (C (τ1) + C (τ2))

C ((τ1 × τ2)) = (C (τ1)× C (τ2))

C (τ1
pc−→ τ2) = C (τ1)

pc−→ C (τ2)

C (ΛX[pc]. τ) = ΛX[pc].C (τ)

C ((`1 � `2) says τ) = (`1 ∨ `2) says C (τ)

C ((`1 � `2) says τ) = (`1 ∧ `2) says C (τ)

(otherwise) C (` says τ) = ` says C (τ)

Fig. 20: C function on types.

[R-UNIT] Π
 pB () [R-TFUN]
Π
 pB τ

Π
 pB ∀X[pc]. τ

[R-SUM]

Π
 pB τ1
Π
 pB τ2

Π
 pB (τ1 + τ2)
[R-PROD]

Π
 pB τ1
Π
 pB τ2

Π
 pB (τ1 × τ2)

[R-LBL]

Π
 pc < `c

Π
 pB τ

Π
 pB ` says τ
[R-FUN]

Π
 pB τ1
Π
 pB τ2

Π
 pB τ1
pc−→ τ2

Fig. 21: Reads judgments.

L(x, y,C, `1, `2) = match (x, y) with

| ((η` v1), (η` v2)) =

if C � `1 ∈ F then C
else if C � `2 ∈ F then C
else if C � ` ∈ F then C
else L(v1, v2, C, `, `)
| (η` e1, η` e2) = L(e1, e2, C, `1, `2)

| (injτi e1, inj
τ
i e2) = L(e1, e2, C, `1, `2)

| (〈e11, e12〉τ , 〈e21, e22〉τ) =

L(e11, e21, (L(e12, e22, C, `1, `2)), `1, `2)

| (runτ e1@p, run
τ e2@p) = L(e1, e2, C, `1, `2)

| (selectτ e1 or e2, select
τ e′1 or e

′
2) =

L(e1, e
′
1, (L(e2, e

′
2, C, `1, `2)), `1, `2)

| (compareτ e1 and e2, compare
τ e′1 and e

′
2) =

L(e1, e
′
1, (L(e2, e

′
2, C, `1, `2)), `1, `2)

| (λ(x :τ)[pc]. e1, λ(x :τ)[pc]. e2) = L(e1, e2, C, `1, `2)

| (ΛX[pc]. e1,ΛX[pc]. e2) = L(e1, e2, C, `1, `2)

| (proji e1, proji e2) = L(e1, e2, C, `1, `2)

| (bind x1 = e1 in e
′
1, bind x2 = e2 in e

′
2) =

L(e1, e2,L(e′1, e
′
2, C, `1, `2), C, `1, `2)

| (caseτ e1 of inj
τ
1(z).e2 | injτ2(z).e3,

case
τ e′1 of inj

τ
1(z).e′2 | injτ2(z).e′3) =

last(e1, e
′
1,L(e2, e

′
2,L(e3, e

′
3, C, `1, `2), `1, `2), `1, `2)

| (f1, f2) =

if f1 = f2then C
else if C � `1 ∈ F then C
else if C � `2 ∈ F then C
else DNF(`1 ∈ F AND C) OR DNF(`2 ∈ F AND C)

DNF(` ∈ F AND C) => match C with
| F = ∅ => ` ∈ F
| `′ ∈ F => ` ∈ F AND `′ ∈ F
| C1 OR C2 => DNF(` ∈ F AND C1) OR DNF(` ∈ F AND C2)

| C1 AND C2 => C1 AND C2 AND ` ∈ F

Fig. 22: Function to construct blame constraint C.

[PANDL]

Π
 pi < p
k ∈ {1, 2}

Π
 p1 � p2 < p
[PANDR]

Π
 p < p1
Π
 p < p2

Π
 p < p1 � p2

[ANDPAND] Π
 p ∧ q < p� q

[PANDPOR] Π
 p� q < p� q

[PROJPANDL] Π
 pπ � qπ < (p� q)π

[PROJPANDR] Π
 (p� q)π < pπ � qπ

[PROJPORL] Π
 pπ � qπ < (p� q)π

[PROJPORR] Π
 (p� q)π < pπ � qπ

[POROR] Π
 p� q < p ∨ q

[ANDDISTPORR] Π
 p ∧ (q � r) < (p ∧ q)� (p ∧ r)

[PORDISTANDR] Π
 p� (q ∧ r) < (p� q) ∧ (p� r)

[ANDDISTPORL] Π
 (p ∧ q)� (p ∧ r) < p ∧ (q � r)

[PORDISTANDL] Π
 (p� q) ∧ (p� r) < p� (q ∧ r)

[ORDISTPORR] Π
 p ∨ (q � r) < (p ∨ q)� (p ∨ r)

[ORDISTPORL] Π
 (p ∨ q)� (p ∨ r) < p ∨ (q � r)

[PORDISTORR] Π
 p� (q ∨ r) < (p� q) ∨ (p� r)

[PORDISTORL] Π
 (p� q) ∨ (p� r) < p� (q ∨ r)

[ANDDISTPANDR] Π
 p ∧ (q � r) < (p ∧ q)� (p ∧ r)

[PANDDISTANDR] Π
 p� (q ∧ r) < (p� q) ∧ (p� r)

[ANDDISTPANDL] Π
 (p ∧ q)� (p ∧ r) < p ∧ (q � r)

[PANDDISTANDL] Π
 (p� q) ∧ (p� r) < p� (q ∧ r)

[ORDISTPANDR] Π
 p ∨ (q � r) < (p ∨ q)� (p ∨ r)

[ORDISTPANDL] Π
 (p ∨ q)� (p ∨ r) < p ∨ (q � r)

[PANDDISTORR] Π
 p� (q ∨ r) < (p� q) ∨ (p� r)

[PANDDISTORL] Π
 (p� q) ∨ (p� r) < p� (q ∨ r)

Fig. 23: FLAQR Partial conjunction and disjunction acts-for rules.

[BRACKET]

Π
 (Hπ t pc) v pc′ e1 = v1 ⇐⇒ e2 6= v2
Π; Γ; pc′; c ` e1 : τ Π; Γ; pc′; c ` e2 : τ

Π ` Hπ v C (τ) Π
 c < pc

Π; Γ; pc; c ` (e1 | e2) : τ

[BRACKET-VALUES]

Π; Γ; pc; c ` v1 : τ Π; Γ; pc; c ` v2 : τ
Π ` Hπ v C (τ) Π
 c < pc

Π; Γ; pc; c ` (v1 | v2) : τ

[BULLR]
Π; Γ; pc; c ` e : τ

Π; Γ; pc; c ` (e | •) : τ
[BULLL]

Π; Γ; pc; c ` e : τ

Π; Γ; pc; c ` (• | e) : τ

[BRACKET-FAIL-L]
Π; Γ; pc; c ` e : τ

Π; Γ; pc; c ` (e | failτ) : τ

[BRACKET-FAIL-R]
Π; Γ; pc; c ` e : τ

Π; Γ; pc; c ` (failτ | e) : τ

[BRACKET-FAIL-A]
Π; Γ; pc; c ` ei : τ ei 6= failτ π = a

Π; Γ; pc; c ` (e1 | e2) : τ

[BRACKET-SAME]
Π; Γ; pc; c ` v : τ

Π; Γ; pc; c ` (v | v) : τ

(a) Typing rules for bracketed expressions.

[BRACKET-STACK]

Π; Γ; pc′; c ` e : τ ′ Π
 pc v pc′
∀i ∈ {1, 2}.Π; Γ; pc ` si : [τ ′]τ

Π; Γ; pc ` 〈e, c〉 & (s1 | s2) : τ

[BRACKET-HEAD]

Π; Γ; pc′; c ` (e1 | e2) : τ ′ Π
 pc v pc′
Π; Γ; pc ` s : [τ ′]τ

Π; Γ; pc ` 〈(e1 | e2), c〉 & s : τ

(b) Typing rules for bracketed configuration stack.

[B-COMPARECOMMON]
bcompare`1⊕`2 says τ (f11 | f12) and (f21 | f22)ci −→ fi ∀i ∈ {1, 2}

compare
`1⊕`2 says τ (f11 | f12) and (f21 | f22) −→ (f1 | f2)

[B-COMPARECOMMONRIGHT]
bcompare`1⊕`2 says τ (f11 | f12) and fci −→ fi ∀i ∈ {1, 2}

compare
`1⊕`2 says τ (f11 | f12) and f −→ (f1 | f2)

[B-SELECTCOMMON]
bselect`1	`2 says τ (f11 | f12) or (f21 | f22)ci −→ fi ∀i ∈ {1, 2}

select
`1	`2 says τ (f11 | f12) or (f21 | f22) −→ (f1 | f2)

[B-SELECTCOMMONLEFT]
bselect`1	`2 says τ (f11 | f12) or fci −→ fi ∀i ∈ {1, 2}

select
`1	`2 says τ (f11 | f12) or f −→ (f1 | f2)

[B-FAIL1] η` (v | failτ) −→ ((η` v) | fail` says τ) [B-FAIL2] η` (failτ | v) −→ (fail` says τ | (η` v))

[B-FAIL] η` (failτ | failτ) −→ failτ

[B-RUNLEFT] 〈(E[runτ e1@c
′] | e2), c〉 & s =⇒ 〈(ret e1@c | •), c′〉 & 〈(E[expectτ] | e2), c〉 :: s

[B-RETRIGHT]

f ′ =

{
(η` v) if f = v

fail
` says τ if f = failτ

〈(• | ret f@c), c′〉 & 〈(e2 | E[expect` says τ]), c〉 :: s =⇒ 〈(e2 | E[f ′]), c〉 & s

[B-RETV]

f ′i =

{
(η` v) if fi = v

fail
` says τ if fi = failτ

〈ret (f1 | f2)@c, c′〉 & 〈E[expect` says τ], c〉 :: s =⇒ 〈E[(f ′1 | f ′2)], c〉 & s

Fig. 25: Selected bracketed Evaluation Rules.

O(failτ ,Π, p, π) = ◦
O(select e1 or e2,Π, p, π) = select O(e1,Π, p, π) or O(e2,Π, p, π)
O(compare e1 and e2,Π, p, π) = compare O(e1,Π, p, π) and O(e2,Π, p, π)

O(〈e, c〉 & s,Π, `, π) =

{
O(e,Π, `, π) s = empty

O(e,Π, `, π)&O(s,Π, `, π)

O(〈e, c〉 :: s,Π, `, π) =

{
O(e,Π, `, π) s = empty

O(e,Π, `, π) :: O(s,Π, `, π)

O(E[runτ e@c],Π, `, π) = O(E[e],Π, `, π)
O(ret e@c,Π, `, π) = O(e,Π, `, π)

Fig. 26: Observation function for intermediate FLAQR terms (extended from FLAC [7]).

	Introduction
	Motivating examples.
	Tolerating failure and corruption
	Using best available services

	Specifying FLAQR policies
	FLAQR syntax and semantics
	Global semantics

	FLAQR typing rules
	Availability Attackers
	Security Properties
	Soundness of failure
	Noninterference
	Confidentiality and Integrity Noninterference
	Availability Noninterference

	Examples revisited
	Tolerating failure and corruption
	Using best available services

	Related work
	Conclusion
	Acknowledgements
	References
	Appendix

