ﬁ EasyChair Preprint

Ne 10321

On the Exponential Ergodicity of the
McKean-Vlasov SDE Depending on a Polynomial
Interaction

Mohamed Alfaki Ag Aboubacrine Assadeck

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

October 18, 2024



ON THE EXPONENTIAL ERGODICITY OF THE MCKEAN-VLASOV SDE
DEPENDING ON A POLYNOMIAL INTERACTION *

Mohamed, Alfaki ABOUBACRINE ASSADEK
Univ Angers, CNRS, LAREMA,
SFR MATHSTIC,
F-49000 Angers, France
mohamedalfaki.agaboubacrineassadeck@univ-angers.fr

October 17, 2024

ABSTRACT

In this paper, we study the long time behaviour of the Fokker-Planck and the kinetic Fokker-Planck
equations with many body interaction, more precisely with interaction defined by U-statistics,
whose macroscopic limits are often called McKean-Vlasov and Vlasov-Fokker-Planck equations
respectively. In the continuity of the recent papers [1, 2, 3] and [4, 5, 6], we establish nonlinear
functional inequalities for the limiting McKean-Vlasov SDEs related to our particle systems. In
the first order case, our results rely on large deviations for U-statistics and a uniform logarithmic
Sobolev inequality in the number of particles for the invariant measure of the particle system. In
the kinetic case, we first prove a uniform (in the number of particles) exponential convergence
to equilibrium for the solutions in the weighted Sobolev space H! (i) with a rate of convergence
which is explicitly computable and independent of the number of particles. In a second time, we
quantitatively establish an exponential return to equilibrium in Wasserstein’s #>-metric for the
Vlasov-Fokker-Planck equation. Some concrete examples are also provided.

Keywords and phrases: U-statistics - propagation of chaos - polynomial interaction - (kinetic) Fokker-Planck
equation - McKean-Vlasov equation - functional inequalities - convergence to equilibrium - (hypo)coercivity
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1 Introduction

In the continuity of the recent papers [2] and [3], we establish exponential convergence towards equilibrium for a
class of McKean-Vlasov and Vlasov-Fokker-Planck with polynomial interaction (macroscopic interaction associated
with U-statistics and defined in Eq. (1.17) and Eq. (1.18)). Before going further into the details, we recall the general
setting related to our problem.

General homogeneous McKean-Vlasov diffusion. The processes studied in this paper belong to the following class
of stochastic differential equations:

dX, = b(X;,Px,)dt +(X,,Px,)dB;, 1.1

with respectively b : RP x 2 (RP) — RP the drift coefficient, o : RP x 2(RP) — . ,(R) the diffusion coefficient and
(By) =0 a standard p—dimensional Brownian motion. More precisely, we are interested in the study of exponential
ergodicity of the process defined by

2
dX; = —(@mE(Px,, X) + %VV(XI))d t+0dB;, (1.2)

where F: Z[RP) — R, 2, F is the intrinsic derivative (L—derivation or derivation in the sense of Fréchet of F on
the probability measure space, see Eq. (1.26) for precise definition) which is none other than the gradient of a flat
derivative (see Eq. (1.26)) of F: 9,,F(m, ) := Vg—ri(m, -) (for example, if F(m) = ftpdm, we have 55—51 (m, x) = @(x) then,
PmF(m, x) = Ve(x)), V is a confinement potential and o > 0 (in this paper, without loss of generality and for the sake

of standardization, we take o = v/2). Equation (1.2) also writes
OH
dth—V—(lF’xt,Xt)dt+GdBt (1.3)
om
with the functional H given by

2
H(w) := F() + % dep. (1.4)

With these notations, considering polynomial interactions means that F is a polynomial on the probability space of
degree at least two (see Eq. (1.17) for details). The second term being a polynomial of degree 1, the function H is also
a polynomial on the probability space (without constant term).
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The related mean-field particle system. The n—particle associated with (1.2) is given by the following system of
SDEs: ) ] ] )
Vie{l,...,n}, dXy"=bX;", uxndt+oX;", puxr)dBy, (1.5)

where B',...,B" are n independent Brownian motions and Hx» denotes the empirical measure defined by
1Z D
Hei= =2 8y X=(x1,00, %) € RD)™
n =1

Under standard assumptions, (X"'")ZT‘:1 is a Markov process with infinitesimal generator defined on an appropriate
subspace of 6, ((R”)") by,

n
Lnp(x):=) Ly Bipx) (1.6)
i=1
where for a given p € P[RD),
1
L= b(-,p)-V+ETr(Gcr*(-,p)Vz), ne 2RP) (1.7)

and the notation ZM;¢ denotes the action of an operator £ defined on (a subset of) €, (RP) against the i-th
variable of a function ¢ € <&,((IRD)"); in other words, ZM; ¢ is defined as the function:

x € RP)'— LIy — @(X1,..., Xi-1, Y, Xis1,---, Xn)] (x;) ER.

In the family of equations of type (1.5), kinetic particle systems correspond to the case where Zhm .= (xbvimy

R4 x R is a particle defined by two arguments, its position X;" and its velocity Vl’;'" defined as the time derivative of
the position. The evolution of a system of kinetic particles is usually governed by Newton’s laws of motion. In a
random setting, the typical system of SDEs is thus the following:

dxi"=vi"de

. o o . 1.8
avy" =FXy" vyt uxndt + o (X", vy, pxn) dB, 49

Yiell,...,n}, {
where F: R% x RY x @(Rd) — R and 5 : R% x RY x @([Rd) — ;(R). Note that it is often assumed that the force field
induced by the interactions between the particles depends only on their positions. Note that in the system Eq. (1.5)
there are actually nD independent one-dimensional Brownian motions. In particular, for kinetic particles defined
by their positions and velocities, the noise is often added on the velocity variable only (this case is nevertheless
covered by Eq. (1.5) with a block-diagonal matrix ¢ with a vanishing block on the position variable). This special
case of the McKean-Vlasov diffusion in RP = R? x R is also often called a second order system by opposition to the

first order systems when RP = R?. In this paper, we will establish some uniform exponential convergence of the
particle systems Eq. (3.5) and Eq. (3.16) (defined below) which in turn will allow us to derive the same properties for
their mean-field limiting dynamics.

McKean-Vlasov PDE. It is classically assumed that the domain of the generator £, does not depend on p. This

domain will be denoted by % c %,(RP). In that case, it is easy to guess the form of the associated nonlinear system
obtained when n — +oo. Taking a test function of the form @(x,...,x,) := w(x1), where v € &, one obtains the
one-particle Kolmogorov equation:

d
%@X},n,w) = f(RD)n Ly px)Pxn(dx) = [E[fpx?tp(X?)]. (1.9)

Note that the right-hand side depends on the n—particle distribution. If the limiting system exists (propagation of
chaos) then, its law p; at time ¢ = 0 is typically obtained as the limit of the empirical measure process:
n—+oo

This also implies Py, nzie M:. Reporting formally in the previous equation, it follows that p; should satisfy
t

d . ..
(V(peg, Emmp):(pt,xp[(p))@atptszjltpt, where ‘,%Jt is the weak adjoint of %,. 1.11)

This is the weak form of the so-called the (nonlinear) evolution equation induced by (1.1). The evolution equation
Eq. (1.11) can be written in a strong form (at least formally) and reads:

1 D
01k (1) = =V (b, + 5 Y B0, (007106 ko) (1.12)
ij=1
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This is a nonlinear Fokker-Planck equation which is used in many important modelling problems. This equation
was obtained (formally) previously using only the generators when n — +o0o. Here, there is an alternative way to
derive the limiting system: looking at the SDE system Eq. (1.5), the empirical measure can be formally replaced by
its expected limit ;. Since all the particles are exchangeable, this can be done in any of the n equations. The result
is a process (X;) ;=0 which solves the SDE: (McKean-Vlasov process)

dX; =bX;,p)dt+0 Xy, u)dBy, (1.13)
where (B;) >0 is a Brownian motion and X, ~ Ho- Moreover, since for all i, X’;” has law P1.» and since it is expected
13

that Py, e Uz, the process X, =0 and the distributions (1£) t=0 should be linked by the relation: for all = 0,
13

X; ~ H;. The dependency of the solution of a SDE on its law is a special case of what is called a nonlinear process
in the sense of McKean (Eq. (1.1) is equivalent to Eq. (1.11) via mean-field system given by Eq. (1.6). Under
appropriate conditions, the process Eq. (1.13) is well defined or (equivalently) the PDE Eq. (1.12) is well-posed (see
[7, Proposition.1] or Theorem A.2 for details).

Remark 1.1. Note that when o = 0, the limit equation Eq. (1.12) is the renowned Vlasov equation which is historically
one of the first and most important models in plasma physics and celestial mechanics.

Equivalently, our main objective is the study of the long-time behavior of the solution flow of the nonlinear (2,,F
must at least depend on the measure otherwise we find the standard Fokker-Planck PDE) Fokker-Planck equation:

2 2
Gtmzv-((QmF(m,~)+%VV)m+ %Vm). (1.14)

From two-body to many-body interactions. Depending on the form of the drift and diffusion coefficients, the
McKean-Vlasov diffusion can be used in a wide range of modelling problems. The first case is obtained when b and
o depend linearly on the measure argument. Namely, for r, m € N, let us consider two functions K; : R% x R% — R”",
Ko : RY x R — R™, and let us take b(x, ) = b(x,K; * p(x)), o(x, ) = 5(x, Ko * u(x)), where b : R x R" — R%,
G :RYx R™ — 4y(R) and K; * u(x) := [K;(x,y)u(dy). When K;,K, and b, are Lipschitz and bounded, the
propagation of chaos result is the given by McKean’s theorem.

In many applications, o is a constant diffusion matrix, K; (x, y) = K(y — x) for a (usually symmetric) radial kernel
K:R? — R and b(x, W) = K* p(x). Note that the case where K has a singularity is much more delicate but contains
many important cases (such as the Biot-Savart kernel or the 2D-incompressible Navier-Stokes model in fluid
dynamics).

The case of gradient systems is an important sub-case when o (x, p) = old for a constant ¢ > 0 and

b(x, ) = -VV(x) —jl;d VW (x - y)u(dy) (1.15)

where V,W are two potentials on R respectively called the confinement potential and the interaction potential. The

limit Fokker-Planck equation
2

(02
atpt=7Apt+V'(ptV(V+W* pt)), (1.16)

is called the granular-media equation. The above models are two-body interactions. This is characterized by the fact
that K; or K, depend on only two variables or equivalently by the fact the functional F: p— [K; (x, ) pu(dx)u(dy) is a
polynomial of degree two. Nevertheless, in some other models, one may find some interactions which involve more
than two particles. This is for instance the case of the Skyrme model (see [8]). This is why in this paper, we choose to
consider a polynomial dependence in the measure | induced by order statistics (many-body interaction) in order to
generalize the results obtained in the case of a linear interaction in the measure p defined by the convolution via a
potential two-body interaction ( [3], [2]). More exactly, under adequate assumptions (see HMV3.1, VFP3.2), we are
interested in the exponential return to equilibrium of the solution of Eq. (1.14) in the case

N
Fw=)Y fW(k)dp®k, (1.17)
k=2

where Vke€ {2,...,N}, W® jsa symmetric interaction potential between k particles and N represents the number of
such potentials. The intrinsic derivative 2,,F(v, y) associated with this functional is given by

6F N k .
VS_m(V’y) =Yy ijW(k)(xl,...,xj_l,y,xj+1,...,xk)v®k Ydxy,...,dxj-1,dxjs1, ..., dxp) (1.18)
k=2j=1
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The associated microscopic (particle-level) interaction is given by (U—statistic of order k and kernel ® = W®))

k!(n—k)!

U, WH) =
n!

Y o whhn X", where X" = XML, X" € (RP)". (1.19)

1<ij<..<iy<n

UX™) :=U,(®) is called U-statistic of order k and kernel ® associated with the sample X". This statistic corresponds
to the arithmetic mean of the kernel ® over all the parts at k elements of the set of sample values. We will often write
U, (W) (X" :=: UX™). We generalize this definition to the space of probabilities by the functional

ne 2RP) *’f Ddu®*, (1.20)
RkD

called monome of degree k and coefficient ® on the probability space 22(RP). The link between these two micro-
scopic and macroscopic interactions is given by

N
Y U, (W®) = F(uxn). 1.21)
k=2

Remark 1.2. Note that the granular-media equation (1.16) is a particular case of (1.14) with

1 2
F(p) = f W (x, ypdx)pdy) W(x,y) = FWEx=y) V=V, (1.22)

Indeed, in this case, we have

5F
5 ) =fW(Z’(x,y)p(dy)+fW(2)(y,x)u(dy) =fW(x—y)p(dy) =Wk u(x), (1.23)

so that SE
DmF(, x) = V%(p,x) = VW x p(x).

Energy and Large Deviations. Consider ./ﬂlp (RP) defined in Section 2, G: ﬂlp (RP) — R (which can be nonlinear)

and the probability (Gibbs) measure « related to V, i.e. a(dx) = Zy e VW dx with Zy = S e VW dx (where Zy is
assumed to finite). For any o > 0, we put

2
VoS (m) := Gim) + %H[ml(x]. (1.24)

VG is an energy function regularised by the KL—divergence H[m|a] which is given by Eq. (2.3) in Section 2. It is
known (see e.g. [9, Proposition.2.5]) that VoG is minimized by a measure m®* satisfying the following fixed point
problem (it is noteworthy that the variational form of the invariant measure of the classic Langevin equation is a
particular example of this first order condition)

2 (86 (0% 40>
o2 (g (M7, 0+ 5 V(x))dx’ (1.25)

1
mo*(dx)=—e
Zg
where Z; is the normalising constant, and for any m € Jllp (RP) and x € RP, 667?1 (m, x) denotes a flat derivative of G

with respect to m, in the direction of x, evaluated at m. Forany ©y,0; € J%lp (RDP), the function g—}% : j[lp (RP)xRP — R
satisfies

1 oG
G(O1) - G(©p) = f f O @0+ A(©1 - 00), 0)(O1 — O) () A (dN). (1.26)
o JrD 6m

This notion of derivative appears in the literature under several different names, including the linear functional
derivative (see e.g [10, Section.5.4.1]) or the first variation [11].

Remark 1.3. It is important to note that we have uniqueness modulo the choice of a function of the measure.
The McKean-Vlasov SDE given by Eq. (1.2) (therefore the associated PDE given by Eq. (1.14) and the invariant
measure given by Eq. (1.25)) does not depend on the choice of the function of the measure in the calculation of a
flat derivative: we can therefore do the calculations with any flat derivative. By convexity of ﬂf (R%), for all ¢ € [0,1],
B;:=(1-1)0g+ 101 € [0g,0;] c ./%lp (RY), Eq. (1.26) is equivalent to deriving the functional G along the end segment
©p and ©, parameterized by the path € [0,1] — O:

d 0G
—G(Oy) =f — (O, x)0,0;(dx). (1.27)
dt RrD Om
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In practice, this reformulation via derivation along paths lends itself better to calculations. For example, it is easy to
check

N
vg—F(v, =Y k f Vo, W (3, 2ve* 1 (d2); (1.28)
m k=2
d
Dy HI ] (v, y) = Vlog(d—:;)(y). (1.29)

In [1], the authors showed a Sanov theorem by large deviations on U-statistics in which VV2F isa good convergence

rate function, which implies that VV2F admits a minimizer: inf-compactness of the mean-field energy functional.
As for uniqueness, it is not assured: in statistical physics, we speak of phase transition. We ensure uniqueness by a
contraction property (see HMV3.1) on the invariant measure application induced by Eq. (1.25). Large Deviation
Principles imply propagation of chaos, but they do not always give a way to quantify it since the related results
are often purely asymptotic (for instance, Sanov theorem is non-quantitative). Nevertheless, the results of large
deviations turn out to be very useful for the technical passages in the macroscopic limits: when one makes tend
the number of particles to infinity. In the seminal article [12], the authors improve results from [13] and [14]
on Large Deviation Principles (LDP) for Gibbs measures and obtain as a byproduct a pathwise propagation of
chaos result for the McKean-Vlasov diffusion. Firstly, [12, Theorem.A] (or Theorem A.3) states a large deviation
principle for Gibbs measures with a polynomial potential. [12, Theorem.B] quantifies the fluctuations of px» in the
non-degenerate case. Analogous results for the degenerate case are given in [12, Theorem.C]. For more details,
see also [7, Theorem.4.7, Corollary.3]. We use the large deviations results obtained on the order statistics in [1]:

In addition to the fact that the mean-field entropy functional (Eq. (A.62) or VV2F defined by Eq. (1.24)) is a rate
function (Theorem A.3) for the random empirical measure px», the authors show that it is a good rate function that
has good tensorization properties.

Long time behavior. In the present paper, we are concerned by the long-time convergence towards the solution
to an optimization problem on the subspace ./%lp (RP) of probability measures .#; (RP): we consider a function

E: J[lp (RP) — R and we want to find a minimizing measure m* := arginf 17 &) E such that for a gradient flow (see
1

e.g. [11] and [15]) (m;) =0 associated with E, we have an exponential estimate of the deviation E(m;) — E(m™*) of the
form (with C=1and p > 0)
E(m;) — E(m™*) < C(E(myg) —E(m*))e P’ (1.30)

Eq. (1.30)-type Inequalities are called hypocoercive inequalities. We call E — E(m*) the entropy functional
([16],1171,[18]) of the system and — % (E(my) — E(m™)) the production of entropy (usually called energy in mathe-
matical literature). Clausius invents the concept of entropy, Boltzmann proposes to derive entropy along the flow.
Generally speaking, an entropy is a Lyapunov functional of a specific form. It is however hard (and even somewhat
artificial) to give a formal narrow definition of entropies that distinguishes them from, say, energies. An entropy is
a quantity calculated from a solution, which decreases over time when the solution obeys an evolution equation,
and which is stationary only for the stationary solutions of the equation. In conclusion, the concept of entropy is a
tool that adapts to what we want to study. The notion of hypocoercivity was proposed by T. Gallay. The objective is
typically to control the entropy at time ¢ by the initial entropy multiplied by a constant C (always greater than 1) and
a exponential decay factor, with exponential decay rate as good as possible in big time. This theory is inspired by
the hypoelliptic theory of L. Hormander, and the terminology hypocoercivity accounts for the relationship between
entropy and its derivative with respect to . There would be coercivity if C = 1, which is clearly not possible in most
cases considered in kinetic theory. It is well known that, for the standard Langevin equation of Hamiltonian V (given
by Eq. (1.2) in the case F = 0), for p > 0, the following assertions are equivalent:

Ve €XRY), pEnta[(pz]SZfIIV(pllzda. (1.31)
pH[-|a] < 2I[-|a. (1.32)
V=0, HuYlal<H[uglale . (1.33)

These three equivalent assertions imply the T2—Talagrand inequality
¥ (-, &) < 2H[ |, (1.34)

inequality which, in turn, implies an exponential contraction in wasserstein metric #5, i.e. the exponential conver-
gence of the flow (p\t’) =0 (solution of the Fokker-Planck equation associated with the standard Langevin process of
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Hamiltonian V) to the maxwellian (invariant measure of the Langevin process that can also be seen from equivalently
as the unique argming, ) H[-|al) o of the Fokker-Planck PDE given by Eq. (1.14) in the case F = 0:

2
VE=0, #PWY, < EH[p},’m(]e—f”. (1.35)

Eq. (1.31) and Eq. (1.32) respectively define the logarithmic Sobolev inequality ([17]) and its dual version. According
to the dimension curvature criterion of Bakry-Emery, we have

(ap >0 V(x,h)eRxRY, (VEV(x)h, hy = p||h||§) — Eq. (1.31). (1.36)
Note that in the case of the symmetric Langevin-Kolmogorov process, we have
my=nY, m*=a, E=H[lal, E(m;)-E(m*)=H[ulal, (1.37)
—%(E(mt)—E(m*))=—%H[p\t/|0(] =1[u) |al. (1.38)
The objective of this work is to identify a flow of measures (mf’F) =0 (flow solution of Eq. (1.14)) such that
VOF (m@F) - voOF (mo) 212, (1.39)

as well as conditions (HMV3.1, VFP3.2) that ensure that this convergence is exponential. To this end, we equip the
space Jllp (RP) with a suitable distance function d : Jllp (RP) x Mlp (RP) — R, and consider a corresponding gradient
flow, where the form of the flow is dictated by the choice of d. Such a problem has been dealt with in the case
of the Fisher-Rao metric (see [19]): the authors established from a Polyak-Lojasiewicz inequality the exponential
convergence of the gradient flow (m?’G) =0 described by the birth-death equation along VG towards V&G (m*).
In our case, Eq. (1.30) implies the exponential decay in d-metric (transport distance):

d(m?, mo*) < y(vOE (mdF) —vOF (m®*))e Pt (1.40)

Eq. (1.40) is a consequence of transport inequalities (see [20]). Moreover, given a measure m®* satisfying the first
order condition Eq. (1.25), it is formally a stationary solution to Eq. (1.14) called the Maxwellian of the McKean-Vlasov
PDE. Therefore, formally, we have already obtained the correspondence between the minimiser of the free energy
function and the invariant measure of Eq. (1.2). In this paper, the connection is rigorously proved mainly with a
probabilistic argument. The study of stationary solutions to nonlocal, diffusive Eq. (1.14) is classical topic with it
roots in statistical physics literature and with strong links to Kac’s program in Kinetic theory [21]. We also refer
reader to the excellent monographs [11] and [22]. An important issue is the long-time behaviour of gradient systems
which is often studied under convexity assumptions on the potentials. In particular, variational approach has been
developed in [23] and [15] where authors studied dissipation of entropy for granular media equations Eq. (1.16)
with the symmetric interaction potential of convolution type (interaction potential corresponds to term 2,,F in
Eq. (1.14)). Following on from the work done in [15] and [23] (among others) on the long-time behavior of Eq. (1.16),
in [2], the authors proved via a uniform logarithmic Sobolev inequality in the number of particles that

2
V>0, Hwlv/]<Hwvole®SZ and W2(vi, Voo) < — Hy[vole P52, (1.41)
PLsS

Eq. (1.41) translates the exponential decrease of the mean field entropy Hy (given by Eq. (1.30) with E = V°F) and
the contraction in Wasserstein metric (d = #5) of the solution flow of Eq. (1.14) in the case

1
o=Vv2 and F(u= EfW(x,y)p(dx)p(dy). (1.42)

The study of the long-time behaviour for the VFP equation is often more difficult than that of the McKean-Vlasov
equation because of two reasons:

(i) itisa degenerate diffusion process where the Laplacian acts only on the volocity variable and;

(ii) itis not a gradient flows but simultaneously presents both Hamiltonian and gradient flows effects.
In [4], combining the results of [2] and [5], the trend to equilibrium in large time is studied for a large particle
system (given by Eq. (3.16) in case of a two-body interaction) associated to a Viasov-Fokker-Planck equation by the
authors: they showed that under some conditions (that allow non-convex confining potentials), the convergence

rate is proven to be independent from the number of particles. From this are derived uniform in time propagation
of chaos estimates and an exponentially fast convergence for the nonlinear equation itself.

Contributions. In this paper, we are going to prove in a polynomial interaction setting
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(i) propagation of chaos in Wasserstein's #2-metric for our particle systems given by Eq. (3.5) and Eq. (3.16).

(i) entropic convergence to equilibrium for the nonlinear McKean-Vlasov SDE (mean field limit of the first
order system given by Eq. (3.5)) generalizing results (given in Eq. (1.41) of [2]).

(iii) by Villani’s hypocoercivity theorem (see e.g. [3, Theorem.3] or [24, Theorem.35]) the H! —convergence for
the kinetic Fokker-Planck equation with mean field interaction given by Eq. (3.16).

(iv) exponential convergence towards equilibrium in metric #, —Wasserstein for the flow solution of the Vlasov-
Fokker-Planck equation: mean field limit of the second order system given by Eq. (3.16).

In the spirit of [2], we give probabilistic proofs (see Section 5, Fig. 1 and Section 6) based mainly on the propagation
of chaos (see Theorem 5.1); the H-tensorization (see Proposition 5.10) and inf-compactness given by large deviations
principle; the I-tensorization (see Proposition 5.11) given by law of large numbers; the uniform log-Sobolev
inequality (see Theorem 5.3); and the uniqueness argument (see Proposition 5.9). In the kinetic case, we need
additional results such as Villani’s hypocoercivity ([3, Theorem.3] or [24, Theorem.18 and Theorem.35]) theorem
(see Proposition 5.15) and Hormander’s form (see e.g. respectively Theorem.7 and Theorem.10 in [5, [6]]). The fact
that the interaction is polynomial is important in calculations, among other things, for passing to the limit in the
number of particles: technical passage to the limit given, among others, by LDP.

Plan of the paper. Let us finish this introduction by the plan of the paper. In the next three sections, we will
present our mean field systems (Eq. (3.5),Eq. (3.16)), our set of assumptions (HMV3.1,VFP3.2), the main results (and
examples) (in Section 4) of the paper concerning logarithmic Sobolev inequality of mean field particles systems as
well as exponential convergences to equilibrium for McKean-Vlasov (Theorem 4.1,Theorem 4.2), kinetic Fokker-
Planck (Theorem 4.3) and Vlasov-Fokker-Planck (Theorem 4.4) SDEs. In Section 5, we sketch a proof of our results
and we introduce the pre-proof tools. In Section 6, we prove our main results. And we end the paper with the
appendix, the acknowledgments and the bibliographical references.

2 Notations and Definitions

We try to keep coherent definitions and notations throughout the article, but as the various objects and what they
represent may become confusing, we list them here for reference :

Notations. For all (¢, v) € R? x R, we note u® v := uv’ = (y; Vj)1<i,j<a the tensor product matrix of two vectors
and u- v:= u" v the standard Euclidean scalar product of two vectors. We note || - ||op the matrix subordinate norm
to the Euclidean norm which we will note indifferently || - || or | -|. {:,-) represents indifferently the scalar product
and the duality bracket. We note ||| - |||j1_ 1 the operator norm associated with the weighted Sobolev H! (pg) space
induced by the invariant measure p; of our second-order system given by Eq. (3.16). We have

U= {o e 20, Voo WP} lgl = ligliy + [ (1Tl +19,piE)dn. @1

.....

all n =1, &, is the n-th symmetric group. For all p € [1 + c0), the Wasserstein p-distance between two probability
measures p and v on RP with finite p-moments is given by

1
— : _ P p
W, v) '_(ye}l(liv)fuwxuwu Vl y(dxdy)) ) 2.2)

T(y,v):= {y ePR° xRP), my=p and my= v}.
We note Mlp (RP) the space of probability measures with finite p—moments.

Definitions.
Relative entropy: Let p e P ([RP). We define H[| pl: P [RP) — [0, +oo] such that

Evllog %] =: Ent,[4Y] if :
H[v|uJ:{ e T et 2.3)

+00 otherwise.
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And we recall that in the first case of absolute continuity, Z—:’l is the Radon-Nikodym density of v with respect to .
Relative Fisher information: We also define the Fisher-Donsker-Varadhan information of v with respect to p by:

o= o2 - o= [ 2Py o

if v< pand Z—:ﬁ € H}ll, and I[v|p] = +oo otherwise. H:l is the domain of the Dirichlet form

éi’p:g»—>f||Vg||2dp. (2.5)

UPIL. We say that p(dx) := %e’H(’C) dx (Gibbs probability measure of hamiltonian H : R"P — R) satisfies a uniform
Poincaré inequality if
A>0 V=2 VeeEXR™), AVulel <EullIVell*]. (2.6)
And we call Poincaré constant the best constant A; (i) for which we have such an inequality.
ULSI. We say that p satisfies a uniform logarithmic Sobolev inequality if
>0 VYn=2 YeeE [R™), pEnt,lp?] <E,llVell*]. 2.7

And the best constant prg (i) for which such an inequality holds is called the logarithmic Sobolev constant.

Remark 2.1. We recall that
ULSI. — UPI. (2.8)

The Poincaré and log-Sobolev inequalities for p are equivalent to exponential decreases of the semigroup (P;) ;=0
respectively in variance and in entropy;, i.e.

> Poincaré
VofelP() 120, IPof =< Pllzgy < e MW = Pllzgy- 2.9)

> Log-Sobolev
vV fel'(wlogl'(w) ¢=0, Enty[P,f]<e PsWiEng,[f]. (2.10)

Here, the notation L' () logL! (1) denotes the entropy definition domain under p.

We say that p satisfies a T, —transport (Talagrand) inequality if there exists a > 0 such that #),(-, ) < /aH[-|u].

Remark 2.2. Moreover, as with the Poincaré and log-Sobolev inequalities, T»-inequality implies the T1-inequality :
by definition and Cauchy-Schwarz inequality, we have

Wi, v):=_ inf E[X-YIl< inf VE[X=YII?]=:#5(u,V). (2.11)
X~u,Y~v X~u,Y~v

The class of probabilities verifying T, -inequality is identical to that having an exponential moment of finite order 2.
The T»-inequality is significantly more structured than the T, -inequality since it involves a spectral gap inequality.

3 Mean-Field Systems and Assumptions

Throughout the paper, we consider a confinement potential of a particle V : R — R € €?R%) and N interaction
potentials such that

Vkel2,..., N}, WHR:RH* — Re2(RHY). 3.1
We recall that Vo € & and Vx = (x1,..., Xg),
1 1
Whe-0=Whw, ady:=ze Wy, U,WY):= e Y WOk, x), (3.2)
nl(iy,...ip)elk

where I'fl ={(i1,...,ix) € Nklip #1ig, 1=ip < n}isthe set of possible arrangements of k integers of the set of n first

nonzero integers, which gives [1| = A := (nf!k)!. We define W~ := max(-W®  0) and W** := max(W® 0) the

negative and positive parts of W, vy such that Wk~ e L (u®¥%),

WO )= E e WO = E o (WP - E e WO 7). (3.3)


https://orcid.org/0000-0002-3281-1954
https://mon-portfolio-de-chercheur.webnode.fr/

Mohamed, Alfaki ABOUBACRINE ASSADEK ON THE EXPONENTIAL ERGODICITY OF THE MCKEAN-VLASOV SDE

3.1 Our Systems

First order case. We consider the microscopic mean-field many-body interaction energy given by

n N
Hy (X100, X0) i= 3 V(x)+n Y. Uy(W®), (3.4)
j=1 k=2

The (non-kinetic) McKean-Vlasov process is defined as the mean field limit (under adequate assumptions given
below) of the sequence (X") >N of Langevin-Kolmogorov process of Hamiltonian H;;, i.e.: (N fixed)
vn=N, dX!=v2dB,-VH,XM"dt. (3.5)
Let
0= A—VH,-V (3.6)

be the infinitesimal generator and (P}) ;o the associated semigroup of unique invariant measure (under HMV3.1
below), the Gibbs measure

1
Wp(dx) = Z—efH"(X)dx with Z, ::[(Rd) e Mgy < 400 3.7
n n

is the normalization constant (called partition function). Note that

n

C
W (dx) = Z—e—"Z’E:2Un(‘N(“)a®"(dx). (3.8)

n

Without interaction (i.e. Yk, W® =0 or constant), Wp = a®" (i.e. the particles are independent). We denote
1 n
Lo(x;) == ) 84() (3.9)
niz

the empirical measurement application. We know that under general conditions, by propagation of chaos ([25]),
L,(X";-) converges weakly towards the solution of the nonlinear partial differential equation of McKean-Vlasov
associated with the system of particles. We define
Z
W (dx) = e " k2 UnW) o ®n (g3 = G n(d0). (3.10)

The macroscopic mean-field energy is given by

N (k) ; k)= c 71, QFk
M ::{H[pla]+2k_zw (] 1fH[p|0f] <+ooand W eL (u®"9), 3.11)
+00 otherwise.
Let
domHy) := {p, Hlplal < +oo and Vk, wk— ¢ Ll(p®k)}. (3.12)

Remark 3.1. Hy := Ew —infEy is called the mean field entropy. We can prove that Hy is inf-compact (Theorem 5.2)
and that there is at least one minimizer usually called equilibrium point. From the point of view of statistical
physics, Hy is an entropy or free energy associated to the nonlinear McKean-Vlasov equation given by Eq. (3.5). The
uniqueness of the minimizer means that there is no phase transition for the mean-field. Concerning the work on
uniqueness in the case of peer interaction, we can cite among others: [2], [26] and [23]. These authors ([26],[23])
showed that Hyy is strictly displacement convex (i.e. along the #5-geodesic) under various sufficient conditions
on the convexity of the confinement potential V and the pair interaction potential W® . In case of a many-body
interaction, under assumptions in HMV3.1, we prove in Proposition 5.9 the uniqueness: then we denote 1, this
minimizer.

Analogously, we define the mean-field Fisher information by:
1 OEw 2
Lw(u] = ZJHVW(”’”H pdy). (3.13)

Remark 3.2. Without interaction (Vk, W% = wy), we find the Lyapunov functionals associated with the standard
symmetric Langevin-Kolmogorov process whose Hamiltonian is given by the confinement potential V. More
precisely, in this case:

N
Ew =H[:|a] + Z wy, Hw=H[|la] and Iy =1I[-|a]. (3.14)
k=2

10
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Kinetic case. Set
2nd Z 1 & 2 al k
2= (01,00 X V1, ) ERM,HR(2) = 2 3 N0 +2V(xp) +n ) U,(WW) (3.15)
j=1 k=2

and Z":= x™L, . xmn vyl vy e (R x RY™ such that

dX}' =V, H:(Zndt
(3.16)

v} = —(Vo HEEZD +V, HE (2Dt + V2dB,.

We are going to study the long-time behavior of the mean-field limit of the Langevin process (Z7) ;¢ of Hamiltonian
H,Z,L(x, V) :=S1,,(x) +Sz,,(v) with S; ,, is none other than the Hamiltonian H,, of the McKean-Vlasov case and S ;,
the velocity part (Sz,,, := HZ — S1 ,). Invariant measure of the Langevin process is given by

1 1 1
uy (dxdv) = 2o M@ gydy = St gy~ p=S2n0) gy, — p1,n® Uo,n(dxdv). (3.17)
C 1,n Cz,n
And the parabolic PDE in the sense of the distributions associated with this Kolmogorov-Fokker-Planck SDE is:
Ol =Apu+VS2 Vo= V81, Vo +VSg Vit = Ayt -V =Sy, - Vyp+ 0-Vop = 25 (3.18)
with
Lrn =Ny =0V, +VS1,-V,— -V, (3.19)

the generator of the strongly continuous semigroup (P>") 10 (if the hessian VS, ,, is bounded, it is a Markovian
8 gly group (F; ,

semigroup defined by the Kolmogorov-Fokker-Planck SDE) and we note ££ZT ,, adjoint in the sense of distributions.

In other words, for any test function @ € €°((R? x R%)"), the function (¢, z) — P?’(”)(p(z) is the unique solution of

the Cauchy problem:
dh _ M _ cpt
o = Zznhy )T = Ly b (3.20)
h(ov =9 H0:6z.
Vlasov Fokker Planck free energy and associated mean field entropy are given by
1 N
Elu :=HI |dxdu]+-f lvI?p(dxdv) + f whgq ®k+fV(x) (dxdv) (3.21)
! ! 2 Jpd xR " ,;2 (RA xRA)k H !
N
=H[pla® A (0,1dy)] + w® gk
K d kgz (R xRk H
and
S =& -Inf& =& - &[YZ). (3.22)

They are Lyapunov functionals for the Viasov-Fokker-Planck partial differential equation whose solutions are
obtained as mean-field limits of our kinetic Fokker-Planck particle system given by Eq. (3.16). Mean Field Fisher

Information for Vlasov-Fokker-Planck is given by (A = (I((i)d) € Jlgd,d(R))

d . 5 5 2
Ful :=f<Vx,yﬁ6"(u,x, v),AA Vx,y%éa(u,x, v)>u(dxdv)=f‘ Vx,u%é”(u,x, U)HAA*“(dde)' (3.23)

The functional obtained by replacing Aby Z := (2{32) € M>q,4(R), we will talk about auxiliary Fisher information.
We have
d d
— &P = =P = — sy <0. 3.24
T (Mg ] T, (Mg ] (1] (3.24)

3.2 Our Assumptions

Assumption 3.1 (HMV). We put the following hypotheses on the potentials which will ensure properties of existence,
uniqueness and contraction:

> (H1)(Hessian) The hessian of the confinement potential V is bounded from below and the hessians of the
interaction potentials W(k), k=2,...,N, are bounded.

11
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> (H2)(Lyapunov) There are two positive constants c¢; and ¢, such that
VxeRY, x-VV) = calxP-c. (3.25)

This hypothesis is a Lyapunov condition.
Remark 3.3. Since the Hessian V2V of V is bounded from below and V satisfies a Lyapunov condition (H2),
aox eV satisfies a logarithmic Sobolev inequality (see e.g. [27, 28]).

> (H3) Forall k€ {2,...,N},
(k),— _vk X
VA>0, f ML V) gy ¢ oo, (3.26)

Remark 3.4. This assumption is trivially satisfied if the W® are bounded from below. If (H2) holds,
it is also always true if W(k)’_(xl,...,xk) = O(Zj?:l |ij2) as |x; 2 +...+ kal2 — +oo (since (H2) involves
that liminfjy— o0 V(x)/ |x2 > 0). Under the exponential integrability condition, if H[p|a] < +oo, for all
k € {2,...,N}, by Donsker-Varadhan variational formula (in the bounded case) and Fatou’s lemma (by
approximating W*~ with (min(W®~,1)); =), we have W®~ € L! (u®¥): then dom(Hy) given by Eq. (3.12)
satisfies

dom(Hy) = {p, H{pla] < +oo}.

> (H4)(Logsob) The invariant measure ., of the system satisfies a logarithmic Sobolev inequality such that

limsupprs(py,) > 0. (3.27)

n—+oo

> (H5)(Contraction) There exists a distance d;, on a subset -Z of P (R?) such that (%2> ([RY), #5) continuously
injectsinto (Z,dy;p) and ®: p € Z — @(p)(dx) := Z—Le_%(“’X)_V(X) dx € Z satisfies

3ke (0,1, Vi, veZ, diip@W),®V) < kdyip(i,v). (3.28)

In others terms, @ is k-Lipschitz (contraction) for dip.

Remark 3.5. The two above assumptions are not easy to check in practice. In Section 4.3, we thus provide
several many-body interaction examples where these conditions apply. Nevertheless, let us give some first
comments below

> About (H4): (H4) can be certainly satisfied under Bakry-Emery criterion (see Proposition 4.1). There
also exist some specific conditions called Zegarlinski conditions (see [2],[29],[30]): we recall Zegarlinski
conditions refer to specific conditions on the Hessian of the interaction potential, which are then used
(together with other conditions) to prove a uniform logarithmic Sobolev inequality. Finally, let us note
that as p, is a Gibbs measure with respect to a®” and its Hamiltonian is Hy, ,, := nzlljzz U, (W®) if this
Hamiltonian has bounded oscillations (osc(Hg, ;) := supHq, , —infHq ;, < +00) uniformly in n, then we
can show that by property of tensorization and stability by bounded perturbation, we have (H4) seen
that according to Royer’s book [31, Proposition 3.1.18], prs (1) = pLs () e~ 05¢WHan) 1p Proposition 4.1, our
examples will be yet built with the help of the simpler Bakry-Emery condition. In Proposition 4.4, we
provide another class of examples which do not require Bakry-Emery condition.

> About (H5): As concerns (H5), we also give some explicit conditions in Proposition 4.1 and Proposi-
tion 4.4 with Z = 22, ([R{d) and dr;, = #1. (H5) ensures uniqueness of the fixed point (invariant measure
of the McKean-Vlasov process): in statistical physics, we say that we have no phase transition. This is the
crucial point for the proof: Hy = H[:|®(-)] (which justifies the name mean field entropy). The contractiv-
ity assumptions in Eq. (3.28) can follow from Eberle conditions (lipschitzian spectral gap condition for
one particle): see [2]. To obtain uniqueness, some authors also require displacement-convexity (see e.g.
[15],23]): assuming that the functional G in Vo6 : p — %ZH[MIO(] + G(p) is displacement-convex. And as the
relative entropy is strictly displacement-convex, Vo' is also strictly displacement-convex, which implies
the existence of an entropy minimizer ensuring its uniqueness.

Assumption 3.2 (VFP). In this case, all the conditions stated in HMV3.1 are assumed, together with the two

following additional ones

> VFPI. Lipschitz interactions:
Vke{2,3,...,N} IK>0, |[vwWH| <K (3.29)

12
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> VFP2. Lyapunov condition on confinement:
||V2V||op =Ki|VVI|+Ko. (3.30)

Remark 3.6. Either of these conditions ensures that the kinetic Fokker-Planck semigroup converges
exponentially ( as a family of operators of A (n7) indexed by time ) towards p; and uniformly in the
number of particles (see [3] or [24]).

4 Main Theorems

4.1 First-order case

Under HMV3.1, we establish (see Section 6 for the proof) the following two main results (thus generalizing those of
[2]). Let (us) s=0 (given by the arrow (1) in Fig. 1) be the flow of solution distributions of the McKean-Vlasov equation
associated with the particle system defined by the U—statistic and the confinement potential. Then for any initial
condition admitting a moment of order 2, the mean field entropy Hyw decreases exponentially along the flow, i.e.:

Theorem 4.1 (Exponential decreasing of mean-field entropy). AssumeHMV 3.1 and let g € MIZ(IR{d) be an initial
condition. Then

Vt=0, Hwlp <Hwlpole P52, @.1)
From the exponential decrease of the mean field entropy along the flow, we deduce the following exponential
convergence in Wassertein metric:

Theorem 4.2 (Exponential convergence in Wasserstein metric from flow to equilibrium). AssumeHMV 3.1 give us
an initial condition po € 4(?(R%). Then

2
V20, (s boo) < —Hyy[pole ™52, 4.2)
PLs

4.2 Kinetic case

For kinetic type models, the extension of the above results relies on applications of hypocoercivity arguments (see
e.g. [3] or [24] for background). In this setting, we first obtain an exponential decrease in ||| - |||i1 1 norm (defined
in Section 2).

Theorem 4.3 (Uniform exponential convergence to equilibrium in the weighted Sobolev space). Assume VFP3.2
and give us an initial condition p € 4(?(R? x RY). Then

<ae Pt 4.3)

Z,(n)
>0 3P>0 vnz2, ||[PF -y o

Remark 4.1. We still have Theorem 4.3 if we replace the uniform logarithmic Sobolev inequality given in HMV3.1 by
a uniform Poincaré inequality. We keep the logarithmic Sobolev inequality to have the following Theorem 4.4. Note
that the constants o > 0 and 3 > 0 can be made explicit uniform. The originality of the proof relies on functional
inequalities and hypocoercivity with Lyapunov type conditions, usually not suitable to provide adimensional results.

Theorem 4.4 (Exponential decay in Wasserstein metric). Assume VFP3.2 and V2V is bounded. Then there are
constants C >0, &> 0 andx > 0 such that Vi € 2, (R xR, Vn=2 and V't >0,

Hip} (0)|uy] < CH[p} 0)|ujle ™, (4.4)
W2 (WP, p%) s kCF e, 4.5)

where | is the initial condition and & (defined in Eq. (3.22)) is the mean-field entropy associated with our second
order system given by Eq. (3.16).

4.3 Examples

Let us begin with results which provide some explicit conditions on V and the W*) under which our results apply.
We only focus on HMV3.1 but the extension to VFP3.2 only requires to add the constraints on VW® and V2V
introduced in VFP1 and VFP2. We will use the notation A for the lowest eigenvalue of a symmetric matrix.

13
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(k),—

Proposition 4.1 (Application in Example 4.1). Assume that (H1) holds, that W'~ (x1,...,X;) = 0(Z§=1V(xj)) as

lx112 +...+|x|? — +o0 and that the following assumption is fulfilled:
J 2 k
A> Y k(k=DIVEW  gp.e (4.6)
k=2
where [V2,WW||gp 00 = sup ¢ gayk V3, WPl op and
N
A= inf AVZV(JC) + inf Z kAV%IW(k)(x,y) .

T xeR4\T ye®Hk-1 1=,

Then, HMV 3.1 is true.

Proof. The proof of this result is achieved in Section 6. O
Proposition 4.2 (Application in Example 4.2). Assume that
(i) (H1), (H2) and (H3) hold;
(i) Yke{2,...,N}, x— V,, WK (x) is bounded;
@@ii) Sw:p— Zfzz S W® qau®* is convex in the flat interpolation sense:

Vrel0,1] V(u,v) € ZRY%  Sw((l-p+tv) < (1-DEw W) + tEwV); 4.7)

(iv) Egq. (4.6) holds.

Then, HMV 3.1 is true.

Proof. The proof of this result is achieved in Section 6. O
Remark 4.2. For instance, Assumption (iii) is true in Example 4.2.

(x) Regularized Skyrme model

Example 4.1 (Regularized Skyrme model). One of the main areas of research in nuclear physics is the study of nuclei
under extreme conditions in spin and isospin. Microscopic methods of mean field type, including the Hartree-
Fock method based on the independent particle approximation, are one of the most efficient tools for theoretical
predictions in this field. Representing the interactions between nucleons in the nucleus, the effective forces
nucleon-nucleon are the main ingredient of these self-consistent microscopic theories. The Skyrme interaction is a
zero-range force allowing to construct the mean field in a relatively simple manner: effective phenomenological
interaction of zero range which allows the interactions between nucleons in the nucleus to be modeled in a simple
manner. Proposed by Skyrme ([8]), this force is limited to the sum of interactions between two and three nucleons.
The interaction potential is given by

F =

n n
o [UnW®)+ (3)Un(w(3>) 4.8)
with W@ a potential causing two particles to interact and W a potential causing three particles to interact. In

this model, the potentials are functions of Dirac distributions: therefore singular. We will regularize the problem by
-2

replacing the Dirac distributions with a smooth approximation: setting G, := ——— e~ 20?, ¢ > 0, we consider the
(2no?) 2
particle system
ax{” =v2aB" - vHY x")dt (4.9)
where
®) S 2 @ 6 ®)
HY (x):=) Vixp+—— Y WO x)+——— > WY, x50, (4.10)
j=1 —11<iSj<n (n=1(n-2) 14;7Zk<n

with W (x, ) = Gy (x— y) and WO (x, y, 2) = Go (x — )G (x — 2)Go (y — 2).

14
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d
Proposition 4.3. Assume thatV isa ©? -function. Then, ifinf,  pa szv(x) >co 244 620_2_3d withc; =4x (2n)~2

and cy =12(1 +4e™ 1) x (27{)*%, the regularized Skyrme model satisfies HMV 3.1. If furthermore, VFP2 holds true for
V, then, VFIP3.2 is also satisfied.

Remark 4.3. As expected, these conditions become more and more stringent when o goes to 0. Thus, considering
the long-time behavior of such models with singular kernels would probably require to develop specific techniques.

Proof. Since W® and W® are bounded, it is enough to check Assumption (4.6) of Proposition 4.1. First, VG4 (x) =
~07%Gg(x)x and V2Gg (x) = 072 (02x ® x —[7)G (x). Using that for all x, x ® x is a nonnegative symmetric matrix
with x ® x < |x|21, it follows that

1 1 1
Iy =~ —Go Wy < Gy () < —4G0(x)(|x|2 - oz)ud. 4.11)
2m)z 0-2+d (02 g
We deduce that
A =A > r
SRWOeEn T EGebep) = T ) ora
and that
1V, W@ x, M) lop,co < ————-
12 op,c0 2m) % o-2+d
Using that

V31 (G (x = 1)Go(x — 2) = V2Gg (x = Y)Gg (x — 2) + V3G (x — 2)Gg (X — J) + Uy, 2 ® U,y + U,y ® Uy, 2,
with uy y = VGg (x — ), one also deduces that
2(1+2e7h

d )
2m) 37 0-2+3d

2/|Go 1%,

A d
(2m) 2 0-2+d

Avz WO (x,y,2) =~ —20 G llolx = y1.1x = 21Go (x = )G (x - 2) = —

where we used that sup,,cpa %Gg(u) < Vv2e71|Gg llo- Finally, one similarly obtains that
1+6e!
2m) % g2+3d '

Plugging these estimates into Assumption (4.6) yields the result. O

192,W(x, 3, 2lapeo = 07 2(1 +66 ) [Go 1S, =

(%) Elementary Symmetric Polynomial Interaction Model (ESPIM): u € PG (RY) — P({u, G)) with P € R[X]
Example 4.2 (ESPIM model). Let us finish this section with a class of examples with polynomial interaction inspired
by elementary symmetric polynomials (ESP). Note that this class will not require Bakry-Emery criterion. The
polynomial interaction is built though the ¢?-potential G:R% — R: for N> 2, k€ {2,3,...,N} and j € {1,...,k}, let
G : (R%)* — R be the following symmetric function

GV (xy,..oxp:= Y []Gx) with gbk(j):z{lc{l,...,k}, card(l):j} 4.12)
1P (j) i€l

and assume that W € Vectg{G®Y,...,G®)}, i.e.
k

wh = Zlﬁ;k)(;(f) with (B,....p) e R, (4.13)
]:
Note that .
G (x1,..., x¢) = Pj(G(x1), ..., Glxp) (4.14)
where P; denotes the j th ESP defined by
Pi(y..ovo:= Y, [y (4.15)

e () i€l

The homogeneous polynomial H : 22(R%) — R associated with the McKean-Vlasov equation is defined by

N
H(p) = f vdp+ Y, | wRapsk, (4.16)
k=2
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By symmetry and the Fubini-Tonelli-Lebesgue Theorem,
J
fW(k)dpaak Zﬁ(k)fG(])dpxzk Zﬁ(k) Y TG []u@x) = Zﬁ(k)( ‘)([de) , 4.17)
= e (j)Y el i€l
and hence,

H(p)=dep+ Y Zﬁ(k)( ,)(fcdp)j =dep+Q(dep.) (4.18)

k=2j=1

with Q:= Z Zﬁ(k) j X/ e Ry[XI.

k=2 j=1

Since H: u— [Vdu+QoT(w withT: u— fGdy, we have

M =V +Q [ Ganjee with Q= ZZ]&"” “lxi1 ey x; (4.19)

om k=2 j=1

:>V6—H(p ) :VV+Q’(dep)VG:V2—(p ) =v2V+Q’(dep)V2G. (4.20)
dm dm

Furthermore, we have

sup |Q’(deu ZZ]Iﬁ(’”I( )llGll =1y (4.21)

UEZG (RD) k=2 j=1

Q”(deu ZZ](]—DIB”“)I( )||G|| =:Yo. 4.22)

k=2j=1

sup
HePG (RY)

Proposition 4.4. Assume that G, VG and V2G are bounded. As ||Gl|o < +00, we have foralli=1,2,y; < +co and
2R c 25 (RY) = e 2RY), Gel'(wi=2RY).
Let us further assume that

> Q" =0 and the confinement potential V satisfies (H1) and (H2);

)\* = infd (AVZV[x) + Y3Av2G(x)) >0 and )Y\_iHVG“go <1

- xeR

with Y3 :=inf,,c 5, ey Q' (S Gdp)  (Iy3l = y1).

Then, ESPIM satisfies HMV 3.1. If furthermore, VEP2 holds true forV, then, VFP3.2 is also satisfied.

Proof. The proof of this result is achieved in Section 6. O

Remark 4.4. 1f V2 g1 Ol - (1,7) = pId with p > 0, by the Bakry-Emery curvature criterion, ®(p)(dx) = —e S (1) g
satisfies a uniform logarlthmlc Sobolev inequality in the measure.

5 Sketch of proofs and preliminaries

5.1 Sketch of proofs

First order case. The diagram given in Fig. 1 summarizes the strategy of proof: we show (4) from (1) , (2) and (3).
And in this diagram, the quantities involved are:

> u®”P§”) = W, (1) the law at time ¢ of the particle system induced by the confinement potential and the
U —statistics;

>

(n) _
> Hoo =

(#) the i—th marginal of p,(?);

M, the invariant measure of the particle system;

16
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Ergodicity
Functional inequality
H—o0, [—o0
(4)
0, O
in d-metric
exponentially
S 's Th d
Propagation of chaos anov's Theorem an
n—oo, ffixed (n (3) uniqueness of O,
I [— 00, H—n00
enplnlyi (r),(0)
(nepy™) n

in d-metric

exponentially
@nPIHJ p[M:l
t o0
2)

H

Ergodicity
Functional inequality
nfixed, t—oc

Figure 1: Diagram of convergences

> p%) the i—th marginal of p;

> O; = Y, the law at time # of the McKean-Vlasov process obtained by propagation of chaos;
> O = Moo the invariant measure of the McKean-Vlasov process;

> d="%5.

Arrow (1). The McKean-Vlasov process classically appears as the mean-field limit of a particle system. This property
is recalled and studied, among others, in [7]. In our case, see Theorem 5.1.

Arrow (2). The process X" is a homogeneous diffusion process of the Langevin-Kolmogorov type which is a class of
Markov processes. In the literature, the long-time behavior for this class is classically studied (see e.g. [17, [22]]).
In order to ensure this property (see Section 5.2.Theorem 5.3), exponentially in time and uniformly in number
of particle n, we rely on (H4) in HMV3.1 and the equivalence between Sobolev’s inequality, exponential decay of
entropy and Talagrand’s second inequality for Gibbs measures.

Arrow (3). This arrow is ensured by (H1), (H2) and (H3) in HMV3.1 which allow us to obtain large deviations
principle and Sanov-type theorem (see Section 5.2.Theorem 5.2.Proposition 5.8).

Arrow (4). To establish this last arrow, we will use the fact that the nonlinear Sobolev inequality (prs Hw < 2Iy) given
in Section 5.2.Theorem 5.3 is also equivalent to the exponential decrease of the mean field entropy Hyy along the flow
(1s) r=0 of the McKean-Vlasov distributions and to the second nonlinear Talagrand inequality (prs 7//22(., Hoo) < 2Hw).
Note that Talagrand inequalities allow to recover usual Wasserstein convergence (and then convergence in law) from
entropic convergence. Note that concentration inequalities could also stem from Talagrand inequalities, although
the stronger Logarithmic Sobolev inequality is more often used in this context.

Remark 5.1. In the case of the two-body interaction (N = 2) associated with the equation of granular media given by
Eq. (1.16), the exponential convergence in entropy (given in Theorem 4.1) should be equivalent to the mean field

17
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log-Sobolev inequality prsHw < 2Iyw (in Theorem 5.3), basing on (gradient flow and Gronwall lemma)

_%HW[HL‘] =4lwlpd = %HW[W] < —2prsHw /] = Hy ;] < Hy ol e s 6.1
noted by Carrillo-McCann-Villani in their convex framework. The proof of —%Hw[p.t] = 4Iw([u;] demands the
regularity of t — p; (Fig. 1) which requires the PDE theory of the McKean-Vlasov equation. That is why we prefer to
give a rigorously probabilistic proof based directly on the log-Sobolev inequality of |, (Fig. 1) in HMV3.1.(H4). As
for Theorem 4.2 on exponential decay in Wasserstein metric, it follows from the previous one (Theorem 4.1) via
Talagrand’s T2-inequality:.

Second order case. The proofin this case, can also be described by the diagram given in Fig. 1 but with the following
notations:

> p®”P§”) = (¢) the law at time ¢ of the kinetic particle system induced by the confinement potential and
the U—statistics;

> (uep)d = p;’(i)(t) the i—th marginal of p} ();

(n)

> Moo = My the invariant measure of the particle system;

> ug'(” the i—th marginal of p};

> O = p‘t’FP the law at time ¢ of the Vlasov-Fokker-Planck process obtained by propagation of chaos;
> Oy = pZ the invariant measure of the Vlasov-Fokker-Planck process;

> d=ll-— [l ord=%>.

Arrow (1). We first recall the generator £z, defined (in Hormander form) by Eq. (5.88) is a non-symmetric
hypoelliptic operator (see Remark 5.4). The related n-particle system given by Eq. (3.16) converges to the
Vlasov-Fokker-Planck equation (mean-field limit of Eq. (3.16)) when n — +oo (see Theorem 5.1).

Arrow (2). The process Z" is a homogeneous diffusion process of the Langevin type usually called kinetic Fokker-
Planck process. The study of the long-time behavior of the particle system requires the help of hypocoercivity tools
(see e.g. [3] and [24]). We recall that

n N
VxeR™, $;,(0):=Y Vi) +n) U,wWH). (5.2)
i=1 k=2

In particular, 3.2 ensures the following Poincaré and log-Sobolev inequalities
> UPI We say that y, , satisfies a uniform Poincaré inequality if
A>0 Vn=2 VeeBPR™), AV, lpl <Ey, Vi@l (5.3)
> ULSI. We say that y, , satisfies a uniform logarithmic Sobolev inequality if
>0 Vn=2 YeeCPR'), pEnty,,[9* <Ey IVl (5.4)
Under (UPI), we are able to obtain as an application of Villani’s theorem the following exponential rate to equilibrium

<ae P! (5.5)

7,(n) _ | n
vnz2, [|[PE-wg|]

with constants a > 0 and > 0 make explicit uniform. The idea in Villani’s proof of [3, Theorem.3] is as follows:
if one could find a Hilbert space such that the operator £z, is coercive with respect to its norm, then one has
exponential convergence for the semigroup (P%’(”)) t=0 under such a norm. If, in addition, this norm is equivalent to
some usual norm (such as 7! (u7)—norm), then one obtains exponential convergence under the usual norm as
well. In his statement of [24, Theorem.35], the boundedness condition is verified by IIVZSL,ZI lop = C(A+[IVSy 51D
with a constant M depending unfortunately on the dimension. The L? and H' norms are not suitable to obtain a
result on the non-linear system (such as Eq. (4.4) and Eq. (4.5)). On the other hand, thanks to (ULSI) playing a
fundamental role in the exponential return in Wasserstein metric (see e.g. [5, Theorem.7] or [6, Theorem.10]), we
are able to prove Eq. (4.4) which in turn will allow us to deduce Eq. (4.5).
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Arrow (3). The results of large deviations on the U—statistics in the non-kinetic case in Section 5.2 and the fact that
17 = 1,0 ® Ha,n allow to deduce that the random empire measurements of the kinetic particle system satisfy the
principle of large deviations under 7 of good rate function defined by

VY (Hy o) € 2 (RY) x 2,RY), (g, wp) 1= Hy [yl + Hp, [ A (0,1d )], (5.6)

Thus there exists by inf-compactness a Maxwellian to the nonlinear Vlasov-Fokker-Planck equation and this
equilibrium (invariant measure of the nonlinear Vlasov-Fokker-Planck process) is unique. See Section 5.2.Theo-
rem 5.2.Proposition 5.8.Proposition 5.9.Appendix A.4.

Arrow (4). This part is obtained by the first-order case by exploiting the uniform logarithmic Sobolev inequality and
the Hormander form given by Eq. (5.88) (see Section 5.2).

Remark 5.2. By applying hypocoercivity tools to the system with n particles given by Eq. (3.16), we obtain a (uniform
in n) convergence rate to equilibrium which in turn extends to the limiting non linear system.

5.2 Preliminaries

Propagation of chaos for polynomial interacting particle systems. Below, we recall or extend some conditions on
the interaction potentials which guarantee the propagation of chaos for some particle systems with polynomial
interaction. Even if our proof only requires such properties in finite horizon, we also provide some properties which
lead to propagation of chaos uniform in time.

To this end, we use the classical (synchrounous) coupling strategy: let (X("”’))IZ‘,:1 denote the particle system and
(X(’”)Z:1 denote n copies of the limiting Mc-Kean-Vlasov process built with the same Brownian motions than in the

particle system. Assume that all the paths have the same initial condition Xy ~ 9. Then, the following proposition
holds:

Theorem 5.1 (Chaos propagation in Wasserstein #> metric). Assume thatV and the W® are €% and that3p € R
Vke{2,...,N} PreRV(x,y) € R x RY

(VV(x) - V() x—y) = —Pllx— ylI% (5.7)
(Ve WO () =V, WR (3,4, x = y) = —Bllx -yl (5.8)

Then, for everyT > 0, a constant Ky exists such that for every g € %, (R%),

K
sup EX{!—xW2 < =L, (5.9)
0=¢<T n

Furthermore, ifw:=p + Zl]j:z kPx <0, the upper bound is uniform in time, i.e.,
K
supEX{! —x V2 < #"’,Km < +o0. (5.10)
120

The constants are specified in the proof.

Proof. See Appendix A.1 O

Remark 5.3. > For the sake of simplicity, we only provided the result for the classical McKean-Vlasov process. The
extension of the result in finite horizon easily extends to the kinetic setting as soon as (H1).

> As mentioned before, the statement also leads to uniform in time propagation of chaos but it certainly requires
that the function V plays a confinement role which is characterized by the fact that w is assumed to be negative.

> Ifforall ke {2,...,N}, V le(k) is just uniformly bounded and uniformly Lipschitzian in the first coordinate, then
it does not necessarily satisfy the conditions of the Theorem 5.1 but if the confinement potentiel V satisfies them,
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we still have the conclusions at least in a short time: for all (x, y) € RY x R? and pne PR,

x-VV(x) = (=B — [VV(0) ) |x[* = [VV(0)|; (5.11)
~ (VWO (x,) =V, WO (3,1, x = ) < IV, WP (5, ) = V., WO (3,1 - [ = (5.12)
< [x1— Ve, WP (1, )1 1x = 1%

8H N
XV (0,0 =X W) + ) kU W s 1 () (5.13)
k=2

N
> (=B = VO DIxI* = IVV(O)] - |x] Y klx; — W® (xp,91
k=2

N
2 (=B 19V - IWVO)I - 3 klxi = WOl 1x?
k=2
N
— W)= Y klx; — WP (x,];.
k=2

And this last inequality comes from a disjunction of cases depending on whether the vector is on the unit ball or not.

Back to U-statistics. The results on the U—statistics (5.1,5.2,5.3,5.4) and the inf-compactness of the entropy
functional Hy (5.5,5.2,5.8) are inspired by [1] in the case S = R%. We recall that the expectation of W® under p® k
exists if and only if

[Ep®k[W(k)’+]<+OO or [E“®k[w<k”‘]<+oo. (5.14)

First we present the law of large numbers of the U—statistic (see [[32], Corollary 3.1.1] or [[1], Lemma 3.1]). We recall
that U-statistics are defined in Eq. (1.19).

Proposition 5.1 (law of large numbers for U—statistics). Let (X)) =1 be a sequence of independent and identically
distributed random variables with values in a measurable space (E, B(E)) equipped with its Borelian tribe and
® : E¥ — R a symmetric measurable function such that

E[®X,..., XKl < +00, then U,@) "—=°E[®(Xy,...,X;)] with probability 1. (5.15)
Proof. See Appendix A.6 or [1]. O

In terms of integrals, this result means that for any function ® € sy, (EX, R) with E* provided with the tensor tribe
(or product) and any measure p € 22 (E) such that ® € L' (u®*), we almost surely have

Up (@) "=27F @ [@] 1= fE oW u®*(dx). (5.16)

This result can also be seen as a law of large numbers for U —statistics. From this result, we deduce that Vk € {2,...,N},
if W0 e L1 (u®k), then we almost surely have U, (W®)) tends to WX [1]. We first recall the decoupling inequality of

Victor H. De La Pena (see [[33], 1992]).
Proposition 5.2 (Decoupling and Khintchine inequalities for U—statistics). Let (X;,) =1 be a sequence of random
variables with values in a measurable space (E, 9B(E)), independent and identically distributed. We assume that

Xsee s X0 =1,k (5.17)

.....

are k independent copies of (Xy,...,X,,). Then for all increasing convex functions ¥ : [0, +oco0) — R and measurable
symmetric®: EF — R such that E[|®(Xy,...,X)|] < +oo, we have

v ¥ o, xp|)|<E[efc] X ecd,..xb|)] (5.18)
(GERINE | (i1, it )€
with .
Cp:=8 and Vk=3, Cp:=2F[[(/-D. (5.19)
j=2
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_____
.....

log[E[exp(ﬁlgk cbi(x}l,...,xjfk))] < 1

—-k+1
iely,

Iyl
Proof. See Appendix A.6 or [1]. O

Proposition 5.4 (Decoupling corollary). For (X;);>1 a sequence of independent and identically distributed random
variables according to o, we denote A (-, W®) the log-Laplace transformation associated with the U—statistic of order
k, i.e. to within a factor, the logarithm of the moment generating function, namely

1
Vnzk=2, VYA>0, A,A\W®X):==logE
n

e”AU"(W”‘))] . (5.21)
IFWR e L1 (a®K), then

1
A, WR) < ElogrE[exp(kckMW“C) (Xl,...,Xk)l)]. (5.22)

Proof. See Appendix A.6 or [1]. O

Large deviations: inf-compactness of mean-field entropy and existence of an equilibrium point. We will use a
large deviations result ensuring the infcompactness of the entropy functional to show the existence of an invariant
measure for the nonlinear process studied.

Proposition 5.5 (Lower bound of large deviations for L,, under u}). Under the integrability assumptions on the
interaction potentials (W), N, we have the lower bound of large deviations for {% (L, € )} y=N, i.e.

1
YO < M, (RY) open, [*(0):= lrillllilgofﬁ log(u, (L, € ©)) (5.23)
z—inf{EW[p]| neo, v2<ks<N, whel'@®h}.

In particular, we have

o1 .
1};&1&;{; log(Zn) — log(C)} > —mf{EW[p]( neH®RY, v2<k<N, wherl (p®k)}. (5.24)
Proof. See Appendix A.6 or [1]. O

Proposition 5.6 (Exponential approximation of the U—statistic). Assuming that for all A >0,
ElexpAIW®|(X,,...,Xp)] < +0o0, (5.25)

then there exists a sequence (W %C))mzl of bounded continuous functions such that

1
v6>0, lim limsup;logP(lU,,(Wﬁ,’lc)) ~U,,(W®)| > §) = —co. (5.26)

M=+ p—+o0

Proof. See Appendix A.6 or [1]. O

Theorem 5.2 (Large deviations principle for U—statistics). Let (X;);>1 be a sequence of independent and identically
distributed random variables with distribution a. We assume that we have exponential integrability of the interaction
potentials under the tensor products of « by itself, i.e.

Vke2,...,N}, VA>0, (rE[eMW“”(Xl '''' Xk)'] <+oo<=>e)‘|w(k)‘€L1((x®k)). (5.27)

Then
{P((Ln,Un(W‘Z)),...,Un(w“\”)) € )} (5.28)

n=N

satisfies a large deviations principle on the product space 41 (R?) x RN"! and good rate function given by

Hiplad, if Vk xe=WHE[u],

5.29
+00 otherwise. ( )

Iu(u,xz,...,xN):={
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Proof. Let (wﬁ,’;))mzl be the sequence of bounded continuous functions of the proof of Proposition 5.6 (see Ap-
pendix A.6) such that for all A >0,

e m k) :=log [ WOWl go@k M=t (5.30)
Rk
For all m =1, we set
Fo = (W), W ), 0 2= (WP, W ). (5.31)
We consider the following metric on the product space
N
d((H’XZ) ...,.X:N), (V»J/Z,- . -»}’N)) = dLP(P,V) + Z |xk - J’k| = dLP(H)V) + |x_ J/|1, (532)
k=2
and note that N
d(fm(W, fF) =) \ f wk _wk) g, ®k| (5.33)
k=2 (Rd)k

The sequel of the proof is divided in three steps.

Step 1: Continuity of f,,. For this step, it suffices to show that for all k € {2,...,N}, p € 4, (R%) — W(,L‘) [yl is
continuous for the convergence topology weak. Let p, e win (/4 (R%), dip) . By the Skorokhod representation
theorem, there exists a sequence (Y,), of random variables with values in R4 such that Y,, ~ K, and almost surely,

n—+oo (i)
Y, — Y~ Let (Y,

Yg) niw

n= O,Y(i))lsisk be independent copies of (Y,,n =0,Y). We have for all i, almost surely,
n—+oo

Y®, which implies that almost surely, (Y., ...,Y®) D, ...,Y®)._ In particular, p®* tends weakly

to u®*, which proves the continuity of the above functional.

Step 2: Good exponential approximation of (L, U,(W®), ..., U,(W®™)) by f,,(L,). By exponential approximation
of the U-—statistic, we have for all § > 0,

1

lim_limsup — 10gP(d((Ln, Un(W®),...,UnW ™)), (L, Un(W), ..., U (W) > 8) = —00,
m—+00 p.i100 N

ie. (L, U,(W2),...,U, (W) is a good exponential approximation of (L, U, (W®),...,U,(W®™)) .

Moreover, (L, U,(W?),...,U,(W™N)) and f,,(L,) are exponentially equivalent because we have the following

uniform estimate

1K |
(U,,(W,(jj’) —fwﬁ,’?dL?’“‘ < (1 - n—'l’c)(mn(w,(j?n + ||W,(]§’||oo) (5.34)
I -
< 2(1 - %)ng’?llm "0,
n

We get that when m — +oo, f,(Ly) is a good exponential approximation of (L,, U,(W®),...,U,(W®™)).

Step 3: LDP. By Sanov theorem and the LDP approximation theorems, to get the desired LDP, it suffices to show that
forallL>0,

sup  d(fm(W), F() "=>0. (5.35)
W Hlplal<L
Indeed, for all A > 0, L > 0 and p such that H[pu|a] < L, by the variational formula of Donsker-Varadhan and Fatou'’s
lemma, we have forall k€ {2...,N},

1 1
f|w,§’;) ~WR | gu®Fk < X(H[p®k|(x®k] +10gf eMWVnc’*W(“'da@’c) < X(kL+ e\, m, k)). (5.36)
This completes the proof of the theorem because A is arbitrary and for all A > 0, €(A, m, k) mZER), O

We are now able to prove the inf-compactness of the mean-field entropy functional.

Proposition 5.7 (Inf-compactness of the mean-field entropy functional). The mean-field entropy functional is
inf-compact.
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Proof of Proposition 5.7. We will do the proof in three steps. We recall that if we have a good rate function, then its
infimum on any closed nonempty is reached, that is to say that this infimum is a minimum.

First, Assumption (Al) of [1] is clearly satisfied: taking p = ha with h continuous with compact support, we deduce
from the local boundedness of W) that

Hplo] + [Eu®k[W(k)'+] < +00.

By (H3), we have the strong exponential integrability condition of (Al).

Moreover, under (H2), we necessarily have that limy|— 1o \I%Ixz) > 0. Actually, by (H2), there exists a positive M such
that for every x with |x] > M, x.VV(x) = %|x|2. Then, for any x with |x] =M, setp = % We have
V(x)-Vppx)=(1- p)[1 V(A +uld-p)x).xdu= fl VWA +ul-p)x).1+uld-p))xx I——p
0 0 1+u(l-p)
alxl? (1-palxf _ alxl?
2 2 4

as soon as | x| = 2M (since in this case, p = % < %). We deduce that for any p € [1,2) and any A > 0,

=

1
f 1+u(l-p)A-pdu=
0

f M o (dx) < +oo
R4

which corresponds to the last assumption of [1]...

Step 1: WX bounded from above. In this case, we have for all A > 0,

k
E[eMW©1X0X0] ¢ J oo (5.37)

In principle, large deviations for the U-statistic, under P := a®N, (L, U,(W®?),...,U,(WN)) satisfies a large
deviations principle on .#; (R?) x RN~ of good rate function Iyy. As

N
Y U,W®) s continuousin (L, U,(W®?),...,U,(W™N)), (5.38)
k=2

1
Vp>1, limsup—logk
n—+oo N

by what precedes and the theorem of R.Ellis, we deduce that w,((L,, U,(W®),...,U,(W®™)) € .) satisfies a large
deviations principle with rate function defined by

- N (k)
e ML, UnW )] < +00,

N N

I, x2, .., xN) =Ty (p, X2,..., XxN) + ) xg—  inf {IU(p,xg,...,xN) +) xk}. (5.39)
k=2 Hr%2pecer 2N k=2

So
Ewlul —infyEwlnl  if Hlpla] <+oo, Yk, xx=W®[p],

5.40
+00 otherwise. ( )

(W, x2,..., xN) = {
We conclude by the principle of contraction that p, (L, € -) satisfies a PGD of rate function Hyy. Note in this case
that Ey is inf-compact, so Hy too.
Step 2: General case. In this case, for all L > 0, we set W{k) = min(W(k),L). So

k .
EWL[H]:{H[pl(x]+21]j_2W£)[p] if Hlpla] < +oo,

5.41
+00 otherwise. ( )

is inf-compact on .#; (R?) by step 1. This proves that Hy is also inf -compact by passing to the monotonous limit.
For all closed & < ., (R%) and L > 0, we have

N N
WLy € F) = fﬂLnEg exp(— ny Un(W(k)))d(x‘X’” < fﬂLneg exp(— ny U,,(W{’“’))dam (5.42)
k=2 k=2

<exp ( - n&g;EWL (Wl + o(n))
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and this last inequality is given by the LDP for the U—statistic and the Varadhan-Laplace lemma. It follows

limsup —log puplpeF) - 1nf EWL[p] = limsup —logpn(Ln EF)=s— 1nf Ew[p] (5.43)
n—+oo n—+oo
by monotone limit and inf-compactness. In particular, for & = .#; (R%), we deduce that
llmsup{—loan - logC} <— inf Ewl[pl. (5.44)
n—+00 Hey (RY)

By the lower bound of the large deviations for L,, under p, obtained, this upper bound and given that Ew [p] = +o0
ifforakei2,...,N}, Wk ¢! (p®k), we derive that

1
li —logZ, —logC;=—- inf E 5.45
n—l>r-ll:loo { n Og n Og } HEZ(RIJ) w [p] ( )

which is a finite quantity by assumptions and inf-compactness. With this equality, we thus obtain upper and lower
bounds of large deviations for {p, (L, € )} n=N.

O
Proposition 5.8 (Sanov’s theorem for the Wasserstein metric by Wang et.al). Let (X,,) =1 be a sequence of independent

random variables, identically distributed, with values in R4 endowed with one of its norms that we will denote || - ||
and law a. We have equivalence between the following two assertions

(i) (P(Ly € ) n=1 satisfies a principle of large deviations on the Wasserstein space (Jlf’ (R%), W) with speed n
and good rate function H[-|a] .

(ii)
YA>0 xoeRY, f ) ME=x0ll” o dx) < +oo. (5.46)
R

Proof. Since we have established a LDP for the random empirical measure L,, under p,, on .#; (R%) equipped with
the topology of weak convergence, it suffices to prove the exponential tension of (y, (L, € -)) ;=N On (ﬂf (R%), Wp).
LEt}If c Jtlp([Rd) be compact and (a, b) € [1, +00]? a pair of conjugate exponents (é + % = 1). By Holder’s inequality,
we have

Cn N
(L, € K) = _fumK exp ( -nY Un(W(k)))da‘g’" (5.47)
k=2

< g_( ®n(L, ¢ K)) (fexp(— nbkiun(wtk)))dcx@n)é.

n

It is deduced that

Zn
limsup — log Mn(L, €K) < — llmsup - loga®"(Ln ¢ K) —limsup ; log— (5.48)

n—-+oo a n—+oo n—+oo

1 1
+=limsup — | exp ( -n Z Un(bW(k)))d(x@”.
k=2

n—+oo N

Now the right-hand side of this inequality is upper bounded by

1
—11msup—10ga®”(Ln€K)+ inf Ew[ul—— inf Epwlpl, (5.49)
a n—+oo pet (RY) b ey ®%)

and from the above, infHE (R Ew([p] and
N
inf  Epwlpl:= inf {H[pla] + Z f pw® dp®k}, are finite quantities. (5.50)
pett (RY) He (RY) k=2
Under (H1), (H2) and (H3) in HMV3.1, the LDP holds for L,, under a®" on the Wasserstein space. So, forall L >0,
there is a compact K, < ./ (R%) such that

a
limsup —loga® (Lp¢Ky)<s—al—a inf Ew[pl+- inf Epwlul. (5.51)
n—-+00 pey (R4) pey (RY)
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It follows that
limsup — log mn@L, € Kp) < -L. (5.52)

n—+oo

O

Uniqueness of invariant measure. The assumptions on the interaction potentials and the confinement potential
ensure the existence (via the inf-compactness of the entropy functional proven in Section 5.2 and [1]) of an invariant
measure (global minimum point for the entropy functional) for the McKean-Vlasov process obtained by propagation
of chaos. It remains to prove the uniqueness.

Proposition 5.9 (Fixed point uniqueness). Under (H1), (H2) and (H3) in HMV 3.1, there exists |\o, a@ minimizer of
Hy. We have equivalently

> Critical points of energy: leo € {V, %Ln‘f(v, ) =0} Z@.
> Fixed points: oo € {v, @(V) =V} #@.
> Maxwellians: |\ is also an invariant probability of the McKean-Vlasov process: Joo £y, = 0 or equivalently
Joo = gl;—;" (existence of density) satisfies
div(fwvg—i(pw, )+ foo) =0.
The contraction assumption (H5) in HMV 3.1 ensures the uniqueness of [loo.

Proof. To do this, we will use the characterization of the local extrema of a differentiable functional in the sense of
Fréchet (flat derivation) on an open set. Let

@;:{pe@(Rd), Hlplal < +oo0, Vk, fW(k)’_dp®k<+oo} (5.53)

=H[-|o] ™" (| ~ 00, +00D ¥~ (1 00, +oo[N 1),
with
W — (fW(Z)‘_dp®2,...,fW(N)’_dp‘g)N). (5.54)
We know that Ey = +oo over G€. By Fréchet differentiability of the relative entropy H[-|a] and of ¥ on .#; (R%)

endowed with its structure of differential Fréchet manifold, @ is open as an intersection of open sets. We deduce
that the local extrema (here minimum) of Eyy are critical points on @, i.e. p € @ such that

; OE 1 :
Zy = f eIV gy ¢ o 2V =0 e p(da) = —— e om BOVE) gy (5.55)
om Zy
According to the hypothesis (H5) of HMV3.1, we have
diip(@(W), ®(V)) < kdrip(, V), (5.56)
and since there is a fixed point, suppose by absurd that there is more than one, i.e. there is p;, 2 € @ such that
M1 # e and for all i, ®(p;) = y;. It follows that k = 1 which is absurd because k < 1. O

Cesaro tensorial: About entropies and Fisher Informations. We will establish convergences in entropy and Fisher
information which are useful for the proof of the exponential decrease of the mean field entropy and the establishment
of the nonlinear Talagrand inequality.

Proposition 5.10 (H-Tensorization). For any probability measure v on R4 such thar H[v|a] < +oo, we have:

n—+oo

1
;H[vg’”lpn] —  Hwl[v], where p, isdefinedin Eg. (3.8). (5.57)

Proof. For y such that u < aand forall k€ {2,...,N}, W~ e L (u®*), we have

REO

1
—H[H®n||-ln]:;ﬂ': )

+n Z U, W®) +10g (5.58)

=Hlpla] + Z fW(k)dp®"+ ;loan —logC.
k=2
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We recall that a(dx) :=
f ) M o (dx) < +oo. (5.59)
R
By asking:
Z,:= f(m)n e Eie Un W@ Gy L dxy), (5.60)
we get: (by Fubini-Tonelli)
c" N g aw®
W (dx) = Z—e*"2k=z nWE @7 (dx). (5.61)

n

Letve (R%) be such that H[v|a] < +oo. Since
H[vFo®k) = kH[v]al, (5.62)
x— M ¢ 1) and

k
vke2,...,N} VxeR (wR@l<spa+ Y Il (5.63)
=1
by boundedness of its hessian V2W® (hypothesis (H1) in HMV3.1), according to Donsker-Varadhan variational

formula of entropy, we have W¥ € L! (v®*). We have successively: (by a direct calculation and application of the
Fubini-Tonelli theorem)

1 dveny 1 dve"
H[v®"|u,] = —Ent —=—f 1 ave" 5.64
vl = Bty || = | dog (T —)av (560
We deduce that:
N
1 -
H[v®"|pn = f Zlog —(xl ) ave'+ Y [ U, WP ave" + ~log(Z,) (5.65)
k=2 n
lim 1log(Z,)=- inf EwIn] (see Theorem 5.2),
n—+oo ne I(R )
1 & av on _
zfi;log(%(x,))dv =H[v|a] (5.66)
and finally, we also have: (see Proposition 5.1)
N N
Y [ u.w®aver =Y | WP x)vek(dx). (5.67)
k=2 k=2
Thereby:
1
ZHVE ] "= Hv]ad + Z f WP (v (dx)— inf Ewnl = Hylv]. (5.68)
n ne/ (R9)
What needed to be proven. O
Proposition 5.11 (I-Tensorization). IfI[v|a] < +oo, we have:
1 —+00
TVt " Iy v (5.69)

Proof. For any probability measure v on R? such that I[v|a] < +oco, by the Lyapunov condition (H2) in HMV3.1 on
the potential V, we have:

clflxlzdv < ¢ +I[v]a] < +oo. (5.70)

As the second order derivatives of W) are bounded by the condition (H1) in HMV3.1 on its Hessian, V ij(k) has
alinear increase. So V ij(k) € L2(v®¥). By the law of large numbers for independent and identically distributed
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sequences, we have successively'

1
. Ive" |upl = on (5.71)

el

vxi log(%)

®n

N 2
+n Z vinn(w("))H Ave"

Vlog (xl) +n Z Ve U (W) aver
-5/ H I

- k 2
= f”vlog (y)+kZzZ1 VWO G 1, 00 20V !‘[fdm)H v(dy)
J i=L17]

=Iwl[v].
O

We recall the tensorisation property of relative entropy: The Proposition 5.12 on entropy and tensor product allows
us, in what follows, to show the exponential decreasing of mean-field entropy along the flow of solution distributions
of the McKean-Vlasov equation associated with the particle system.

Proposition 5.12 (Relative entropy and tensor product). Let Hll.\il a; and Q respectively be a product probability
measure and a probability measure defined on E, x --- x EN a product of Polish spaces. Denoting Q; the marginal
distribution of x; under Q, we have:

N N
HQI [] ;] = ) H[Q;la]. (5.72)

i=1 i=1
Proof. See Appendix A.6 or [2]. O

Proposition 5.13 (Relative entropy and Boltzmann measure). Let u be a probability measure on a Polish space E and
U :E — (—00, +00] be a measurable potential such that:

f e PYdp < +o0 (5.73)

L . -u .
for some p > 1. Considering the Boltzmann probability measure |y := %d W, if for some measure v, H[v|uy] < 400,
we have successively:

(i) H[Vv|u] < +oo and U € L' (v).
(ii)
Hiv|pyl =Hl[v|p] +fUdv+10g[ eiUdp. (5.74)

Proof. See Appendix A.6 or [2]. O

Functional and transportation inequalities. Functional inequalities are powerful tools to quantify the trend to
equilibrium of Markov semigroups and have a wide range of important applications to the concentration of measure
phenomenon and hypercontractivity. ¥n, we recall that p, (1) := Po (X") ! and B, := prs (Hn)-

Theorem 5.3 (Transportation inequalities). Under the assumptions in HMV 3.1, we have

(i)
HIpy (0] < Hipg 0)|pale ™2 = Hp® " |p,le Pt (5.75)
pLs (M) HI-[np] < 21| ugl; (5.76)
PLS (M) 5 (-, ) < 2H[ ). (5.77)

(i) A peo € Jlf (R%) such that: (Section 5.2.Proposition 5.9)
Moo = argmin{Hw [vl,ve . ([Rd)}, (5.78)

with Hy the mean field entropy.
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(iii) prs :=limsup prs(p,) >0 checks:
n—+oo

vve.s?RY), prsHwlvl<2kw[vl and prs#5Z(V, too) < 2Hw[VI. (5.79)

We say that we have a nonlinear log-Sobolev inequality for the first inequality and a Talagrand transport
inequality for the second.

Proof of Theorem 5.3. The logarithmic Sobolev inequality of constant f§,, := prs (i) for p, given by (H4) in HMV3.1,
the large deviations principle ( Sanov’s theorem) in Section 5.2 and the uniqueness of the minimum argument (ploo)
in Proposition 5.9 of the mean field entropy ensure that we have successively:

> Vusuch as H{p|a] < +oo, (Section 5.2.Proposition 5.10.Proposition 5.11)

n—+oo 1 n—+oo

1
;H[pmmn] — HwI[ul and ;I[u@’"mn] Iy lpl. (5.80)

> Equivalence between Sobolev’s inequality, exponential decay of entropy and Talagrand’s second inequality
for Gibbs measures (Otto-Villani,[34],[20])

BruHIp,l <211 |p,) and  Bu#5 () < 2HL ). (5.81)

> Chaos propagation. (Theorem 5.1) Denoting ([14) t=0 the flow of solution distributions of the McKean-Vlasov
equation associated with the particle system defined by the U— statistic and the confinement potential,
if yo € Jllz (R%), then for any non-empty set I ¢ N* of finite cardinality, Pxn iy, converges in metric
12-Wasserstein to p®® (arrow (1) in Fig. 1).
> Denoting p(,f) the i-th marginal distribution of u,, we have by uniqueness and LDP (arrow (3) in Fig. 1)
Hh £
1 2. (5.82)

> By symmetry of y,, all its marginal distributions are identical and as
n .
A TR T S g A (UNN Y 7 (TN (5.83)
i=1
we deduce:
nBu (WP, ) < 2H[p® " |, (5.84)

By equivalence of the logarithmic Sobolev inequality to the exponential decrease of entropy along the semigroup,
we have (arrow (2) in Fig. 1)

Hi, (0] < Hipy Olpale ™2 = Hp® " pale P2, 1,0 :=Po X)), (5.85)

And by lower semi-continuity of the Wasserstein metric, we deduce the nonlinear T, —Talagrand inequality given by
(arrow (4) in Fig. 1)

oL 752 (1, Hoo) < PLS lrilmjgof%z(p, uMy < 2Hw(ul, prs :=limsupp, > 0. (5.86)
- n—+o0o
We also have the nonlinear logarithmic Sobolev inequality given by (arrow (4) in Fig. 1)
pLsHw[] = 2Iwl[']. (5.87)
O

In Kinetic case. We consider /5, := A, — VS, -V = £, the elliptical generator associated with p; , =\, .
Remark 5.4. £z, admits the following Hormander form
2 0

L Xii=

n d
Lrn=Xo+Y+) ) X 50
i,j

i=1j=1

Xo=-0-Vy, Y=VSi,-Vy—v-Vy (5.88)
The family
Xt X oo X X DXL Y X, 1, 1Y X (5.89)

form a basis of R4 at any point. Which implies by Hormander’s theorem that £, is hypoelliptic. Moreover, £ ,,
is non-symmetric, i.e. in Lz(pg’), we have :

jfz*n =Lrn-2Y= ("%Z*,n’ @(D%Z*’n)) is not a closed extension of (%7, 2(%7,n))- (5.90)
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The following known lemma is a key to the Lyapunov type conditions. We include its simple proof for completeness.

Proposition 5.14 (Lemma.8 in [3]). For any function ¢ € €2(R"9) strictly positive (p > 0), we have

S,
Yy € A" (11,n), f - ”‘pwzdpl,n < f IVyI*dpy n. (5.91)

Proof of Proposition 5.14. Indeed, by integrating by parts, we successively obtain

R% 2
f "przdpl'nsf<VLp,VW—>dp1,n (5.92)
AUAY 2v
f<v 2yvy W2(P>d1n
¢ ¢
SfIVWIde,n.
And this last inequality follows from the inequality
\V/ 2|V |2
<2WVW, ?(p> < w_;p + [Vl (5.93)
O

This second Proposition 5.15 is the heart of the proof of Theorem 4.3: this proposition is inspired by [3, Lemma.10]
for the two-body interaction. It uses Lyapunov conditions, yet well know for being highly dimensional, but at the
marginal level, thus providing results independent of the number of particles.

Proposition 5.15. Under the conditions in VFP3.2 giving UPI, there are two constants Cy and Cy depending on
N,K,K;,K> and d (dimension ofRd) and such that

vy e A (1,0, f VAV (x)lI5,w dpnn < Cy f IVewl?dp,n +Co f viduy,n. (5.94)

Proof of Proposition 5.15. This lemma follows from the Lyapunov property, from the particular form of the invariant
measure generator? 11 , and from the previous Proposition 5.14. Indeed, we have:

@

IV2VIZ, < m (= )IIVVIE - AV) + np, (5.95)
, , 25K{d? 1
N :=5K] mn2:=4K5+ 2 Y= 3 (5.96)
(ii) Since the interactions are Lipschitz, we know that Yk € {2,...,N}3K® such that [[VW® || < K®),
Let K:= max{K®, k=2,...,N}. It follows that
2
—n Z V., U W) WV (x;) < (N = DKWV (x;) < (N — 1)(K— +2IVVE () (5.97)
Xi n 1 1 Y 1 .
k=2
But for ¢ (x) := 2V, we have
WA T;
2= = T ave) + G - DIVVEG) - 3 Vi, Un W) -0V (x, ) (5.98)
Y Y k=2
Thereby
A, N N-1)K?
2 Zn® sAV(xi)+(—Y—1)||VV||2(x,-)+¥. (5.99)
2 2y
2We have

n N
Ty =Y Ti, Ti=NDyg;—VV(x) Vy,—n Y Vi, UpyWH). v,
i k=2
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Moreover, we have

— 2
A= PIVVIEG:) - AV(x;) < —2 Zn® , W=D

2y
Therefore, by the inequality obtained in (i),
b, (N-DK2
VAV 12 < (- 2250 4 S )y

2y

Integrating with respect to Ww?d;, ,, we obtain

S (N-1)K?
31f— n(pwzdlll,n"‘(‘h*‘—nl)fwzdpl,n-

fnvZV(xlm apVodi 2y

And we conclude by the previous Proposition 5.14 that

[ IV dpn = C [ 1V +Co [ whdin,

+ (N-DK” (IN-DK* l)K

where C; = =2 and C; =1 ni.

6 Proofs of Main Theorems
Proof of Theorem 4.1. Indeed, we have the inequality (Proposition 5.12)
lH[pn(ma@"] > H{p (1)l
and by lower semi-continuity of relative entropy and propagation of chaos,
hmmf H[p(l)(t)la] = Hplo]
On the other hand, we have (Theorem 5.2.Theorem 5.3.Eq. (5.58))
—Hlp,(Dlp,l = %H[p?"lpn]e_ﬁ”é and hmlnf H[ "|unle P12 = Hy[pole P52

Also, as
n N *)
e—nzk=2Un(V\/ )(x®”(dx),

n

Mp(dx) =
we also have

Hip (Dl ] = Hlpy (010" + Z [ On i+ 10z -togic),

and (Section 5.2.Eq. (5.58))

k=2 k=2 e (RY)

It is deduced that

Vi=0, Hyluole pL52>hmmf H[un(t)|pn1>H[ut|a1+Zw"“ [m]— inf Ew[pl =Hwlp.
k=2 HELO (RY)

This completes the proof of the exponential decrease of entropy along the flow.

Proof of Theorem 4.2. Just use the nonlinear T, —Talagrand inequality, i.e.: (Theorem 5.3)

Vi=0, prsH#s (HeHoo) < 2Hyw [l
This completes the proof of the desired inequality: We conclude with the Theorem 4.1.

30
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Proof of Theorem 4.3. By the Lyapunov condition in the assumptions 3.2, we can apply Proposition 5.15 and obtain
that forany y € 01 (11,n), it holds

f”vzv(xi)”?)pwzdpl,n 5le|va|2d|~11,n+C2fW2dH1,ny (6.9)

2
with C; = 2% andCy =1 + (N_zyK 11 for instance which are independent of the number n of particles. It follows

that the boundedness condition in Villani’s theorem holds. Since the uniform Sobolev inequality implies the
uniform Poincaré inequality, we can apply Villani’s hypocoercivity theorem ([3, Theorem.3] or [24, Theorem.18 and
Theorem.35]), which completes the proof. O

Proof of Theorem 4.4. Note that (7 (1)) is a solution of a (large dimensional) linear Fokker-Planck equation,

for which the exponential decay of the entropy is already known under assumptions including 3.2 (see e.g. [24]).

Consider the generator £z, given by Eq. (3.19). Then ¥, := d;ﬁy),
Z

given by Eq. (3.16) with respect to its equilibrium distribution, solves

the density of the law of the particle system

3 ¥n=5,¥n (6.10)

This is a linear kinetic Fokker-Planck equation, for which convergence to equilibrium has been proven by many ways.
All we need to check is that the explicit estimates we obtain do not depend on 7 (see e.g. respectively Theorem.7 and
Theorem.10 in [5, [6]]). The key point in Eq. (4.4) is that C and £ do not depend on n: Indeed, as pg =U1,n Q@ H2,n
and these measures satisfy logarithmic Sobolev inequalities of constants prs (11,,) = p and prs (H2,,) = 1, W, satisfies
an inequality of logarithmic Sobolev of constant pys (1) := max(p, 1); moreover, the Hessian of its Hamiltonian is
uniformly bounded. This enables us to prove the following: (T2—inequality)

>0 VY Vi, #AEE0,pD) ske YHW OS], pi0) = p®", pe 2R xRY). (6.11)
By symmetry, propagation of chaos and Sanov’s theorem (LDP), we have respectively
Vie{l,..,n, a#2ur@w, 0 swiupo,uy, pr?m TP w b0 ez (6.12)

We have by lower semi-continuity

.. j N |
Ve 2 RExRY), W2 (u,p) < l}flll&f%z(“’ T KlérglgofﬁH[ug(O)lug’] =k [pl, (6.13)
1 N 1 -
EH[p®”|pg] =H[pla® A (0,1d)]+ Y. | U,W*)au®" + —log(Zy) - log(C) "5 Plul = Elul - L), (6.14)
k=2

According to Eq. (4.4), we have

LIV < CF[ule ™. (6.15)

It follows that
7//22(}1‘[”, pgo) < Ky[p‘t’FP] =kCZ[ul et (6.16)
O

Proof of Proposition 4.1. First, note that (4.6) ensures that V2V > pl; with p > 0, which in turn implies (H2). For
(H3), this follows from the assumption: wk,- (X1,...,Xx) = 0(25?:1 V(x;)) as [x Z+...+ kaI2 — +00.

To prove (H4), we use the classical Bakry-Emery criterion. To this end, let us denote by A;; = Vlz. an (x1,...,Xx,) where

we abusively omit the dependence in (x1,...,x,). Note that A;; is a d x d-matrix. Using the symmetry of the wk),
we have

-1
N
n—1
A =VAVE)+Y kY ( ) VAW (e xi, X1 )
k=2 (i1,eemrif—1)€L,’

k-1
andifi # j,

-1
N
n—1 2 k
Aijzkzzk Z -(k—l) VIZW()(xi,xj,x,-l,...,x,-k_z)

L —i
(i1 ig—2)€EL, J
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where I;i (resp. I;ij) denotes the set of increasing sequences i < ... < ix—1 of [1,n]]\{i} (resp. i; <... < i}_p of
[1, n]1\{i, j}). With the notations of the proposition, one easily checks one can find a small enough € and a large
enough 7, such that for any A < ¢, n = n, and (x3,...,x,) € (R, we have for all i € [1, 1],

1A = Nligp = A—2¢e > Z k(k=DIVHW P o +e2 3 1VF /Asjllop.
k=2 J#i
This implies that for any A € (—oo,€), the matrix V2H,,(x1, ..., X,) — Al is block-diagonally dominant and thus
invertible. Hence, V2H,, > €l,,; which in turn implies (H4) by the Bakry-Emery criterion.

Let us now prove that (H5) holds. Let vy, v; € ?}’Z(Rd) and set vy = (1 - f)vg+ tvy, t€[0,1]. Let f: RY - Rbea
1-Lipschitz smooth function. From the very definition of @,

@, fr=> f Fx)e VT kS WO yv Ty g 6.17)
Vit

so that setting g;(x) = —9,(X}_, k S WP (x, y)vEF~1 (dy)), we get

_0/Zy,

Zy,

d
E«D(Vt),f) = (D(vy), f) +{D(vy), fgt> =(D(vy), fgt> —{D(vy), f)(q)(Vt) gt> = 0Vd>(vz)(f g1)-

For a probability , let £, be the operator defined on %2-functions by
OF
Luf ==V () +V) +Af, (6.18)

w1th deﬁned by (1.18). Denoting by ¢, be the solution of the Poisson equation f — ®(v;)(f) = £y,¢; and using
that ffvt is self-adjoint in L2 (®(v,)), we get

COV(D(v[) (f; g1 = <(Pt’=(£v,gt>L2(<l>(v[)) =—(Vyy, vgt>L2(q>(vz))-
Note that for the second equality, we used the fact that for some €>-functions f and g, &y, (f.8) = fL\,8+8%v, [+
2V f.Vg. With the help of Cauchy-Schwarz inequality and Lemma 6.1, this leads to

1
|Covow ) (f, 8 = IVPelizonw )y IVE 2w,y = X”Vgt”]}(q)(vt))- (6.19)

Let us finally focus on Vg;. First, one checks that
GH f WO (x, yvEldy) = f wW® (x, y) Z vi=vo)dyp [T veldyn) (6.20)
i#]

=(k-1) f f WO (x, %2, ) (v = vo) (dx2)vEF2(dy).

Note that we used the symmetry of W and the fact that [W®| is subquadratic (due to (H1)), which ensures
sufficient integrability properties for the above equalities. Now, denoting by (Xy,,Xy,) an optimal coupling of vo and
v; for the 1-Wasserstein distance, one obtains

IV ( f W® (x, x2, ) (V1 - vO)(dxz)) | < |EIViW® (x, Xy, 1) = ViWE (2, Xy, )11 (6.21)
< IVZ, WP [lop 0o 4 (Vo, V1).
Hence,

IV8elh2 @ < IV8tlleo < (Z k(k = DIV, WP flop 0 | #4 (vo, V1),
k=2

and by (6.19), we get for any smooth 1-Lipschitz function

1 g N k(- DIVZ,WE op,
HD(V1), ) — (Do), )] < fo (@), Pldr < k=2 x 2 P (vo, Vi)
By (4.6), a density argument and the Kantorovitch-Rubinstein duality relation, it follows that @ is a contraction on
(PR, W1). O
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Proof of Proposition 4.2. We need to show that (H4) and (H5) are true. Concerning (H5), this is a consequence of
assumption (4.6), exactly as in the proof of Proposition 4.1. For (H4), we apply [35, Theorem 1]. The inspection of
the related assumptions is divided in three steps.

Step 1: Regularity properties. For any p € 2(R%), we consider the standard Langevin process (X‘;) =0 of Hamiltonian
xr— B, x) = V) + X8, kWO (g, p)p®k-ldy), ie.

H
dx" = v2dB! - g—m(p,xt‘)dt. (6.22)

This Langevin process admits for invariant distribution ®(u)(dx) = Zn —e & () dx. The functional H admits first

and second-order flat derivatives that are jointly continuous and are 62 in the spatial variables. H,, the Hamiltonian
of the particle system and its derivatives are related to the macroscopic Hamiltonian H and its derivatives by

H, ) = nH(py) (6.23)
1 n
=nH(— Y &
n (I’l pX::l xp)
n N
=Y V) +n Y U,wWo);
p=1 k=2
Vi Hn(X) = D H(px, Xi); (6.24)
1
Vi,xiHn(x) =VDH(ux, x1)8; + ;@,ZnH(ux, Xi, Xj). (6.25)
As
5°H (k) k-2
Sz (X X2) = Z k(k—l)fW (x1, %2, )2 (dy), (6.26)
=2

and that forall k € {2 ., N}, vxlw(k) and V2 W(k) are bounded, the functions (u, x1, x2) — Vy, g;‘g (1, X1, x2) and

(W, x1, X2) — 1 X sz (p, X1, X2) are bounded. These properties imply that Assumptions 1 and 2 of [35, Theorem
1] are true. On the other hand, Assumption 5 exactly corresponds to Assumption (iii) of Proposition 4.2. It thus
remains to establish Assumption 3 concerning uniform logarithmic Sobolev inequality for ®(u) and Assumption 4
concerning uniform Poincaré inequality for the i-th conditional marginal of the invariant distribution of the particle
system given by p, (dx) = 7-e "M dx.

Step 2: Uniform log-Sobolev inequality. For this step, one uses [27, 28] which gives some sufficient conditions on a
potential U to ensure a py-log-Sobolev inequality for ay (dx) :=

e_ZLL(X) dx. More precisely, such a result holds if U is
%? with lower bounded Hessian and satisfies the following Lyapunov condition: there are two positive constants C}J
and ¢ such that

VxeRY, x-VUW) =cV|xf?-cY. (6.27)
Thus, in our setting, the uniform log-Sobolev inequality will hold if these assumptions are true uniformly in p for
X— 5 (p, x). Let us check these conditions: since for all k€ {2,...,N}, x— V le”‘) (x) and v2w® are bounded, for
all p e ?}’Z(Rd) and x e RY,

SH N _
X V(0 zcalxP-c+ Y kfx~Vx1W(k)(x,y)p®k Ydy) (6.28)
om k=2
N k
> crlacl? = e = (3 klIV WO oo xI
k=2
and
—(p., )=VV+ Z kf WO lay) (6.29)

is bounded from below. As | x| < €] x|? + C, for any € > 0, there are two positive constants cf and c; such that

8H
V(x, ) € RY x 2, RY), XV (1, 0) 2 clxl? - cy. (6.30)
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From what precedes, one can conclude ®(u) satisfies a p logarithmic Sobolev inequality with constant p
independent of p.

Step 3: Uniform Poincaré inequality for pﬁf". First,
pf,ll_i(.b(_i) B e—”H(Px)
dx;  [eHdy;

(6.31)

which involves that its log-density satisfies
~ViInpd) 7 (1T = D H(g, 1) (6.32)
Second, let us denote pi{i (-) the probability measure defined by

Hf—i(') D) e~ om (i) 6.33)
dx; = dx; fe—g%(ux—i’xi)dxi' ’
Its log-density satisfies
—Vilnp, (x)) = DmH(uy-i, X)), (6.34)
We have (definition of the flat derivative)
1 82H
DmH (1, X) = DmH(po, X) =f0 fuw wa(tm + (1= Do, x, y) (W1 — o) (dy)dt. (6.35)
By boundedness property of (i, x, y) — ng% (4, x,y), we have
82H
|DmH (11, %) = D H(po, X)| < ||va”oo”Hl - Holltv. (6.36)
Then, for some constant M, H verifies
M
(D mH(ux, Xi) = Dy H(pyg-i, x;)| < Py (6.37)

then the derivatives can at most differ by l\_r/z[ This means that, for n large, the conditional measure pi,'_i (]x71) is
a weak log-Lipschitz perturbation of the measure pfﬁi. Furthermore, u® ; satisfies a p-log-Sobolev, a fortiori, it

satisfies a p-Poincaré inequality. By Aida and Shigekawa perturbation theorem [36, Theorem 2.7], the uniform
Poincaré inequality for p;l_’ follows.

Conclusion. By [35, Theorem 1], we have the desired uniform log-Sobolev inequality for 1. O

Lemma6.1. Letpe P[RY). Let f:R — R bea6" function with bounded derivative. Let ¢ be a unique solution the
Poisson equation [ —(® (W), f) = L, where £, is defined by (6.18). Then,

IV@lloo =< [fIA™
where [f1, denotes the Lipschitz constant of f and \™! is defined by (4.6).

Proof. Itis well-known that ¢ (x) = 0+°° Pf f(x)—(®(W), frdt where (P;l) =0 denotes the semi-group associated with
%, so that under adequate derivation conditions (which will be satisfied in our setting),

+00
Vo(x) = f VP f(odt.
0
Now,
VP! (%) = E[V F (X578, X5

where (th’x) denotes the solution starting from x of the SDE associated with £}, and (0 xth) its first variation process
solution to

SF
dy,=-Vv? (%(H,X;‘”‘) +VEXEY | Y, dt
with Yy = I;. Under the assumption (4.6), one easily deduces from a Gronwall argument that for any z € R,
Y 2l? < e 22|22
which implies that

IVPY £ < [F1110:XE  llop = [fl1e72
The result follows. O
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Remark 6.1. In the proof of the Lemma 6.1, we can replace A by

xlelgd (AVZV(X) " ueg’l(fw)ﬁvz & (Hvx)) (= A). (6.38)

Proof of Proposition 4.4. As G, VG and VG are bounded, given that the interaction potentials are combinations of
tensor products of G, it is easy to check (H1), (H3), VEP1, for all i = 1,2, y; < +o00 and 2, (R%) c 2 (R?) = 2(RY). As
for (H4) and (H5), they are significantly more difficult to establish. Let’s go prove them.

For (H4), we will proceed as in the proof of Proposition 4.2: we will establish assumptions of [35, Theorem 1].
Step 1: Regularity properties. For any p € 22(R%), consider the standard Langevin process (X‘;) =0 of Hamiltonian

A, ) =V+Q(f GAWG, ie. :
H
ax" = v2ds" —V%(M,X‘;)dt. (6.39)

SH
This Langevin process admits for invariant distribution ®(p)(dx) = ie‘ﬁ(””” dx. The functional H admits first

and second-order flat derivatives that are jointly continuous and are 62 in the spatial variables. H,, the Hamiltonian
of the particle system and its derivatives are related to the macroscopic Hamiltonian H and its derivatives by

H, (%) = nH(ux) (6.40)
1 n
= nH(— Z 6xp)
p=1
n 1 n
=Y Vix,)+ nQ(— Y Gl
p=1 np=1
vxiHn(X) = @mH(Hx» xi); (641)
1
Vi Hn ) = V2, Hpx, X008 + — 25, H(fx, X, ;). (6.42)
As )
52H
o3, =Q'( [ GGG, (6.43)

and G, VG and V2G are bounded, the functions (W, x1,%2) — Vg, % (1, X1, x2) and (W, x1, X2) — quxz %(p, X1, X2)

are bounded. Then, to apply [35, Theorem 1], the boundedness assumption on second order flat derivative
and the convexity in flat interpolation sense assumption (Q” = 0) on &y hold true. It remains to establish the
assumption 3 concerning uniform logarithmic Sobolev inequality for ®(p) and the assumption 4 concerning
uniform Poincaré i{lequality for the i-th conditional marginal of the invariant distribution of the particle system

given by p,(dx) = Z—ne’H"(X) ax.

Step 2: Uniform log-Sobolev inequality. For this step, one uses [27, 28] which gives some sufficient conditions on a
e~ UW)

Zy
%2 with lower bounded Hessian and satisfies the following Lyapunov condition: there are two positive constants C}J
and ¢y such that

potential U to ensure a py-log-Sobolev inequality for ay (dx) := dx. More precisely, such a result holds if U is

VxeR?, x-VU@) =[x -cy. (6.44)
Thus, in our setting, the uniform log-Sobolev inequality will hold if these assumptions are true uniformly in p for
X — 2_111{1(”’ x). Let us check these conditions: since y; < +oo (lysl <y1), forallpe 9’2([}1{‘1) and x € [Rid, we have

VZS—H(p, )= V3V +y3V3G (6.45)
om
> V2V -y, V2G;
8H )
x~V%(p,x) =z lx|” -2 +y3x-VG(x) (6.46)

2
= c1]x|” = c2 = Y11IVGllool x].
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As | x| < g|x|? + C¢ for any € > 0, there are two positive constants cl* and cz* such that

8H
V(x,p) R x 2,(RY), x- Vs, () = et lxl? - cy. (6.47)

From what precedes, one can conclude ®(u) satisfies a p logarithmic Sobolev inequality with constant p
independent of p.

il-i

Step 3: Uniform Poincaré inequality for 1, . First,

=1 =i —nH ()
Mo (D _ e (6.48)
dx; Je i dy;
which involves that its log-density satisfies
—V;Inpl 7 (1) = 25 Hug, X0). (6.49)
Second, let us denote pf_i (-) the probability measure defined by
H?:—i(') O(pyi) e_g%(”x*i'xi) 6.50)
dx; . dx; a fe—g%(ux-i,xi)dxi' ’
Its log-density satisfies
~Vilnpd, (X)) = D Hiei, X)) (6.51)
We have (definition of the flat derivative)
1 82H
DmH (1, X) = DmH(po, X) =f0 fw wa(tm + (1= po, %, y) (11 — po)(dy)dr. (6.52)
By boundedness property of (4, x, y) — Vx% (4, x, ), we have
8°H
|DmH (11, %) = DmH(po, X)| < IIVxWIIOOIIM — Hollv. (6.53)
Then, for some constant M, H verifies
M
(D mH (Ux, Xi) = DmH (g1, X1)| < Py (6.54)

then the derivatives can at most differ by 1\_: This means that, for n large, the conditional measure uﬂ_i (Ix7) is

a weak log-Lipschitz perturbation of the measure pf:ﬂ.. Furthermore, pfﬁi satisfies a p-log-Soboley, a fortiori, it
satisfies a p-Poincaré inequality. By Aida and Shigekawa perturbation theorem [36, Theorem 2.7], the uniform

Poincaré inequality for pg_i follows.
Conclusion. By [35, Theorem 1], we have the desired uniform log-Sobolev inequality for .

For (H5), we follow the same strategy as in the proof of Proposition 4.1 (see (6.17)): for vo,v; € 2%, (R%) and a
1-Lipschitz function f: RY — R, we write v; = (1 — £)vg + tv;. First,

1

<(D(V[)yf> = Z_V[

fRd f(x)e—V(x)—Qf(fG(y)v[(dy))G(x) dx and %(@(V[),f) =Covow,) (f, &) (6.55)
with
810 =-0,(Q( [ GuIvitan)6eo) = -GLog” (f G(y)vt(dy))fG(y)(vl —vo)(dy).

Following carefully the proof of Proposition 4.1, we get

1
|Covoy,) (f, g0l =< IVOelliz@w ) IVEeliz@m,y = A_* IVgilliz@ow,) (6.56)
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with A* =inf,  pa (szv(x) +Y3 AVQG(]C)) > 0 under the assumptions of Proposition 4.4. Now, since

| f GIvildy) f G()(v1 — Vo) (d))VG,

since Y, < +oo and VG is bounded, by the Kantorovitch-Rubinstein duality relation, we have

19802 v < 1V81loo = [ f Gvitay)|-| f G (v1 —vo) @Y |IIVGlleo < Y2IIVGIZ#4 (vo, V1)

and by (6.56), we get for any smooth 1-Lipschitz function

Y2IIVGIIZ

1 d
|(‘D(V1),f>—<q9(\/o),f>|5f0 2@, plars TR o, v,

As X—i [IVG] |<2>o < 1, by a density argument and the Kantorovitch-Rubinstein duality relation, it follows that ® is a

contraction on (2%, (RY), ).

O
A Appendix and additional proofs
A.1 Propagation of chaos
Theorem A.1 (Moment control). Let m € R>1, || - |2 be the standard Euclidean norm on R% and the continuous
function
O;: R—[0,4+00[ (A.1)
_e20 .
o 55— it 020;
2t if 6=0.
Suppose that there exist pairs of constants (8,9), (82,92),,..., On,9n) such that for all (i, x) € PRY) xRY,
x-VV(x) = 0]|x||* +9; (A.2)
Vkel2,.. N}, x-VWHE w1y > 0 1x]? + 0. (A.3)
Letw:=0+ YN _, kO and 9:= 9+ XN_, k9. We have
e 2m+d-2-9+ |2m+d—2—5l _
Vo€ Pom®) vezo, ||| <[ e 0.@). (Ad)
L™ (pe) L™ (o) 2
In particular, ifo >0 orw=0and2m+d—-2— 9 <0, we have uniformity in time:
2m+d—2—5+|3m+d—2—§| if ©>0:
supl[ii-1[| . <|j-ugl| o+ % Loz - (*.5)
=0 L™ () L™(w) |0 if =0 and 2m+d-2-9<0.
Proof of Theorem A.1. By the transfer formula, for any function y € L! (1) or of constant sign, we have
Elw(Xy)] =fRd WX (dx). (A.6)
For all m = 1, by Itd’s formula, we have
d
—E[IX|7™] = ELLy, I - 113" X)) (A7)

dat
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On the other hand, we have

VI 15" (x) = 2ml| x| 2"V x;
Al 1™ (x) = V- V|- 15" (x)
d
=2m .y (IxIP™ Y x;)
j=1
d 2 1 2 2 2
=2m Y (2™ 4 20m = 11622 12
J=1
=2md||x|*™ Y + 4m(m - Dl1xl 12" x|

=2m@2m+d-2)||x|?"V.

We deduce that

8F
Lull- 15" ) = 2m@m + d = 2) 1P~ 2ml PV (Ve () + 9V
N
=2mllx|P D (2m+ d =2 -x- V(0 = 3 k- Vi W 5 =k ).
k=2
By setting S, (£) := E[|[X,]|*""], we have
N N
s (1) 52m(2m+d—2—8— Y kf)k)Sm_l(t) —2m(e+ Y kﬁk)Sm(t).
k=2 k=2

As for a finite measure 1, we have

1

1 1_
vpsa Ve, vl =( [wran)” < ( [1an)" i,

we have .
Sm-1(8) =Sp(t) m .

Case 1: Using L” injection. If2m+d-2-9- YN, k9 > 0, we have

N B N
S (1) = 2m(2m+d—2—€)— y k{)k)sm(r)'”Tl —2m(e+ Y kek)sm(r).
k=2 k=2

We deduce that

1Y/ N N 1
m(sm(t)ﬁ) 52m(2m+d—2—f)— Y kﬂk) —2m(e+ y kek)sm(t)ﬁ.
k=2 k=2
By setting z,,, () := Sm(t)#, we have
N N
2 ()= 2(2m+d—2—a— Y kﬁk) —z(e+ Y kek)zm(t).
k=2 k=2

And by Gronwall’s lemma, if 6 + ZE:Z kO # 0, we have

zm () —

0+Xh_, kO 0+xh_, ko

fOo+ ZE:Z kOy = 0, by integration, we deduce that

N
Zm (D) szm(0)+2(2m+d—2—f)— Y ksk)t
k=2

38

2m+d-2-9-%) , kO _ (Z 2m+d-2-9-YN, ko )e—zt(9+21,j2 kek)
—_— m -

(A.8)
(A.9)

(A.10)

(A.11)

(A.12)

(A.13)

(A.14)

(A.15)

(A.16)
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In conclusion of this disjunction of cases, whether 6 + ZE:Z kO = 0 is zero or not, we have

—2t(e+zllj=2 kek)

N N
Zm(0) < zm(0)e + (2m+d—z—a— Y kf)k)®t(6+ Y kek); (A.19)
k=2 k=2

BO;: R—[0,+o0[

o |5 it 620
2t if 6=0.

Case 2: Directincrease. If2Zm+d-2-9— lefzz k9k <0, we have

N
S (1) = —2m(e+ Y kek)Sm(t). (A.20)
k=2
And by Gronwall’s lemma, we have

7zrm(e+zl,j_2 kek)

Sm()<S,(0)e - . (A.21)
In conclusion, in all these cases, if py € %% m([Rd), we have
VT=0, sup E[1IX11?™] < M(m, Ho, T). (A.22)
0=r=<T

As for uniformity in time, it is ensured if one of the following conditions is verified
> 0+XN, kB >0;
> 0+XN , kB =0and2m+d—-2-9-X}_, k9 <0.

O

Remark A.1. Suppose that there exist pairs of constants (6, 9), (02,9,),,..., (O, Yn) such that for all (u, x) € P(RY) x
R4,

x-VV(x) = 0]|x]|? +9; (A.23)

Vkel2,.. N}, x-VWHE 1) > 01x]? + 0% (A.24)

If we add VV(0) =0 and V le(k) (0,-) = 0 to the reduced Hessian conditions, we obtain the following hypotheses
above. Indeed, if there exists p € R such that V2V = —l; and for all k € {2,...,N}, there exists B € R such that
vZ W® > —B,1,, we have in particular

(VV(x) - VWV (), x—y) = —Bllx—ylI% (A.25)

(Vi WO (x,) =V WO (3,4, x = y) = —Billx — yII%. (A.26)
In this case, 0 = —f,9=0, forall ke {2,...,N}, 0 = —fx and Y = 0.

Proof of Theorem 5.1. To show the result and for greater clarity of proof, we proceed in five steps described below.

Step 1: Itd’s formula and drift division. By setting G = m, we have
N k . .
dxX""? = v2dB!"" -y —— y (VG(X‘[”"’) +V,, WO P ,x(t’“’“,...,x(t”““))d t (A.27)
k=2 (k—l) 1sij<ip<..<ij_1=n
Vi, ij#p
Nk . .
=v2dB/"" -y —— y f (VGXP) 4V WO X0 x| ape®=Dar,
k=2 (k—l) 1si|<ip<..<ij_1=n
Vi, ij#p
(2] (n) X (» k) ~(P) k-1
ax\” = v2as"? -y kf(Rd)k (Ve + v, WwhP, p)pg* D dy)de (A.28)
k=2 -
mp sk » 5 (D) k-1
=v2dB"? -y f (Ve + v WP P,y etV @yt
k=2 (k—l) 1=ii<ip<..<if_y=n RO
Vi, ij#p
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So

(n),p (p) _~(m,p (p)
Xt —Xt =X; -X;

f (VG(Xg’”) —vGx™P) (A.29)
T k= 2( )l<l1<lz< <ig_1=n (R4)k-1
Vi, ij#p

+V , WRXP ) —v, wP PP ximi .,xg”)'ikfl))nm;:’“‘“ (dy)ds.
By Itd’s formula, we have

n n
Y X -x P2 = 3 X X P2 (A.30)
p=1 p=1
- Ly (n) (p) k) ~(P)
-2 | X am > f <VG(Xs Py -vGXS) -V, WH XS, y)
p=19T k= Z(k_l) 1<ij<ip<..<ip_1=n (RA)k-1
Vi, ij#p

+vxlw(k)(Xgn)ypyxgn),ilyu.,Xén),ik—l)yxgn)vp_Xgp)>u:)§s(kf1)(dy)ds'
By setting p; = Px, and V,, W® 5 2%V .= v, w®(, )u®-1(dy), we have
() P2 _ X~ e ()2
XK= = Y =X (A31)

p=1 p=1

n t
-2 <VV(X§"MJ) —vvxPy, x"r —Xg’”)>ds
p=1Jr

n t N k , .
23 [ Yo X (T wRe ey
p=1JT [=2 (k 1) 1<ij<ip<..<ip_1=n
vij, ij#p

— Vxlw(k) % H?(k_l) (Xgp)),xgn)rp _Xgp) >d$

Let
Pt 5= (VWP X0 Xty v WD (P X (P - x ) (A.32)
2) 3) .
=04 ies (8)+ Piric s (s);
PP (9= <vxlw(’€) X ximn | ximieny g W P x| x ) e —X§”)>; (A.33)
pE’??...,ik—l (8):= <VJC1WU€) (X(sp)’Xgll)’ oo rXE‘lk_l)) - vx1W(k) * p?(k_l) (X‘(Vp))’X‘(Vn)yp _X(sp)>' (A.34)

Step 2: Control of the confinement term. As the Hessian matrix of the confinement potential is bounded from
below, we have

f VV(X(n)p) TP, x"WP _ X(p) S<ﬁf ZHX(")’” XP|2ds. (A.35)

Step 3: Control of the interaction term in p®). As the Hessian matrices of the interaction potentials in the first
coordinate are uniformly bounded from below, we have

Vkei2,...N}, —p@  (5)=BelX/P —xP)2, (A.36)

ll,.,.,ik_]
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Step 4: Control of the interaction term in p®). By Cauchy-Schwarz inequality, we have

£ X e s Vi GEIXTP —X P2 (A37)
1<ii<iz<..<ip_1=n
Vi, ij#p
) . 2
Civoip ()= Y U WRXP x| XUy g Wik etk=D x P ||
1<ij<ip<..<ip_1=n
Vi, ij#p
(A.38)
= Y BIE” o @IP+2Y E€ . (9,E” o)
~~~~~ ik-1 yeenrl=1 ) 7 J e Ji-1 !
1<ij<iz<.. <lk 1=n
vj, ij#p
& 9= VWP X®, ) -y, W ok ), (A.39)
As the xg” ) are independent copies of X; with distribution i, we have
(p) » _
[E(E,,1 ,,,,, i (), Ejlv---’jk—l (s)) =0. (A.40)
Moreover, as the McKean-Vlasov flow admits bounded moments (see Theorem A.1), we have

EIEY ;@I <EIV, WO XP X, X)) 2 (A41)

< QEIXP ™ +EIXV (2™ + .+ EIX TV 2m)

= kQE[|1X;[*™)

< kQMy, (T). (A.42)

It follows that

® n m,p _(p)
—E > (N ikl(S)S\j(k 1)le\/Izm(T)\/fEIIX -X5 2. (A.43)

1Sii<ip<..<ip1=n
Vi, ij#p

Step 5: Gronwall’s lemma. Forall g € {1,...,n}, let y4(¢) = E IX(tn)’q - X[tq) 2. By taking the expectation in equation
A.31, by the previous controls and the exchangeability of the marginals of the particle system, we obtain

N ks r
nYq(0) < nyg(r) +2n(B+ Y kBi f Yq($)ds+2ny/ My, (D) Z - )f Yq(s)ds. (A.44)
k=2 r

=2,/(:2)
As
n-1\_k(n| (A.45)
k-1) nl\k/ ‘
mk [n e[k
%) S(k)“ %) (840)
we have
N k2 N N N
> <) kz|=| =) —=(N-1 (A.47)
k=2 \/("71) k=2 (”) o' vn
k-1
By setting x = (N — 1)/ QMa,,, (T)NN+2 we have
Yq(1) <Yq(r)+2 B+ Z kB f Yq(s)ds+2—f Yq(8)ds. (A.48)
Or equivalently

Yq(8) = Yq(r) [fyqds  « [I\/Yq©)ds
u ( Z kﬁ ) 9 +2— q .

t—r v t—r (A.49)
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And by passing to the limit, we obtain

N
Yo =2(p+) kﬁk)yq(t)+2%\/yq(t). (A.50)
k=2

Ifw:=p+X}, kP =0, we have (y4(0) = 0)

/ Y’q(t) K K
=—< — < —1". A.51
(Vya0) =3 o and ARk (A.51)

By setting y; = /Y4, if w # 0, we have

(yq(t)+ ),:y;(t)s(ﬁ+ikﬁk)yq(t)+i:(ﬁ+§:kﬁk)(yq(t)+ ) (A.52)
(B+xN_, kBi)v = vn s B+ kpi)va
And by Gronwall’s lemma, we deduce that (y,(0) = 0)
Vg () + = (J’q 0) + K et(ﬁil::2 kﬁ") ; (A.53)
(B+Z, kk)vm B+, kBi)vr
K IIp+r_
< (B Ti-e kﬁk) _
NAZIOE (ﬁ+ZI§=2 kﬁk)\/ﬁ(e 1).
O

Proposition A.1 (Corollary of the theorem 5.1). The result of the theorem 5.1 ensure with explicit rates,

(i) the weak convergence of the law p(tn)’p of a particle towards |1, in fact, X(tn)’p has the law p(t")’p by definition

and X[t’[J ! has the law W; by construction, therefore forallt <T andalln =1,

M
W2 WP ) < — (A.54)

with M not depending on the number of particles. The uniformity in time of M is verified if w < 0 in theorem
5.1;

(ii) the propagation of chaos for the particle system: q being a fixed integer- or more generally a o(n)- and for the
Wasserstein distance defined on (R%)4, foriiy,...,ig} a partof{1,..., n}, we have
< qM .

< (A.55)
..... n

(iii) the convergence of the empirical measurement of the particle system towards the McKean-Vlasov particle
law: for any Lipschitzian function ¢ : R? — R, we have

M, My,
EKTY, @) — (pp, @) 2 < ——222 (A.56)
Proof of Proposition A.1. By definition of the Wasserstein metric and empirical measurement, we have
® M
#0" w) <EIXP =X < — (A57)
(ii)
j (n),i - g), |2 : M
WE(P i om0 7) < || 0K, X X, X[ < X X < 92 _ Mo(1);
;" X, 9 n
(A.58)
(iii)
2M+M
EKTTY™, @) — g, )2 < ———2" 12, (A.59)
O
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A.2 McKean-Vlasov theory

Theorem A.2 (Existence and uniqueness of solutions of Eq. (1.13)). Let us assume that the functions b and o are
globally Lipschitz: 3K > 0 Y (x, y, 1, v) € RP x RP x 22, (RP) x 22, (RP),

1B, ) = by, W1+ o ) = o, VIl < K12 - y1+ #a (1, v), (A.60)

where|| - || denotes a vector norm, ||| - ||| is a matrix norm and %, denotes the Wasserstein-2 distance. Assume that
o € 2(RP). Then for any T = 0 the SDE Eq. (1.13) has a unique strong solution on [0,T] and consequently, its law is
the unique weak solution to the Fokker-Planck equation Eq. (1.12) and the unique solution to the associated nonlinear
martingale problem.

The proof of this theorem is fairly classical. This proofis based on a fixed point argument that is sketched in [7,
Proposition.1].

Theorem A.3 (Polynomial Potential). LetE be a Polish measurable space. Let a € 2 (E). Let us consider a random
vector X" inE", distributed according to the Gibbs measure:

1
Wn(dx):= Z—e"F(“")aw(dx), (A.61)
n

whereZ,, is a normalization constant andF is a polynomial function on 2 (E) (called the energy functional) of the
form given by Eq. (1.17). Then (for some symmetric continuous bounded functions W) the laws of px» satisfy a large
deviation principle in 22(2?(E)) with speed % and rate function

pﬁH[ula]—F(p)—nelgi(?E){H[nla]—F(n)}. (A.62)

A.3 Gibbs-Laplace Variational Principle

Definition A.1 (Distribution support). Let p be a probability measure on a Polish space E (or even a measure on a
topological space!). We call support of p noted supp(p) the closed set defined by

C
F= U o, (A.63)
FcE closed, u(F)=1 OcE open, p(0)=0

In other words, the support of a distribution is the complement of the largest open set over which it is zero: the
smallest closed set of maximum mass!

Definition A.2 (Extremum essential). Let p be a probability measure on a Polish space E and V: E — [—o0, +o0]
measurable. We call infimum p—essential of V the quantity

p—essinfV:=inflveR, p{Vvs=rov}) >0} (A.64)
Theorem A.4 (Variational principle). For any probability measure |\ on a topological space Q and any measurable
functionV: Q — R, we have
1
lim — logf e "™Vdu = —u—essinfV. (A.65)

n—+oo p

Moreover; ifV is upper semicontinuous, then

inf V=p—essinfV. (A.66)
supp(p)

Proof Sketch: Suppose [ — essinfV is finite. Check that we can assume without loss of generality that V = 0 and
u—essinfV = 0. Then check ly<ce™" < e~V < 1 and conclude. Show that the limit is +co with the lower bound
when p — essinfV = —co.

Proof. > p—essinfV is finished:
1 1 .
— logf e "™Vdu+ u—essinfV = — log (f e_”(v_”_essmmdp). (A.67)
n n
This implies that we can assume without loss of generality that V = 0 and p — essinfV = 0 because V— 1 —

essinfV = 0 almost surely, its essential infimum under p is zero and the convergence that interests us is
equivalent to

1 . -
Elog(fe—n(v—p—essmfwdu) n—+'000 (A.68)
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But for all € > 0 = p — essinfV,

1 < 1
lyeee B <e W<l logntv=e) _ £e<— logf e™Vdu<o. (A.69)
n n
We deduce that by the bounding limit theorem, we have
1 1
limsup — logf e ™Vdp =liminf — log[ e™Vdu=0. (A.70)
n n n n
> W —essinfV = —oo: In this case, for all v € R, we have p(V < v) >0 and
f e ™Vdu zf e WVdpz=e " u(v < vh. (A.71)
Q {V=u}
It is deduced that
1 1 <
VveR, —logf e‘”"alpz—u++M (A.72)
n Q n

1
= lim —logf e ™Vdp = +0o0 = —p1 —essinfV.

n—+oo n
O

Theorem A.5 (Gibbs measures and deviations). LetE be a Polish space, i a probability measure on E andV :E — R
a measurable function. We have:

>
inf V< p—essinfV. (A.73)
supp(p)
> IfV is upper semicontinuous, then
inf V=p—essinfVv—= inf V=p-—essinfV. (A.74)
supp (W) supp (1)

In particular, if V is continuous, then the principle of large deviations holds for

Hp(dx) = e ™V u(dx) (A.75)

f e~V i
with rate function IV:=V+1y —inf{V + o} with

Io(x) := {O if x € supp (), (A.76)
+oo0 else.
Proof sketch:
> Show that
{x, V(x) < inf v} (supp() = 2. (A.77)
supp(u)
Then conclude.
> For all € > 0, show that
{x, V(x)< inf V+ 8} is an open containing a support element: (A.78)

supp (1)
their intersection is non-empty; then conclude.

A.4 Principle of contraction and tensorization

Let f : X — G be continuous between two Polish spaces and (Xy) a random variable sequence of X satisfying the
principle of large deviations of rate function I: X — [0, +o0]. Then ((f (Xn)) satisfies the principle of large deviations
of rate function J : G — [0, +o0o] such that

J(g):= inf L (A.79)

fldgh

Let Xy)n=1 and (Y,) »=1 be sequences with values respectively in E; and E», independent (Px,, v,) = Px, ® Py,) and
both satisfying the principle of large deviations of the respective good rate functions I and I. Then (X, Y;)) n=1
satisfies the principle of large deviations on the product space and of good rate function I defined by

I(x, y) =L (x) +Ix()). (A.80)
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A.5 Entropy and Chaos

Theorem A.6 (Characterization of relative entropy: Sanov’s theorem). Let | and v be probability measures (even
finite!) on a Polish spaceE and (¢ ;) jen a dense sequence of functions bounded uniformly continuous. we have

1 1Z
lim lim lim —logpm({yeE”; vjie{l,..., kb ‘f @idv—=> @y se}) =-Hv|u]. (A.81)
n E iz

k—ooe—0n—oo

We interpret n as the number of particles; the ¢ ; a sequence of observables whose mean value is measured; and € as
the precision of the measurements. This formula concisely summarizes the essential information contained in the
Boltzmann function H.

Theorem A.7 ((strict) convexity of relative entropy). Let p € 2(Q). H[-|u] has values inR., convex, strictly convex on
{v, HI[V|p] < +oo} and is zero only in 1.

Theorem A.8 (Tensorization property). Letpe 22(Q), ve 2(Q") with v; its i—th marginal. So
n n
H[v|p®”]:H[V|®vi]+ZH[v,~|p] (A.82)
i=1 i=1

Theorem A.9 (Villani). Let (X:= (Xy,...,X,) be a random variable on E" with E a Polish space, |\, := Px € Z(E"),
Ox = %Z dx,; and p € 2 (E). The following assertions are equivalent:

> Ox converges in law to pu:

V¢ € 6 (E), f pdodx nzEe f @dp  almost surely. (A.83)
>
Vo€ Lip,®), lim E, H f @d(5x — p)” - 0. (A.84)

Without repeating the proof, we can say that this result is obtained by defining a metric on £2(E) from a dense
sequence of Lipschitz functions and then by defining the transport distance Wasserstein’s #; on (2 (E)) associated
with this metric. Using this result, we can more formally prove the propagation of chaos.

Definition A.3 (U-statistics). Let Ebe aset, ke N* and ®:E¥ — R a symmetric function. Then the application:
(n=k)
k'(n-k)!

R €E"'—UX):=
n!

Y D(xiy, ..., Xi,) (A.85)

1<ij<ip<..<ip<n

X:i=(xj)j=1

.....

is called U —statistic of order k and kernel ®. U(X) is called U —statistic of order k and kernel ® associated with the
sample X. This statistic corresponds to the arithmetic mean of the kernel over all the parts at k elements of the set
of sample values. we often write U, (®)(X) := UX). If E is a measurable space, we generalize this definition to the
space of probabilities by the functional p— E @k [®@].

A.6 Proofs

Proof of Proposition 5.1. Let &, be the group of permutations of {1,..., n} and *B,, the c—algebra defined by

B, = O{Bn x CplC, € BEMHA®h B, e BE™, V1e®,, Tl = an}. (A.86)
This o—algebra is invariant under permutations and verifies for all n > 1,
B i1 < B, (A.87)
By integrability,
V(ll)ylk)elﬁ) [E[q)(xll))xlk”%n] :[E[q)(XI))Xk)l%n]) (A88)
which implies that
Up (@) =E[®Xy, ..., Xp) DB ,]. (A.89)

According to the limit theorems on martingales (closed martingale) and the law of 0 — 1 applied to the asymptotic

tribe B := N B, we deduce that we almost surely have
n=1
n—+oo

Un(®) " — E[PXy,..., X)) Boo] =E[®X, ..., Xp)]. (A.90)
O
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Proof of Proposition 5.3. We prove this result by induction. Indeed, for k = 1 the inequality is verified since we have
equality of the two members. Suppose that for k — 1 the inequality holds. Denote by By the left side of this inequality.
We have

B xk 1 1 el )|k
By = logE [[E[exp(ll,ﬂl Y kliwzi }mq’n ,,,,, ,k(xil,...,xik))’x]] (A.91)
n (i1,eerig—1) €L LB ULy k-1

with XF:= (X¥,...,XK). Let us set
- 1

Dipiy =Y Dy X XE, (A.92)
1 k-1 n— k+ 1 ikQ{jl yyyy ikil} 1 k 11 123
By induction hypothesis, we deduce that
k n—-k+2 1 ~
By <logEX —_— logE ——®; i | XEL ) A.93
o (o225 5 lenl e il o
----- -1 n
Since 4o )
xk n-k+e e Ikt
logE [eXp( Tl “ iZ)EIkllog[E[exp(n_kJrz(D,] ,,,,, ,H) X ])] (A.94)
yeerlf—1 n
is upper bounded by
& 1 . n—k+2
logEX log(E ——® i | XE , A.95
% [exp(lllfl_” (i1 iz)qk—l Og( [eXp(n—k+2 o ”‘*1) ) ) (A.95)
~~~~~ k-1 n
by convexity of X — logE[e¥] (consequence of Holder’s inequality), we have
1 xk 1 . K n—k+2
= Y logE |(E] exp (—— ®itivcs | [X*]) (A.96)
(i1yeerif—1) €Ly
In this last inequality, for all (iy, ..., ix_1), the logarithmic term verifies
xk 1 _— k n—k+2
E [([E[exp(—n_k+2q>,l,_,,,,k_1) X)) (A.97)
& 1 n—k+2
=X |(E| exp DI T IS () ' )
[( [ ((n—k+2)(n—k+1) i i) n lk)‘ )
and by Holder’s inequality, we have
xk ;7 . k n—k+2
E [([E[exp(n_k+2<D,1,_",lk71) X)) (A.98)
k 1 =
<EX Elexp(———®;, ;XL ,... . x5)||xF :
[(ikg{ill,-_-[-yl'k—l} [ Xp(n—k+2 i Ky ’k))| ]) ]
By Jensen’s inequality, we also have the upper bound of the right-hand side of this last inequality by
k 1
EX [T FElexp———@, ;XK. X5 |XF||,
[T e (g @ X))
and by independence, this quantity is equal to
1
[T FElexp(———®s,.;,XL,....X5)]]. (A.99)
i €lit,.ir—1} [ (n_k+1 vk * )]
O

.....

.....

ApA,WR) = %log[E[exp(% Yy wh (Xil,...,Xik))], (A.100)

nl jerk
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and it follows that
1
An()\,W(k])s;log[E[exp(l |Z)\nC AW, xE)) | (A.101)
zeIk
Zlog[E[exp()\—IW”‘)I(X1 ,Xf ))]
|Ik g ietk k £
Gold
AnC n—-k+1 AnC
logE —W(k) X},...XE)|| = ———IlogE Sl SRCIT SN e | VW17
nlln ,EZI;C og [exp( IWHI( ,k))] ——log [exp(n_k+1| I(X;, ,k))] ( )
It is deduced that

—k+1 AnCy
An()\,W(k))s%log[E[ex (—|W““)|(Xll, Xiy))] (A.103)

K+ 1
< %bgrﬁ[exp (kckmw(’”uxl,...,xk))],

and this last inequality is obtained by growth on (0, +o0) of a — %log[E[e“X] and from the fact that for all » and k
such that n = k, we have k+1 <k. O

Proof of Proposition 5.5. To do this, we will show that for any probability measure p such that H[p|a] < +oo and for
any k, W® e L1 (u®k), we have [* (@) = —Ew|[ul. Let B(y,8) be the open ball with center p and of radius § > 0 in
A (R endowed with the Lévy-Prokhorov metric drp such that B(u,d) c @. Let us introduce the events

>
An::{xe(Rd)” L= Ln(x,-)e[B(p,é)}; (A.104)
g dp dp
dyn " )
By i={xe ®%)" Zlogd—(xl)——log(d ) (x) < Hipla +e}; (A.105)
>
N N
Cn::{xe(Rd)" Y u,w®) < ZW(k)[p]-H:}. (A.106)
k=2 k=2
We deduce that for all € > 0, we have
d ®n -1 n d
(L € By, B)) = f (E) u®man = f e it 1o8 i (g~ E, Un WD @ g (A.107)
An dl’ln AVL

and

N
f ~X log 5 () g=n ZN, Un W) @1 gy > 1 ®N(A, (B, 1 e "HIHMO-Y  with y = (Y WP ] +6),

k=2
(A.108)
Thereby
Wi (L, € B(,8) = p®"(A, NB, NC,)e "Ewlkl-2ne, (A.109)
We will prove that
u®*(A,NB,NC, "1 (A.110)
Indeed, by the law of large numbers, we have
n®%A,) =201, u®r®,) "= (A.111)
Moreover, by the law of large numbers for U—statistics (Section 5.2), we also have
®n(c )y T2 o1 (A.112)
It is deduced that )
I*(@) = liminf—u} (L, € B(W,d)) = —Ewlu] — 2, (A.113)
n—+oo n
and we conclude by letting € tend to zero. O
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Proof of Proposition 5.6. To do this, consider the truncation function

WEE = max(-L, min(w™®, 1)). (A.114)
We have by Lebesgue’s dominated convergence theorem
logElexp(mW®L —w® X .. X)) "—=20. (A.115)

So we can choose L = L(/m) so that

1

logE[exp(m|W®EM _w® |, X)) < (A.116)
m

For m =1 and L(m) > 0 fixed, we can find a sequence (Wl(k)'L) ;=1 of continuous functions bounded such that

]—+o00,L

WL, X TR WL, X, vz (wRRK,LL X < (A.117)

otherwise, we consider the truncation max(—L, min(W l(k)'L, L)). Seenthat VI =1,

exp (m(IW(k) ~WERL XX+ WE WL ,Xk))) <exp (mIW(k) “WRLIX, LX) + 2mL), (A.118)
by dominated convergence, we have

E|exp (m(Iw® - WOy, X + WO —WEH s, X )| T [exp (miw® - WOy, X0

(A.119)
For L = L(m), we can choose I = [(m) so that
2
log[E[ exp (m(IW(k) “WHRLIK LX) + (W —wgk]'H(xl,...,xk)))] <Z. (A.120)
m
By setting w,(jf’ = Wl(fcr)n)um) bounded continuous function, we have by triangular inequality
k) _ k) 2
log[E[exp(mIW —wk |(X1,...,Xk))] <=, (A.121)
m
Since by Jensen’s inequality, we have for all A > 0,
A
Vm=A, log[E[exp ()\|w(k) —W;QCH(XI,...,X,C))] < —[E[ exp (mIW(k) —W,g’;)|(x1,...,xk))], (A.122)
m
we deduce that
logE| exp (AW® - WPy, .., X)) | "0, (A.123)
For all § > 0 and A > 0, by the Markov-Tchebychev inequality, we have
P(U, W) —U, W) > 5) < e_")‘S[E[ exp (nAU, (W™ - Wb |))] : (A.124)
From the above (Section 5.2), we deduce that
1 1
~logP(U,W™) ~ U, (W) > 8) = -A5 + log[E[ exp (KCAIW® - WP Xy, .,Xk))]. (A.125)
n
We conclude that we have the expected result when m — +oo since A is arbitrary. O

Proof of Proposition 5.12. Let Qi (-1x[1,;-17) be the conditional distribution of x; knowing x(;,;-1; := (x1,--+, x;—1) (not
knowing if i = 1). We have:

N dQ N Qi (dxilxp,i-1)) N ,
H[Q| | | ai] =Eq|log| —<—|| =E log{——————]| =E HIQ' (- xq1,i-1)lot] | (A.126)
Qi:l_[1 i Q[ g(dl_lll-\lzlo‘i)] Q[l; 8( o dx) )] Q[z:Zi Q" (lx1,i-1)laxi
Since )

EQIQ' (lxq1,i-11 = Q: (), (A.127)

we obtain by convexity of the relative entropy (Jensen’s inequality):
Eq|HIQ' Clxq1,i-1)le] | = H[Qjlay] (A.128)
Which shows that we have the result of the proposition. O
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Proof of Proposition 5.13. For f a measurable function on E, we define:
Au(f) :=log(E,le’]) = log f e/ dp € (00, +00] (A.129)
the log-Laplace transformation under p which is convex in f by Holder’s inequality. We have:
Ay () = logf el duy = Ay(f —U) - Ay (-U) < %Ap(—pU) + éAp(qf) - Au(-U) (A.130)

by Holder’s inequality considering the conjugate exponent q := % of p. By the variational formula of Donsker-
Varadhan, we deduce that:

1 1
Hlvipyl = sup {ffdv—AuU(f)}z sup {ffdv——Au(qf)}+Ap(—U)——Au(—pU). (A.131)
fet,(E) fet,(E) q p
Gold:
1 1 1 1
sup {ffdv— —Ap(qf)} + Ap(=U) = =A,(=pU) = —H[v|p] + A (-U) = = Ay (—pU). (A.132)
fet,(E) q p q p

So if H[v|uy] < +o0, H[v|p] < +o0 or equivalently, log(z—ﬁ) e L} (v) and:

log(ddTVU) =log(z—:)+U+Ap(—U)€Ll(v). (A.133)

This proves the proposition. O
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