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Abstract—  In recent years, there has been a great advance in technology applied to mobile robots. However, route calculation has still 
been one of the biggest challenges and has received attention from researchers, both in industry and academia where the greater 
autonomy of robots is linked directly to the calculation of your routes. The complexity of the robot motion planning problem has 
motivated the development of several algorithms. This stems from the need to integrate robot navigation with sense, efficiency, and 
route planning, as well as the need to save important resources such as energy, and the participation of multiple robots. Most robot 
missions must meet multiple points. In addition to having a cost to complete and weights that determine your priority of service if 
they prove to be quite complex, there is still the possibility that several robots in different locations collaboratively participate in the 
mission, which increases the complexity of the problem. This paper presents a route calculation approach for multiple collaborative 
robots with energy constraints and base shifting. The proposed method was modelled using the team orienteering problem (TOP). It 
combined with the multiple knapsack problem (MKP). This combination allows each robot to have a unique's energy restriction 
different from the traditional TOP where all agents have the same restriction value, to solve the problem a genetic algorithm was 
developed. For verifying the  method's effectiveness, a comparison between the results of proposed method[1] and this work was 
made. The results show a good efficiency in solving the problem. 

 
Keywords— Multi-robot, Path Planning,  Metaheuristic Algorithm,  Team Orienteering Problem. 
 
 

I. INTRODUCTION 

In recent years, there has been a breakthrough in 
technology applied to mobile robots. However, route 
calculation is still one of the biggest challenges and has 
received attention from researchers, both in industry and 
academia, where the greater autonomy of robots is linked 
directly to the calculation of your routes. Numerous 
algorithms have been developed in order to solve the 
problem of route planning [2], [3]. Such complexity comes 
from the need to integrate robot navigation with sense, 
efficiency, and route planning, as well as the need to save 

significant resources and preserve its mechanical parts [4], 
[5]. The majority of the missions of robots must meet several 
points. In addition to having a cost for its completion and 
have weights that determine your attendance priority, also 
have the possibility of several robots, in different locations, 
can participate in the mission collaboratively, which ends up 
for increasing the complexity of the problem. 

This research focuses on detecting missions in which 
energy restrictions need to be respected. This research 
focuses on detecting missions in which energy restrictions 
must be followed. The mission calls for a vehicle team to 
visit multiple points and collect prizes within the energy 
limitations of each agent. Its importance comes from 



research by several authors [6],[7] on the estimation of 
battery health and discharge, which shows that even similar 
robots can have different batteries discharged due to their 
frequency of use or age so that the robots would have 
distinct energy constraints.  This phenomenon needs to be 
taken into account when calculating the multiple robot route. 

The routing problem of several collaborative robots, due 
to their similarity, has the possibility of being modelled 
through the team orientation problem (TOP) [8]. The TOP is 
defined as a set of vertices, in which each vertex has a score 
or prize. The vertices must be visited by a set of identical 
agents, where each agent has a limitation of movement cost 
equal to Tmax. The TOP’s goal is to collect the highest score 
possible within each agent’s costs. The TOP is known to be 
NP-hard, and such problems can be solved either optimality 
or near-optimality. The Top has several solutions proposed 
in the literature, among them an ant colony optimization [9], 
guided local search [10], linear programming [11], 
evolutionary algorithms [1], [12], among others. But most of 
the solutions are mono-objective, which aims to maximize 
premium collection, where cost minimization is a 
consequence of the higher premium collected, except for [1], 
[11] and [17], where the last two applied to single-agent 
problems. In [1], a solution was proposed using an objective 
function with two objectives. One is to minimize the cost of 
travel, and second one is to maximize the collection of 
prizes. This solution was implemented using genetic 
algorithms, but this solution assumes that all agents have the 
same cost of locomotion, this resource would hardly be 
adequate in case of route planning for several collaborative 
robots. 

The problem of the multiple backpacks (MKP) consists of 
a set of backpacks, in which each backpack has a capacity, 
and a set of items, where each item has a weight and a value, 
the objective of the problem is to place the items in the 
backpacks of in order to collect as much value as possible 
without exceeding the capacity of each backpack. [13]. 

This research aims to provide a solution for calculating 
routes for various energy-restricted robots using a genetic 
algorithm based on the solution [1]. Our method differs from 
[1] when combining TOP to MKP, this combination allows 
the insertion of different mobility restrictions for each robot, 
making the solution closer to reality. The objective function 
used in this research is a multi-objective solution equal to 
that of [11], which calculates the conditioning points by 
assigning weights to the cost and premium objective, making 
the solution more adaptable to various applications.. 

The proposed solution was validated using a test 
environment composed of symmetric maps, in which the 
number of vertices to be visited varies between forty and 
eighty; each vertex has an award. In the tests, scenarios were 
applied that had different numbers of robots with different 
energy restrictions. In the tests, the execution of the routes 
for multiple robots is performed using an algorithm similar 
to the one of [1] and with the proposed solution of this 
research, in which a comparison between the obtained 
results is performed. 

The remaining sections of this paper are organized as 
follows. Section II presents the mathematical formulation of 
the problem to be considered, how the genetic algorithm 
works and the built test environment. Section III presents the 

results obtained in the numerical experiments and discusses 
the results obtained. Concluding remarks are presented in 
Section IV. 

II. MATERIAL AND METHOD 

In the current section, the proposed techniques are 
explained in an outlined manner. Subsection II-A presents 
the formulation of the combined TOP with the MKP. In II-B, 
the details of the proposed GA will be presented. Subsection 
II-C presents the testing environment that the heuristic 
underwent. 

A. Mathematical Formulation 

It is given a graph G(N , A) where N  list the set 
(|N|= Nc)  and (A)  the set of edges. For the cij=  ∀ i∈N  

can represent a symmetric matrix with lower cost. It is given 
Nk  robots as a solution, which k is the representation of 

the robots and Ckmax  is the maximum energy restriction. In 

set N  some waypoints have a price pi . The TOP method 

uses Boolean variables xik  True (1) and False (0) to know if 

a waypoint xi  has been visited or not. A robot’s route is 

represented by the variable Tk  , which is also a set of 
waypoints. A route taken by a robot k  can be represented 

by an edge xij  that was a X [xijk ]  matrix of Boolean 
variables. 

Thus, the mathematical formulation can be defined as 
[1],[8] and [11]: 
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 ∑ i= 1
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∑ j= 1
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∑ k= 1

Nk

cij xijk≤ Ckmax  (7) 

 1≤ uik≤ Nc           ∀ i ∈Tk  (8) 

 i i− uj+1≤ (1+− xijk)Nc        2≤ i≠ j ≤ Nc  (9) 

The objective function of equation (1) has two purposes; 
one is to minimize the cost of agents and to maximize 
premium collections. This work uses an adapted version of 
the objective function presented in [11]. Equation (2) 
presents the cost of locomotion of robots using an alpha 
quantity defined in [10], and equation (3) presents the 
collection of prizes with the Beta weight also presented in 
[10]. Equation (4) presents a constraint, where it prevents 
vertices from being visited after reaching the final objective, 
to help this, equations (5) and (6) limit the vertices to be 
visited. As a consequence of the agent cost restriction given 
by equation (7), equations (8) and (9) will not be used 



representing the generation of sub-routes. The optimization 
will have as its final objective an environment with vertices 
in an orderly way to facilitate the visit of agents. 

B. Novel Genetic Algorithms 

Genetic Algorithms (AG) are methods of optimization 
and search, which were inspired by the mechanisms of 
evolution of populations of living beings. They follow the 
principle of natural selection and survival of the fittest [14] 
and [15]. 

The AG  representativeness in this article is based on the 
work of [1], where chromosomes are composed of genes that 
portray a robot path. The waypoint visit indexes are stored in 
the GA genes. During the AG implementation, a permutation 
occurs with a set of maximum costs represented by C , 

where Nk  is the robot number, each robot represented by  
k  and a maximum cost  Ckmax  using as an evaluation. Each 
robot has its cost individually represented by the battery 
discharge time. The operation of the proposed GA can be 
visualized in Fig. 1. 

 
 

Fig. 1  GA Algorithm 
 
The steps of GA during chromosomal generation take 

place from the initialization of a random population, 
crossing and by the last mutation. 

 

Fig. 2  Random Nearest Neighbor Algorithm 
 

The algorithm of the nearest neighbour is used during the 
population generation stage. When choosing the waypoint, 
the algorithm of the nearest neighbour is used for the 
selection. The process can be seen in Fig 2. 

The stopping criterion is the maximum amount of 
chromosome creation; with that, the fitness is computed, the 
evaluation method can be seen in Fig. 3. 

 

 
Fig. 3  Fitness Algorithm 

 
The fitness of the AG using in the present work was used 

in [10], where the weight for the prize is given by the sum of 
the genes is the fitness calculation. After executing the first 
step, which was the population initialization at random, the 
next step is the generation process.  The end of the step that 
follows the generation process occurs when a maximum 

quantity Gsize  is reached as a stopping criterion or when the 

best BestCkmax  chromosome is found according to the 
conditions of the criterion.  

 

 
Fig. 4  Crossover Algorithm 



At the beginning of the generations, there is a process of 
selecting individuals with a population rate; there are several 
types of selection. However, the one chosen for this 
application was the Tournament. During this selection, n  
individuals are pre-selected at random, and the most suitable 
are chosen. 

During the crossing operation, it has the objective of 
selecting two chromosome vectors to perform the operation 
and generate two new child chromosomes. Still during the 
crossing process for the interest of the work, in the end, only 
one gene is selected since each gene on the chromosome can 
represent a path of the robot. An operation called cutting is 
performed to choose the gene that will represent the robot 
path. The cutting operation aims to remove a part of the 
selected gene.  

The slice operation can be different for each gene, where 
the slices can be of different sizes, this is justified because 
the gene is the representation of a route for each robot, 
which may have the number of different points. The final 
step is to exchange the slices of the selected genes with each 
other. 

There is still the mutation process that is carried out after 
the crossing. There is a variable called the probability of 
mutation ProbMut that serves as an evaluation basis for 
selecting individuals. 

In the chromosome vector, the mutation has 3 procedures 
which are gene removal, gene insertion and exchange called 
(SWGLM) [16]. 

The insertion operation will be done on a single 
chromosome gene, selecting a waypoint that is not present 
on the chromosome. Then a permutation is performed at 
each position of the chosen gene until it finds the best 
position 

 

 
Fig. 5  Crossover Algorithm 

As for the mutation using the removal of a waypoint 
represented by a gene, the waypoint is removed, which is to 

obtain less fitness compared to the others. The exchange 
mutation is called SWGLM according to [16], to find the 

 least suitable waypoint  and obtain two exchanges between 
a neighbourhood, a neighbour located on his right and 
another on his left will be exchanged. 

The insertion and deletion mutation process can be 
viewed in Fig. 5. 

C. Test Environment 

This section demonstrates the testing environment. In this 
testing stage, 20 symmetrical scenarios were proposed, with 
the numbers of robots and battery discharge times for each 
robot all different. Table 1 provides an example of the test 
environment. The distance between the points was used the 
Euclidean distance for the cost calculation. During tests, 
object measurements are provided using a time measurement 
in minutes, as well as the battery level until discharge, 
considering  the robots speed will are constant. 

Table 1 is detailed on how instance 1 is organized, in 
which the complete map can be viewed in Fig. 6. The first 
scenario has instance l1, where it has 40 waypoints and 5 
deposits. The deposits serve as inputs and outputs for robots 
and have no punctuation. Still in that instance, they still have 
218 points in prizes, as a rule, the points alternate from 2 to 
9. 

The results section is separated into 2 subsections. The 
first subsection is used to adjust GA parameters to determine 
the best parameterization in solving the proposed problem. 
The second section will return the results of the tests 
performed using the GA already parameterized. 

 

 
Fig. 6  Instance I1 

 
The tests will be performed in 5 experiments: 
 
 Traditional TOP: Normal condition for multi-robot 

route calculation modelled using the traditional TOP, 
where the locomotion restriction value will be the 
lowest battery level among robots;  

 Traditional TOP Robot Reduction: Normal condition 
for multi-robot route calculation modelled using the 
traditional TOP, but excluding the robot with the 
lowest battery level, to increase TOP’s travel range;  

 Modified TOP: Normal condition for multi-robot route 
calculation modelled using the modified TOP, in which 
all robots will maintain their battery level for route 
calculation; 



 Modified TOP Robot Reduction: Normal condition 
for multi-robot route calculation modelled using the 
modified TOP, but excluding the robot with the lowest 
battery level;  

 Modified Top Deposit Change. Normal condition for 
multi-robot route calculation modelled using the 
modified TOP, but with the change of deposits. 

TABLE I 
INSTANCES 

Inst. Rob. Wayp. Prizes Battery Time Robots(min) 

I1 4 40 218 20, 23, 25, 30 

I2 4 45 222 23, 25, 27, 30 

I3 4 50 241 23, 25, 27, 30 

I4 4 60 313 20, 23, 25, 30 

I5 4 70 387 20, 23, 25, 30 

I6 4 80 436 20, 23, 25, 30 

I7 5 40 206 18, 22, 24, 25, 28 

I8 5 50 236 19, 23, 25, 26, 29 

I9 5 60 309 20, 22, 25, 27, 30 

I10 5 70 383 21, 23, 26, 27, 30 

I11 5 80 441 22, 24, 26, 28, 32 

I12 6 50 239 18, 20, 22, 24, 25, 27 

I13 6 60 310 19, 22, 23, 24, 25, 28 

I14 6 70 379 20, 22, 24, 25, 27, 30 

I15 6 80 440 21, 23, 24, 26, 29, 30 

I16 7 60 310 15, 20, 23, 25. 25, 27, 30 

I17 7 70 377 19, 20, 21, 23, 24 ,25, 29 

I18 7 80 443 19, 21, 23, 24, 25 ,26, 30 

I19 8 70 388 15, 20, 23, 25, 25, 27, 30, 30 

I20 8 80 428 15, 20, 23, 25, 25, 27, 30, 30 

 
The simulations were performed in the Python 3.6 

language, using Numpy 1.14.5. The computer used had an 
Ubuntu 16.04 x64 system, 15-7600 processor and 8GB of 
RAM. 

III. RESULT AND  DISCUSSION 

In this section, GA parameterization and test results will 
be presented, as well as the discussion of the results. 

The proposed solution and the methods it consists of are 
presented in detail. Subsection III-A presents the results 
obtained from the experiments performed based on the 
environment presented in section II-C , 30 runs were 
performed to measure the performance and accuracy of the 
proposed method. In III-B, the test results will be presented. 
Subsection III-C will discuss the results 

A. Parameterization of the proposed GA 

The parameterization of a GA is one of the most 
important steps for its perfect execution, in which the use of 
parameters in the maximum values eventually generate 
premature convergence. For the parameterization of the 
proposed GA, a random parameterization was used, which 
will generate initial parameter values, and then it will be 

combined with an exhaustive search, to search for the data 
that generate the least premature convergence. 

First, a random parameter set was generated and then tests 
were performed by changing each parameter from a 
minimum value to a maximum value. The parameterization 
was tested using a map with 4 robots and 40 points to be 
visited. Each parameter has been executed 10 times. Table II  
presents the proposed data, along with the result achieved. 
The ideal parameterization was chosen based on the results 
obtained where the parameters that obtained the values with 
the lowest standard deviation were chosen and finally an 
execution was performed between the random parameter and 
the ideal parameter. The convergence curve with the data 
specified as an ideal can be seen in Fig. 7. 

TABLE II 
PARAMETERIZATION OF GENETIC ALGORITHM 

Parameters Random Range Ideal 

Population Size 30 50,…, 500 100 

Prob. Crossover .2 .1, …, .9 .6 

Prob. Mutation .4 .1, …, .9 .8 

Gen. Maximum 35 5, …, 50 25 

 

 
Fig. 7  Instance I1 

 

B. Tests Performed and Discussion 

The tests were performed based on the instances and 
experiments proposed in the section III-C. 

The first proposed algorithm was based on [1], where it 
aims to calculate the best path for the robot,  which proposed 
a genetic algorithm for traditional TOP resolution with a 
single value for locomotion cost, and a Genetic algorithm 
proposed by this work that combines the traditional TOP 
with MKP. Each instance was combined with all 
experiments and performed a total of 30 runs. Table III 
presents the results obtained, the calculated route 
performance is given by the total points collected by all 
robots involved, in which the displayed data show the 
average prize collection of the execution of each experiment. 

All tests were run with a single source and target deposit, 
the robots should leave one deposit and return to the same 
deposit, except for experiment 5 which was performed with 



one source deposit and different target deposits, where each 
robot goes to different deposits. 

For illustration purposes, the routes generated by running 
the instance I1 will be displayed for all experiments in Fig. 
6. 

Fig. 8 has 5 images, which shows the routes with the best 
scores obtained by running each experiment on the instance 
I1. 

The performance of the solution presented in this paper is 
compared in 3 different ways with the model presented by 
[1]. Table III, specifically in columns 1 and 3, shows the 
comparison of the generated path of the models.  

The model proposed in this paper obtained a better score; 
the improvement is quite significant considering the use of 
the mobility ability of each robot. It can be noted that the 
score obtained with the proposed model in certain scenarios 
was 31.1% better compared to the traditional one. In 
instance I20, a difference of 91.7% between the two models 
is justified by the low battery level of robot 1. In real 
scenarios, these robots can be removed from the route 
calculation to accomplish a mission. In this case, robot 1 will 
be removed from the route calculation. Thus, in the results of 
experiment 2, and making a new comparison with 
experiment 3, the score difference drops to 34.5%. 

Other comparisons consider an environment with a 
decrease in the number of robots. Columns 2 and 4 of Table 
III show the results considering the second proposed model 
and the traditional one. The latter obtained an improvement 
in the collection of prizes. In some cases, the collection of 
prizes is close to its first execution comparing experiment 1 
to experiment 2 due to the increase in travel distance of the 
remaining robots. However, the solution proposed in this 
research still presented a better performance, where in 
certain scenarios managed to overcome the traditional model 
by up to 30.1% in premium collection. 

The proposal of the third comparison, where the target 
deposits are modified, forming different situations. Results 
of this execution are compared to results obtained in this 
research, performing the route calculation a single depot. 

The results show that in some cases, depending on the 
mission map, their score does not show great divergences as 
can be observed in experiment 3 compared to experiment 5 
of instance 1, but it can be noted that in other maps the gain 
reaches be 13% higher as seen in I2. These results 
demonstrate how important it is to make maximum use of 
the mobility of each robot independently. 

TABLE III 
RESULTS 

Inst. Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 

I1 140.86 139.36 180.23 153.13 207.5 

I2 170.16 150.2 205.36 175 208 

I3 176.3 164.5 207.5 177 223.4 

I4 223.4 196.04 254.8 210 265.36 

I5 261.1 228.6 299.3 262.53 329.5 

I6 276.1 253.6 324.7 273.4 347.7 

I7 120.5 157.5 193.6 186.1 199.3 

I8 145.7 162.8 202.4 191.9 224.4 

I9 202.9 197 265.3 246.4 283.7 

I10 242.4 230.2 306 284.6 334.7 

I11 266.4 253.2 340.8 312.4 379.2 

I12 155.7 170.9 210.8 197.1 228.1 

I13 204.6 225.2 270.9 255.6 294.2 

I14 257.1 255.8 337.4 313.5 360 

I15 288.5 282 365.8 344 396.6 

I16 207.2 206 274.7 267 294.6 

I17 270.8 258 336.4 318 361.1 

I18 272.8 276 388.4 359 401.1 

I19 188.2 227 329.2 317 363.7 

I20 193.9 275 370.5 358 402.1 

 

 
 

Fig. 8  Experiments Instance I1 

IV. CONCLUSION 

This paper studies route planning for multiple energy-
constrained collaborative robots. Such a problem can be 
modelled using the team orienteering problem combined 
with the multiple knapsack problem. This paper presents a 
heuristic for solving the modified TOP that is based on a 
genetic algorithm. The GA is modelled based on the solution 
proposed by Bederina and then added the restriction of 
locomotion as energy restriction and the ability to change 
deposits for departure and arrival. The proposed heuristic is 



compared to the Bederin solution. The performance of the 
methods is measured by the total points collected using the 
same constraints. The proposal of this work was superior in 
all experiments performed, reaching in some cases to collect 
30% more points than the solution of [1], this performance 
can only be possible due to the full use of the restrictions of 
all robots, characteristic absent in bederina. Depot change 
proved to be effective compared to using a single depot for 
all robots, where depot change point collection was shown to 
collect up to 13% of points compared to collecting this work 
using a single depot. Due to the symmetrical nature of the 
problem, this research is suitable for application in non-
volatile environments, such as industrial environments that 
use AGV. 

For future work, it would be necessary to test the 
performance of the solution on asymmetric maps to extend 
its use. The ability to handle multiple deposits proposed by 
this research makes it ideal for testing in conjunction with 
battery failure diagnostics systems as the cost of locomotion 
can be reduced rapidly, requiring route recalculation to get 
the most out of the mission. Finally, it is worth extending its 
future use to maps with task execution times and time 
window for completion. 
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