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Abstract—Research centers and companies dedicated to the
development of autonomous vehicles are opting for two trends:
using only cameras as a vision system or using LiDAR sensors
plus cameras. Tesla has a fully camera vision system and Waymo
has a cameras and LiDAR system. The difference of the LiDAR
sensor could prevent accidents and save human lives in the future.
Therefore, the main contribution of this work is the design of
a methodology based on the comparison of detection efficiency
for vision devices (Cameras and LiDAR). Applying measurement
parameters provided by Neural Networks and models evaluation
metrics in machine learning; it has to be concluded if its necessary
to use LiDAR sensors in the development of autonomous cars.

Index Terms—Autonomous Vehicles, Vision System, Neural
Networks.

I. INTRODUCTION

Currently, the development of autonomous cars is of
great interest to most automotive companies, including Tesla,
Google, VW, Toyota, Ford and many others. The Waymo
company provides a robot taxi service in the city of Phoenix
in the United States; this is a limited service for this region
and with their cars being equipped with a vision system
based on cameras, radar and LiDAR sensors. Their aim is
to autonomously keep their vehicles centered on the lane and
to reach the passenger’s destination.

Moreover, the Tesla company is also in the fight to achieve
level 5 autonomy for its cars, which include advanced hard-
ware that currently provides Autopilot functions, and full
autonomous driving functionalities in the near future through
updates. While their software is designed to improve function-
ality as time goes on, it has, however run, into many difficulties
with a considerable number of car accidents. Put on doubt its
vision system based only on cameras and radar-type sensors,
Elon Musk CEO of Tesla is against using a LiDAR sensor.

Tesla has been heavily relying on vision and going against
LiDAR sensors. Simultaneously, all the other companies use
LiDAR and seem to dismiss other options.

The most apparent reason for Tesla has taken a different
route is the cost. The cost of placing a single LiDAR device
on a car is somewhere around $10,000. Google with its Waymo
project has been able to slightly decrease the number by
introducing mass production. However, the cost is still rather
significant.
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Car accidents are the eighth leading cause of death world-
wide with 95% being caused by human error; the expectation
is that the automation of transport represents a significant
reduction in the number of occurrences and mainly of victims.

Nowadays, many current image-based object detectors using
convolutional neural networks exhibit excellent performance
on existing datasets such as KITTI [1]. This dataset will be
used to carry out the study with images and real data from
LiDAR sensors.

The main contributions of this work is the development of a
result evaluation-based methodology to compare the detection
efficiency of both devices (Cameras and LiDAR). who are
based on the measurement parameters provided by neural
networks and model evaluation metrics in machine learning.

This paper is organized as follows: Section 2 gives a
brief analysis of the most related papers. Section 3 proposes
methodology to analyze the performance of the built detectors.
Finally, the conclusions and future work in Section 4.

II. RELATED WORK

There are a variety of studies aimed at the autonomy of
automobiles and, in particular, at devices that function as a
means of vision - in this case LiDAR sensors and Cameras.
The studies related to this project are focused on examining the
detection of objects separately, that is, the results are based on
the detection of objects using only cameras. [2]–[5] or LiDAR
sensors. [6]–[9]. In this project, the two trends are covered to
carry out a methodology for comparing the results. This serves
to determine which device provides the best detection.

Manuel Herzog and Klaus Dietmayer [10], propose in
their work the detection of objects with LiDAR sensors in
driverless cars and by applying the strategy of training a
model using data from different types of LiDAR sensors. In
comparison to the author Haris, M. [11]: this work proposes
the detection of small and medium obstacles that were left
on the road intentionally or unintentionally, which can pose
a danger for both autonomous and human driving situations.
They use Random Markov Field (MRF) models by merging
three potentials (gradient potential, curvature prior potential,
and depth variance potential) to segment obstacles and non-
obstacles in the hazardous environment. Finally, they use
obstacle detection to predict the steering wheel angle of the
autonomous car using images from cameras.



Di Feng [12]: he tries to summarize systematically the
methodologies in his article and to discuss the challenges for
deep multimodal object detection and semantic segmentation
in autonomous driving. To this end, they first provided an
overview of sensors embedded in test vehicles, open datasets,
and basic information for object detection and semantic seg-
mentation in autonomous driving research.

The technological trend in using sensor fusion for the
development of autonomous cars is of great interest and study
for the coming years because it involves the integration of all
data from radars, LiDAR, cameras, gps, etc.

Guan [13]: propose in his work the fusion of sensors to
achieve better performance in the detection of objects. This
consists of a multi-adaptive and high precision completion
method which improves the adaptability to the detection
environment and performs preliminary fusion of data from two
sensors (Camera and LiDAR). The system realized fast and
accurate object detection through the real-time object detection
model called YOLOv3 and applied a proposed decision-
level fusion strategy. The methodology not only gets higher
detection precision during daytime driving but also obtains the
distance between the front vehicle and the detecting vehicle.

Wangs’ work [14] is based on the use of stereo cameras
for the detection of objects, these images have the advantage
of showing more information than the images of monocular
cameras; they use depth in image scenes to locate how far
away the detected object is as with LiDAR sensors. With these
images they are able to simulate the operation of the LiDAR
sensors. However, they also prove that the fusion of the images
from the cameras plus the point cloud of the LiDARs obtain
better detection results. The article proposes as future work to
compare the processing times of the data from both detection
devices.

III. PROPOSED METHODOLOGY

In order to solve the problem of object detection using
deep learning, the methodology shown in Fig. 1 is proposed.
A convolutional neural network called U-net is used for the
segmentation of labeled objects in the dataset KITTI for their
subsequent detection in a bounding box and is also used the
convolutional neural network called YOLOv5 recently pub-
lished to compare the detection results, which is the objective
of this work.

Fig. 1.

A. Models Deep Neural Networks U-net and YOLOv5
The U-Net was developed by Olaf Ronneberger [15] for the

segmentation of biomedical images. The architecture contains

two paths. The first path is the shrink path (also called the
encoder) that is used to capture the context in the image.
The encoder is just a traditional stack of maximum grouping
and convolutional layers. The second path is the symmetric
expansion path (also called a decoder) that is used to allow
precise localization by transposed convolutions. So it is a
fully convolutional end-to-end network (FCN), that is, it only
contains convolutional layers and does not contain any dense
layers due to which it can accept images of any size.

The YOLOv5 [16] got released by Glenn Jocher(Founder
and CEO of Utralytics) and has been chosen for the task
of object detection and for its incredible characteristics: the
speed and excellent precision in the detection of objects. These
are the following versions of YOLO with enhancements for
the detection of small objects: YOLOv1, YOLOv2, YOLOv3,
YOLOv4 and the latest recent YOLOv5 release. This model
has the capacity to process 140 frames per second with the
disadvantage of the first version of not accurately detecting
small objects, this problem has been improved with the
development of the existing versions. YOLO has an average
precision (mAP) value of 57.9% on the COCO dataset, which
is significantly higher than an SSD type network and a
RetinaNet, being 4 times faster than them, 100 times faster
than a Fast R-CNN.

B. KITTI Dataset

KITTI [1] is a dataset available to carry out the study with
real data of a prototype autonomous vehicle. The vehicle is
equipped with four cameras: 1 stereo pair of color cameras and
1 stereo pair of grayscale cameras. The color and grayscale
cameras are mounted close to each other ( 6 cm) the baseline of
both stereo decks is approximately 54 cm. This configuration
allows to obtain information in both color and grayscale from
the left and right camera. While color cameras (obviously)
come with color information, grayscale camera images have
higher contrast and slightly less noise.

All cameras are clocked at approximately 10 Hz relative to
the Velodyne laser scanner. The trigger is mounted in such a
way that the images from the camera roughly coincide with
Velodyne lasers facing forward (in the driving direction).

All camera images are provided as lossless compressed and
rectified png sequences. Native image resolution is 1382x512
pixels and slightly lower after rectification.

The classes available in the KITTI dataset are 8 and the
number of instances are the following, Car = 28614, cyclist
= 612, Misc = 959, Pedestrian = 4448, Person sitting = 220,
Tram = 504, Truck = 1079, Van = 2900.

C. Point cloud preprocessing

Point clouds are a collection of points that represent a 3D
shape or feature. Each point has its own set of X, Y and Z
coordinates and in some cases additional attributes.

Nowadays, object detection systems can be divided into two
main categories . The first ones are the geometric based, which
retrieve the obstacles using geometric and morphological op-
erations on the 3D points. The seconds are the deep learning



based, which process the 3D points, or an elaboration of the
3D point cloud, with deep learning techniques to retrieve a set
of obstacles.

This work is focused on the second approximation: projec-
tion based methods implement a single or multi-view projec-
tion of a 3D point cloud, resulting in a 2D grid, which is then
processed to find object clusters with the desired confidence.
Afterwards, this grid is processed by is then processed by a
2D Convolution neural network.

The first thing to do is bring the 3D point cloud of the
LiDAR sensors to a 2D voxel type image, with the alignment
of the points in space and time according to the calibration al-
gorithm of the cameras with the LiDAR sensor. The calibration
algorithm calculates the camera matrix using the extrinsic and
intrinsic parameters. The extrinsic parameters represent a rigid
transformation from 3D world coordinate system to the 3D
cameras coordinate system. The intrinsic parameters represent
a projective transformation from the 3D cameras coordinates
into the 2D image coordinates. As shown in our diagram see
Fig. 2, we have the image of the camera and the point cloud of
the LiDAR sensors; the objective is the synchronization of the
points with the pixels of the image so that the 2D surface of
our new image coincides with the projection of the 3D point
cloud. Using the camera’s calibration parameters, we can carry
out the transformation of the point cloud to a 2D voxel image
as the camera does.

D. Algorithm Bird eye view

The perspective transform that interests us is a birds-eye
view transform [17] that enables us to view a lane from above.
Aside from creating a birds eye view representation of an
image, a perspective transform can also be used for all kinds
of different view points.

Channel feature extraction [18] the 3D point-cloud pro-
vided by the LiDAR is projected in a BEV image with pre-
determined width, height and grid cell size. To avoid loss of
information during the projection of 3D point-cloud into a
2D image, 6 additional channels are stacked together the new
pattern to recover information about the peak and the medium
values of height, intensity and distribution of the collapsed
points for each cell. Moreover, binary information concerning
the effective occupancy of each grid are included.

E. Image Preprocessing

This phase involves the preprocessing of digital images to
provide them with different attributes with data augmentation
[19], [20]. In the real world scenario, it’s possible that the
existing datasets are taken under a limited conditions. This
is why data augmentation is applied to simulate different
conditions and generate a random variety images.

Popular augmentation techniques: lightening the image to
increase their clarity and avoiding dark images; decreasing
the contrast to reduce the total color range of the image;
applying a Gaussian filter to eliminate noise and details of the
texture; flipping images horizontally and vertically; rotating it
at right angles will preserve the image size; scaled outward

or inward; the method of resizing the section is popularly
known as random cropping; translation just involves moving
the image along the X or Y direction (or both).

F. Segmentation and Detection Results

According to the design of the methodology, the necessary
phases have been implemented to obtain the results of seg-
mentation and detection in images of the cameras Fig. 3 and
images from the data of the LiDAR sensors Fig. 4. In this
phase the experiments are carried out successfully with the Car
class which has the highest number of labels and, therefore,
presents balance with respect to the rest of the classes available
in the KITTI dataset.

The processes described in the methodology have been run
on a computer with a GeFORCE GTX 1050 graphics card
and 24 GB of RAM necessary for the process of generating
the images with bird eye view from the point cloud of the
LiDAR sensors; this takes extra time compared to the images
from cameras. This phase of the methodology is of primary
interest-working with other types of sensor data to train a
neural network. The results present four images per row as
follows in this case for the neural network U-net: The first
image represents the original test image; the second image
shows the total targets to be predicted; the third image shows
the prediction of the object’s segmentation by the U-net neural
network; ultimately, the fourth image with a bounding box
represents the detection of the segmentation predicted by the
neural network with a threshold greater than or equal to 0.5.

The following results are those obtained with the convo-
lutional neural network YOLOv5. The object detection is
performed directly on the test images with a bounding box
and a label with the name of the class. During training, the
YOLOv5 training pipeline creates batches of training data with
augmentations. We can visualize the training data ground truth
as well as the augmented training data. The first figure 5
shows the results obtained with the images of the cameras
and the second figure 6 shows the results with the LiDAR
sensor.

G. Performance Evaluation

Here are three metrics used as reference; these are precision,
recall, and measure F1, which assess the balance between
precision and recall.

precision =
TruePositives

TruePositives+ FalsePositives
(1)

recall =
TruePositives

TruePositives+ FalseNegatives
(2)

F1measure = 2× precision× recall

precision+ recall
(3)

Based on the confusion matrix, the evaluation metrics cor-
responding to the predictions of the two deep neural networks
are calculated.



Fig. 2. The coordinate conversion between the image and LiDAR

Fig. 3. Segmentation and detection of the ”Car” class with Camera.

Fig. 4. Segmentation and detection of the ”Car” class with LiDAR.

The following tables I and II, shows the evaluation metrics
with respect to the predictions made by deep neural networks
U-net and YOLOv5. It is important to mention that at this point
the only class that is being evaluated is ”Car”, as described
it is the class with the largest number in instances, unlike the
other classes available in the dataset.

IV. CONCLUSION AND FUTURE WORK

In this work, it was possible to integrate advanced computer
vision algorithms using deep neural networks, whose results
were positive in recent studies conducted in autonomous
prototype vehicles.

Fig. 5. Detection of the ”Car” class with Camera.

Fig. 6. Detection of the ”Car” class with LiDAR.

Data from the LiDAR sensors were analyzed which provides
us with a 360 degree view with a single sensor compared
to cameras. The LiDAR sensor provides good results in the
segmentation and detection of objects; therefore, the proposal
is to use it in conjunction with the cameras to develop a
sophisticated and complete vision system. This means, that
if at some point the cameras do not detect an object while
driving, the LiDAR sensor is supported as security.

The depth estimation and the creation of maps of the



TABLE I
TEST SET 100 IMAGES AND TOTAL 261 INSTANCES.

Model TP FN TN FP Presicion Recall F1 measure
YOLOv5 Camera 176 85 0 0 100.00% 67.00% 80.00%
YOLOv5 LiDAR 144 48 0 0 100.00% 75% 85.71%
U-net Camera 123 45 53 40 75.46% 73.21% 74.31%
U-net LiDAR 132 42 55 38 77.64% 75.80% 76.70%

TABLE II
TEST SET 200 IMAGES AND TOTAL 482 INSTANCES.

Model TP FN TN FP Presicion Recall F1 measure
YOLOv5 Camera 336 142 0 4 98.8% 70.00% 81.90%
YOLOv5 LiDAR 264 84 0 2 99.2% 75.80% 85.90%
U-net Camera 233 88 99 82 73.96% 72.58% 73.26%
U-net LiDAR 254 83 98 80 76.04% 75.37 % 75.70%

T

LiDAR sensors help to detect and locate the objects within
the environment. These characteristic could allow to avoid
accidents such as those that have occurred with the Tesla brand
cars.

In this work, we conclude the efficiency of the LiDAR
sensor for its instrumentation in autonomous cars.

As future work, it is proposed to analyze the possibility of
equipping a car with a LiDAR sensor and cameras to generate
its own dataset on the roads of Mexico.
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