
EasyChair Preprint
№ 7319

The Office Scheduling Problem

Minh Vinh Nguyen Phuoc Bao

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

January 10, 2022



The Office scheduling problem

Vinh Nguyen Phuoc Bao Minh

January 7, 2022

Abstract

The Coronavirus Disease 2019 has disrupted many aspects of our daily life, such

as going to work. To cope with this rapid changes, offices are required to make

a more flexible schedule. In this paper, we introduce an approach to this problem

using constraint programming.

1 Introduction

The Coronavirus Disease 2019 (COVID-19), which was first identified in Wuhan,
China, is an ongoing pandemic (Liu et al., 2020). According to the study conducted by
the World Health Organization (The World Health Organization, 2019), COVID-19 can
cause serious respiratory illness that could become fatal, especially to those with underly-
ing health conditions such as cardiovascular disease, diabetes, chronic respiratory disease,
or cancer. Following the current situation, multiple measures have been executed in order
to fight the spread of the virus while limiting the negative economic consequences. As
far as the workplace is concerned, reducing the number of employees in the workplace
by encouraging teleworking plays a crucial role in protecting them, their families, and
society as a whole.

The mid-COVID-19 pandemic is forcing businesses all over the world (for example,
Hong Kong (Vyas and Butakhieo, 2021), Vietnam (Dezan Shira et. al., 2021)), to shift its
paradigm from onsite- to online-working in the hope of limiting the exposure of the virus
while retaining the productivity and workload. In universities such as the Vietnamese-
German University, although students and teaching staff (e.g. professors, lecturers) are
encouraged to work from home, administrative staff (e.g. lab-engineers, faculty assistants)
must commute to the university on a daily basis. Therefore, the university administrators

1



Person Alice Bob Charlie David Eve
Time AM PM AM PM AM PM AM PM AM PM

1 ✓ ✓ ✓ ✓
2 ✓ ✓ ✓ ✓
3 ✓ ✓ ✓
4 ✓ ✓ ✓
5 ✓ ✓
6 ✓ ✓ ✓
7 ✓ ✓ ✓ ✓
8 ✓
9 ✓ ✓ ✓ ✓ ✓
10 ✓ ✓ ✓ ✓ ✓
11 ✓ ✓ ✓
12

Table 1: Availability of staff members (✓: available)

need to schedule a specific work plan to assure safety to its staff while maintaining effi-
ciency. In order to resolve the Office scheduling problem, let us assume that employees
are allowed to have flexible working schedules, i.e., non-traditional arriving and leaving
time.

In combinatorial optimization (Korte and Vygen, 2018), a problem setting can be quite
similar to another. The Office scheduling problem is not an exception since it is based on
the Production scheduling problem (Graves, 1981), with respect to the optimization objec-
tive, while differing from particular constraints and assumptions. The Office scheduling

problem takes into account a group of staff who are required to work for a number of
hours. Moreover, their tasks are independent, i.e., they do not need to wait for another
staff member to finish his/her work. Because every staff member may need to stay home
with a child due to school and childcare closures or other reasons, they will be assigned a
time slot that fits their own schedule. For the sake of simplicity, let us assume that only
one person is allowed to be physically in the office at a time. Inspired by (Graves, 1981;
Guerriero and Guido, 2021), in this paper, our objectives are

• to determine a working schedule that fits every staff preferences,

• and more importantly, to determine an optimal working schedule, i.e., the hour that
the office can close the earliest.

Example 1. Let us consider a case of 5 staff members: Alice, Bob, Charlie, David and
Eve working in a department at an office. As previously stated, only one person at most

2



1 2 3 4 5 6 7 8 9 10 11 12
AM David Eve David Eve Charlie Bob Bob Bob Eve
PM Alice Eve Alice

Table 2: A possible schedule

1 2 3 4 5 6 7 8 9 10 11 12
AM David Eve David Alice Charlie Bob Eve Bob Eve Eve
PM Alice Bob

Table 3: A more optimal schedule

is permitted to be in the room. Each person has a number of hours they need to work.
Respectively, Alice, Bob, Charlie, David and Eve need to work for 2, 3, 1, 2 and 4 hours.
Each person has registered a preference time that they can work, so as not to disrupt their
home activities, reported in Table 1.

One scheduling solution could be depicted in Table 2: in which the office will be closed
after 7 P.M.. Another feasible answer could be viewed in Table 3: in which the office will
be closed after 2 P.M.. The solution in the latter table is better than the former table. In
fact, Table 3 displays the most optimal schedule. 1

In this thesis, we will implement a program using an open-source constraining pro-
gramming language, MiniZinc, which is used to model constraint satisfaction and opti-
mization problems (Nethercote et al., 2007). The thesis is organized as follows, Section 2
introduces the Office scheduling problem and its formulation mathematically, Section 3
will talk about programming language and tool, and then implementation for the problem,
Section 4 describes some potential variants concerning this problem. Finally, Section 5
features the concluding state of affairs.

2 Mathematical model and formulation

The section starts with the definition of the Office scheduling problem.

Definition 1. An Office scheduling problem O is defined as a quadruple

O = ⟨P,T , free,hour⟩

where:
1We will leave the proof of this claim for interested readers.

3



• P be a set of individuals,

• T be a set of 24-hour time window: i.e., T = {t | t ≥ 1∧ t ≤ 24},

• free() : P×T → Bool be a function that takes a person and a time slot to return a
boolean value that expresses whether this person is available to work at that partic-
ular time window,

• hour() : P →N be a function that takes a person and returns a number of hours that
person has to work.

Example 2. Consider the Office scheduling problem in Example 1.

• P = {Alice,Bob,Charlie,David,Eve},

• T = {t | t ≥ 1∧ t ≤ 24},

• free(p, t) =



1 if (p = Alice∧ t ∈ {4,13,19,21,22})

∨(p = Bob∧ t ∈ {6,9,10,14,15,21})

∨(p = Charlie∧ t ∈ {5,8,10,13,14,21,22,23})

∨(p = David∧ t ∈ {1,3,4,5,6,7,19,23})

∨(p = Eve∧ t ∈ {2,4,7,10,11,13,14,15,18,21}),

0 otherwise

• hour(Alice) = 2
hour(Bob) = 3
hour(Charlie) = 1
hour(David) = 2
hour(Eve) = 4

Definition 2. Given an Office scheduling problem O = ⟨P,T , free,hour⟩
A solution of O is a function:

assign() : P×T → Bool,

that satisfies the following constraints:

• a staff member can only work at the time at which he/she prefers,

∀p, t.assign(p, t)⇒ free(p, t)

4



• the number of working hours of a staff member equals to his/her required hours,

∀p.
24

∑
t=1

assign(p, t) = hour(p)

• the number of staff members working at a time is at most 1.

∀t.
P

∑
p

assign(p, t)≤ 1

Example 3. The solution in Table 2 can be represented as the following function assign() :
P×T → Bool

• assign(Alice, t) =

1 t ∈ {13,19},

0 otherwise

• assign(Bob, t) =

1 t ∈ {6,9,10},

0 otherwise

• assign(Charlie, t) =

1 t ∈ {5},

0 otherwise

• assign(David, t) =

1 t ∈ {1,3},

0 otherwise

• assign(Eve, t) =

1 t ∈ {2,4,11,18},

0 otherwise

All constraints and assumptions in Definition 2 are satisfied.

Definition 3. Given an Office scheduling problem in Definition 1. We define tmax of
function assign() as the last hour to be scheduled in the office. Then, assign⋆() is said to
be the optimal solution if and only if for every solution assign(), t⋆max ≤ tmax.

Example 4. The solution in Table 3 is optimal.

3 MiniZinc and computational experiments

As mentioned earlier, MiniZinc language is specified in constrained optimization and
programming. MiniZinc lets users write models in such a way that is close to a mathemat-
ical formulation of the problem, using familiar notation such as existential and universal

5



quantifiers, sums over index sets, or logical connectives like implications and if-then-else
statements (Peter J. Stuckey, Kim Marriott, Guido Tack, 2020).

1 enum P;

2 array[P] of int: hour;

3 set of int: T = 1..24;

4 array[P,T] of bool: free;

5 array[P,T] of var int: assign;

6 constraint forall (t in T, p in P) (

7 assign[p,t] in (0..1)

8 );

9 constraint forall (t in T) (

10 1 >= sum (p in P)(assign[p,t])

11 );

12 constraint forall (p in P) (

13 hour[p] = sum (t in T)(assign[p,t])

14 );

15 constraint forall (p in P, t in T) (

16 (assign[p,t] = 1) -> free[p,t]

17 );

18 var int: t_max;

19 constraint forall (p in P, t in T) (

20 (assign[p,t] = 1) -> (t <= t_max)

21 );

22 constraint exists (p in P) (

23 assign[p,t_max] = 1

24 );

25 solve minimize t_max;

Listing 1: The MiniZinc implementation of the Office scheduling problem

Listing 1 is the implementation of the Office scheduling problem. From line 1–4, we
define the Office scheduling problem according to Definition 1. Line 5–17, we constrain
the solution according to Definition 2. Line 18–24, the program focus on constraining
tmax according to Definition 3. And finally, line 25 tries to find the optimal value of tmax

using a special command provided by MiniZinc language.
The program takes a data input file and returns the optimal working schedule, if plau-

sible; UNSATISFIABLE, otherwise. Interested readers can find the implementation, some
sample datasets and its solutions in (Minh Vinh, 2022).

6



4 Variants of the Office scheduling problem

The purpose of this section of the thesis is to introduce some new concepts of the Office

scheduling problem.

4.1 Priority working

Recall that staff members are equal and work individually. Here, the problem is ex-
panded such that some staff work dependent on others. For example, Alice may have to
wait until Bob finishes his work.

This variant can be defined by adding a function

dependent() : P×P → Bool,

that takes 2 people and return a boolean value that expresses if the former person is de-
pendent on the latter person. In addition, few constraints need to be appended.

4.2 “New normality”

Another variant to this problem can be that it is not limited to just one person in the
office at a certain time. For example, there is no restriction for the people who have been
vaccinated, while the ones who have not, still have to work separately.

This variant can be defined with another function

vaccine() : P → Bool,

that takes a person and returns whether he/she is vaccinated or not. In addition, few
constraints need to be appended.

4.3 Office hour restriction

Recall that our Office scheduling problem is fixed between time 1–24. In pratice, of-
fices open from 8A.M. to 5P.M., so everything needs to be finalized between that time.
Therefore, two variables need to be input that expresses the starting and ending time.

5 Conclusion

The COVID-19 pandemic has forced the world to adopt a new paradigm of worksite,
one that must take into account school closures and other issues of social distancing, while

7



still maintaining the same efficiency as before. The optimization model can be used to
address the university/company scheduling, in which, all members’ needs are considered.
It belongs to the class problem of Production scheduling. In this paper, we have proven
that it is possible for staff to carry on production, have a better work/life balance schedule
and manage to continue working amidst the COVID-19 pandemic.

References

Dezan Shira et. al. (2021). Vietnam’s New Normal: The Hybrid Work Strategy.
https://www.vietnam-briefing.com/news/. Online; accessed 07 January 2022.

Graves, S. C. (1981). A review of production scheduling. Oper. Res., 29(4):646–675.

Guerriero, F. and Guido, R. (2021). Modeling a flexible staff scheduling problem in the
era of covid-19. Optimization Letters.

Korte, B. and Vygen, J. (2018). Combinatorial Optimization: Theory and Algorithms.

Liu, Y.-C., Kuo, R.-L., and Shih, S.-R. (2020). Covid-19: The first documented coron-
avirus pandemic in history. Biomedical Journal, 43(4):328–333.

Minh Vinh (2022). StaffSchedulingProblem GitHub repository. https://github.com/

minhnguyen1312/StaffSchedulingProblem. Online; accessed 06 January 2022.

Nethercote, N., Stuckey, P. J., Becket, R., Brand, S., Duck, G. J., and Tack, G. (2007).
Minizinc: Towards a standard CP modelling language. In Bessiere, C., editor, Prin-

ciples and Practice of Constraint Programming - CP 2007, 13th International Con-

ference, CP 2007, Providence, RI, USA, September 23-27, 2007, Proceedings, volume
4741 of Lecture Notes in Computer Science, pages 529–543. Springer.

Peter J. Stuckey, Kim Marriott, Guido Tack (2020). The MiniZinc Handbook. https:

//www.minizinc.org/doc-2.5.5/en/intro.html. Online; accessed 06 January
2022.

The World Health Organization (2019). Coronavirus disease (COVID-19). https:

//www.who.int/health-topics/coronavirus#tab=tab_1. Online; accessed 06
January 2022.

Vyas, L. and Butakhieo, N. (2021). The impact of working from home during covid-19 on
work and life domains: an exploratory study on hong kong. Policy Design and Practice,
4(1):59–76.

8

https://www.vietnam-briefing.com/news/vietnams-new-normal-hybrid-work-strategy.html/
https://github.com/minhnguyen1312/StaffSchedulingProblem
https://github.com/minhnguyen1312/StaffSchedulingProblem
https://www.minizinc.org/doc-2.5.5/en/intro.html
https://www.minizinc.org/doc-2.5.5/en/intro.html
https://www.who.int/health-topics/coronavirus#tab=tab_1
https://www.who.int/health-topics/coronavirus#tab=tab_1

	Introduction
	Mathematical model and formulation
	MiniZinc and computational experiments
	Variants of the Office scheduling problem
	Priority working
	``New normality''
	Office hour restriction

	Conclusion

