
EasyChair Preprint
№ 8061

AMDetector: Detecting Large-Scale and Novel
Android Malware Traffic

Li Wenhao, Huaifeng Bao, Xiao-Yu Zhang and Lin Li

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

May 24, 2022

AMDetector: Detecting Large-scale and Novel
Android Malware Traffic with Meta-learning

Wenhao Li1,2, Huaifeng Bao1,2, Xiao-Yu Zhang1,2(�), and Lin Li1,2

1 Institute of Information Engineering,
Chinese Academy of Sciences, Beijing 100093, China

{liwenhao,baohuaifeng,zhangxiaoyu,lilin}@iie.ac.cn
2 School of Cyber Security, University of Chinese Academy of Sciences, Beijing

100093, China

Abstract. In the severe COVID-19 environment, encrypted mobile mal-
ware is increasingly threatening personal privacy, especially those target-
ing on Android platform. Existing methods mainly focus on extracting
features from Android Malware (DroidMal) by reversing the binary sam-
ples, which is sensitive to the deduction of the available samples. Thus,
they fail to tackle the insufficiency of the novel DoridMal. Therefore, it is
necessary to investigate an effective solution to classify large-scale Droid-
Mal, as well as to detect the novel one. We consider few-shot DroidMal
detection as DoridMal encrypted network traffic classification and pro-
pose an image-based method with meta-learning, namely AMDetector,
to address the issues. By capturing network traffic produced by Droid-
Mal, samples are augmented and thus cater to the learning algorithms.
Firstly, DroidMal encrypted traffic is converted to session images. Then,
session images are embedded into a high dimension metric space, in which
traffic samples can be linearly separated by computing the distance with
the corresponding prototype. Large-scale and novel DroidMal traffic is
classified by applying different meta-learning strategies. Experimental re-
sults on public datasets have demonstrated the capability of our method
to classify large-scale known DroidMal traffic as well as to detect the
novel one. It is encouraging to see that, our model achieves superior per-
formance on known and novel DroidMal traffic classification among the
state-of-the-arts. Moreover, AMDetector is able to classify the unseen
cross-platform malware.

Keywords: Malware Detection · Network Security · Meta-learning ·
COVID-19 · Privacy Security.

1 Introduction

With the prosperity of mobile applications, it becomes increasingly intractable
to protect the security and privacy of mobile users [3]. The explosion of Android
malware (DroidMal) is challenging the effectiveness and capability of detection
systems. Previous works managed to detect DroidMal by reversing engineering
and focused on the extraction of the static features in binary [30]. By analyzing

2 W. Li et al.

the binary of DroidMal, static features are considered as the representation of
DroidMal, including CFG [15] (Call Flow Graph), static API calls [6], permis-
sions, etc. Furthermore, the development of dynamic analysis offers an auxiliary
way to detect DroidMal [26, 25]. Dynamic features such as API call chains and
system operations [16] can be included, by dynamically executing and hook-
ing DroidMals in sandbox [19]. Overall, DroidMal detection methods based on
source code analysis have achieved eye-catching performance after continuous
optimization. However, it is generally not an easy task to obtain DroidMal sam-
ples, especially those from the emerging families. Moreover, advanced obfusca-
tion techniques are applied to reinforce DroidMal and tremendously weaken the
performance of DroidMal detectors [27].

Detecting the network traffic that generated by DroidMal is proved to be
a more straightforward and efficient approach to tackle DroidMal [2]. Droid-
Mal analysis problems are converted to the identification of malware network
traffic, which skillfully tackles the insufficiency of samples and the diversity of
obfuscation. Conventional methods with static IP/Port/Payload matching can-
not satisfy the rapidly growing malicious traffic encryption, especially under
the COVID-19 environment [24]. Therefore, many works equip machine learn-
ing algorithms, including Random Forest, Decision Tree, SVM, etc, to detect
DroidMal network traffic [20]. Although such methods dramatically develop the
detection systems, they suffer from the overwhelming demands on feature en-
gineering and prior expert knowledge. Thus, they are not suitable to identify
large-scale DroidMal traffic. The explosion of deep learning offers another solu-
tion to classify DroidMal traffic. Combining feature engineering and classification
algorithm, the end-to-end models based on deep learning achieve superior per-
formance compared with machine-learning-based ones [10]. In general, payloads
in network traffic are automatically extracted by Deep Neural Networks (DNN)
and fed to a Multi-layer perceptron (MLP) classifier [28]. Although such meth-
ods perform outstandingly on plaintext, they fail to detect encrypted malware
traffic thus reach their limitations.

In general, three challenges remain unsolved in DroidMal traffic classifica-
tion. 1) It is difficult to attain emerging DroidMal and the corresponding net-
work traffic, which leads to few-shot scenario in DroidMal Detection [4]. 2)
Conventional detectors mostly rely on pattern matching with plaintext, which
are countered by the encryption techniques. 3) Conventional techniques reach
their limitations when tackling novel DroidMal. To address the issues, we pro-
pose a session-image-based model based on meta-learning, which can classify
large-scale DroidMal encrypted traffic and detect unknown DroidMal traffic cat-
egories. First, we convert encrypted DroidMal network traffic to session images.
Then, images are embedded into high dimension metric space based on meta-
learning. Therefore, samples can be linearly classified by computing the distance
between prototypes on high dimension separatable space.

Our contributions can be briefly summarized as follows:

AMDetector: Detecting Large-scale and Novel Android Malware Traffic 3

1. We consider DroidMal detection as encrypted traffic classification to tackle
the lack of DroidMal samples and propose AMDetector, a DroidMal-image
model based on meta-learning to classify large-scale and novel DroidMal.

2. AMDetector is capable to classify large-scale DroidMal encrypted traffic
while detecting unknown DroidMal categories and achieves superior per-
formance compared with the state-of-the-arts.

3. It is encouraging to see that AMDetector attains the ability to perform cross-
platform detection when classifying malware traffic generated by Windows.

The rest of the paper is organized as follows. In Section 2, we define the
problems we focus on. In Section 3, AMDetector is described in detail. In Sec-
tion 4, compare AMDetector with the state-of-the-art baselines and analyze the
experimental results. Finally, we make a conclusion of our work and present the
future enhancement.

2 Preliminaries

In this section, we first give the definition of DroidMal encrypted traffic clas-
sification. Then, we briefly introduce the meta-learning strategy on DroidMal
encrypted traffic classification, which consists of the detection on known and
novel DroidMal.

2.1 Problem Definition

We consider DroidMal detection as DroidMal encrypted traffic classification
based on meta-learning. By running each DroidMal sample in sandbox, network
traffic generated by the DroidMal can be captured with the help of network
sniffer. Initially, DroidMal traffic dataset is separated into training set, valida-
tion set and testing set. First, we train our proposed model with training set
with meta-learning strategy. Then, after each training epoch, model is evalu-
ated on validation set to validate the effectiveness. Finally, a well-trained model
is tested with testing set in order to verify the robustness and generalization.
Overall, we aim to attain a well-trained model that gains the ability to classify
large-scale known and novel DroidMal encrypted traffic precisely through a few
testing samples.

We propose a traffic-based model with meta-learning to classify large-scale
known and novel DroidMal encrypted traffic. Specifically, raw traffic of DroidMal
is represented as image in the first part of our model. Then, images are embed-
ded into high dimension metric space through convolutional mapping model.
By computing the prototypes for each category, distance between samples and
the corresponding prototype is obtained and contributes to the classification of
known and novel DroidMal traffic.

4 W. Li et al.

Task 1 Task 2 Task M

Task M
Dataset

. . .
Meta Training SetMeta Training Set Meta Testing SetMeta Testing Set

Support Set

Query Set

Fig. 1. Framework of meta-learning. The whole dataset is divided into M meta tasks,
which contain meta training set and meta testing set. A support set and a query set
are included in a meta set.

2.2 Traffic-based Android Malware Classification with
meta-learning

In conventional machine learning (ML) and deep learning (DL) methods, models
usually focus on a specific task. In the field of DoridMal encrypted traffic, a
basic task is to train a classifier that can predict the labels of testing samples.
Specifically, we train a classify with a training set SetD = {(x1, y1), ..., (xn, yn)}
where xn and yn refer to traffic sample and the corresponding label, respectively.
After optimizing the parameters, a well-trained classifier can determine the labels
of the input samples. Generally, a conventional ML or DL classifier demands a
great amount of available samples to converge, where |SetD| can be up to tens
of thousands. Especially, when |SetD| is small, we can consider the task as a
few-shot scenario.

Due to the scarce emerging DroidMal, capturing sufficient traffic samples can
be a difficult task. Motivated by the previous work on few-shot learning [23],
we employ meta-learning strategy to tackle the DoridMal traffic classification.
In meta-learning, classifier learns to accomplish several meta tasks rather than
focus on a specific one. For example, in a N -way-K-shot strategy, training set is
split into meta tasks that consist of N categories with K samples. Demonstrated
as Figure 1, M meta tasks are separated. Each task consists of a meta training
set and a meta testing set. In a single epoch, a meta batch is randomly picked
up and considered as the meta tasks. Specifically, meta training set is used to
optimize the model while the testing set is for validation. Theoretically, meta-
learning classifier can be transferred to an unseen dataset with the help of its
learning-to-learn strategy, which is capable to detect novel DroidMal traffic.

In the field of DroidMal encrypted traffic detection, we consider meta-tasks
as multi-class classification. In general, an N -Way-K-Shot meta task consists of
N ×K samples. As shown in Figure 1, a meta set is separated into a support set
and a query set, which in our proposed model, the support set is for prototype
computation while the query set is to optimize our model with a distance loss
function.

We evaluate on a DoridMal encrypted dataset with 42 classes of DroidMal to
classify large-scare known DroidMal traffic. Therefore, N classes with K samples
are randomly selected from 42 classes when constructing a N -Way-K-Shot meta
task in training process. During testing, the model can classify 42 classes of

AMDetector: Detecting Large-scale and Novel Android Malware Traffic 5

Session Split

DroidMal Traffic

Capture

Anonymization

Representation

Session Image

Representaion

Convolutional

Mapping Model
Prototype-based Classifier

with Meta-learning

Fig. 2. Main framework of AMDetector.

DroidMal where N = 42 (AndMal2017 we evaluated on contains 42 classes of
DroidMal).

In the task of novel DroidMal encrypted traffic detection, O of 42 classes
are randomly chosen to be the novel categories, where O is the number of novel
classes. During training, N classes are picked up from 42−O classes to construct
a meta task. Then, the model can classify known classes while detecting the novel
ones where N = 42.

3 DroidMal Detection Based on Traffic Image with
Meta-learning

The main structure of our proposed DroidMal detecting model (AMDetector)
is shown in Figure 2. Our model consists of Session Image Translation, a Con-
volutional Mapping Model and a Prototype-based Classifier. In the following
sections, we will exhaustively introduce each part of our model.

3.1 Session Image Translation

In Session Image Translation, we aim to translate binary traffic data produced
by DroidMal to session-based images to enhance the representation of DoridMal.
In general, raw DroidMal traffic data are converted to 28× 28 gray-scale images
during this section.

Session Split: A unique traffic flow is constructed by abstracting a five-
tuple, which formed as {Source IP, Destination IP, Source Port, Destination Port,
Protocol}. During a time period, a session is the combination of two opposites
flows that generated between two hosts. In real-world network, traffic is captured
by sniffers and stored in traffic files (PCAP format), which are composed of
diverse sessions. In this section, unique sessions are extracted separately from
raw PCAP files and stored in discrete PCAPs, which contain a single session.

Anonymization: The irrelevant fields of network packets are masked during
anonymization. Data captured from real-world network adheres to Open System
Interconnection (OSI) reference model. Therefore, transmission information such
as MAC address, IP address and TCP/UDP port, are included in every single
packet. However, it is not appropriate to learn from these strong-relevant fields

6 W. Li et al.

AD_Chinese AD_Ewind SMS_Fakeinst SMS_Fakenotify RA_Koler RA_Svpeng SC_Defender SC_Fakeapp

Fig. 3. Visualization of Session Images. Eight classes of DroidMal are illustrated, in
form of {Family} {subfamily}, e.g. AD stands for the family of Advertisement

that can specify the labels in certain dataset but may change in different net-
work environment, which leads to overfitting and limits the generalization of our
model. Thus, such learning-irrelevant fields are masked by padding with 0x00.

Session Image Representation: In Session Image Representation, PCAPs
that store a single session are converted to gray-scale image. Specifically, the first
784 bytes of a PCAP file are extracted and construct a 28× 28 feature image. If
a PCAP is smaller than 784 bytes, 0x00 will be padded to 784 bytes. Intuitively,
binary with 0x00 and 0xFF are represented as a black pixel and a white pixel
in session image, respectively.

Theoretically, the front part of a session contains the majority of connection
features, thus reflects the intrinsic characteristics of a session to the most ex-
tent [5]. Meanwhile, translation of session image caters the input of CNN, as well
as enhances the ability of representation. Shown as Figure 3, we demonstrate
part of the session images from different categories. We argue that different types
of session images present discrimination obviously while the ones from the same
class show high consistency, which proves the rationality of the session images.

3.2 Convolutional Mapping Model with Meta-Learning

Convolutional mapping model embeds session images into high dimension met-
ric space. In general, the mapping model promises to embed the original less-
separated images into a high dimensional linearly separable spatial. Convolu-
tional mapping model with meta-learning is intrinsically distinct from the con-
ventional classifiers. Rather than classifies directly, convolutional mapping model
gains the power to learn how to learn by accomplishing meta classification tasks.
Theoretically, it is not essential to construct a complicated mapping model when
employing meta-learning strategy, which effectively prevents overfitting when
tackling few-shot problem and enhances the generalization and transferability.

With N -Way-K-Shot strategy, N ×K session images with the size of 28×28
are fed into our model and embedded into 64-dimensional vectors. A concatena-
tion of 4 convolutional sequences is concluded in our mapping model. Specifically,
each sequence consists of a convolutional layer with a kernel of 3× 3 windows, a
batch normalization, and an element-wise rectified-linear non-linearity (ReLU)
activation function. In order to improve the generalization of our model, max-
pooling is applied before outputs. Finally, session images of 28 × 28 from meta
tasks are embedded into 64-dimensional metric spatial.

AMDetector: Detecting Large-scale and Novel Android Malware Traffic 7

Softmax

Distance

Computation

x
Predicted Label

Meta Set

Fig. 4. Meta set is separated into support set and query set. Prototypes are attained
by aggregating support set while query is used to compute the distance. Then, distance
between each prototype is fed into Softmax and the predicted label is obtained.

3.3 Prototype-based Classifier

Conventional DoridMal traffic classifiers attain the probability of each class by
applying Softmax directly. Then, the sample is classified into the category
with the highest probability. However, conventional classification schema with
Softmax is not suitable for our N -Way-K-Shot meta learning, in which N is
indefinite during training and testing. Inspired by Prototypical Nets [18], we
propose a prototype-based classifier to adapt flexible N and K dynamically.
Support set is used to compute prototypes of each class while query set is to
optimize the model by computing the distance between prototypes.

Prototype Computation with Support Set An N -Way-K-Shot meta task
is separated into a support set and query set, which share the same classes of
DroidMal. Prototypes of each class are obtained according to Step 3 in Algo-
rithm 1. For example, in a 5-Way-10-Shot meta task, a support set and a query
set are randomly separated. Both of them contain 5 classes of DoridMal that
embedded by convolutional mapping model. Then, 5 prototypes are attained by
averaging the embedded vectors of each class in support set.

Model Optimization with Aggregation of Query Set By computing the
distance between vectors in query set and the corresponding prototypes, loss is
obtained and is used to optimize convolutional mapping model, which endows
the mapping model with the capability to aggregate the DoridMal of same class
in high dimension metric spatial. Specifically, Euclidean distance is computed
between vectors in query set and the corresponding prototypes. Loss is obtained
by Step 5 in Algorithm 1.

In summary, the training and testing process of our proposed Prototype-
based Classifier is described as Algorithm 1.

3.4 Detecting Known and Novel Android Malware Traffic

Employed with different strategies of meta-learning, AMDetector can classify
large-scale known DoridMal encrypted traffic and the novel ones. Figure 4 il-
lustrates the process of classification.

8 W. Li et al.

Algorithm 1 Training and Testing Framework of Prototype-based Classifier

Input:
The meta set D.
The mapping model f(x)
Unlabel sample x

Output:
Training: Mean of Loss L, Testing: Predicted Label ŷ of x

1: Embedding samples in D, obtaining f(D).
2: Randomly dividing f(D) into Support Set DS and Query Set DQ .
3: Compute prototypes P of each class from Support set DS with n classes, where

P = {PN |PN = 1
|DN |

∑
xi∈DN

xi, N = 1, 2, ..., n} and DN ⊆ DS , where DN refers
to the samples with same label.
Training:

4: Computing the distance Dst(DQ,P) between samples from DQ and the corre-
sponding Prototype Pi ∈ P.

5: Updating Loss by computing

L← L +
1

|DQ|

[
Dst(f(x),P) + log

∑
exp(−Dst(f(x),P))

]

where x ∈ DQ.
Testing:

6: Computing distance Dstx(x,P) between x and prototypes P, where Dstx(x,P) =
{Dst(x, PN)|PN ∈ P, N = 1, 2, ..., n}.

7: Obtaining the predicted label ŷ of x, where ŷ = argmin(Dstx).
8: return Training: L, Testing: ŷ

Known Android Malware Traffic Classification In the field of known
DoridMal encrypted traffic classification, label set in testing is the subset of
that in training, where Labels(Testing) ⊆ Labels(Training). Assuming that the
number of classes in training set is |Labels(Training)| , the number in testing set
|Labels(Testing)| ≤ |Labels(Training)|. Figure 4 illustrates the process of clas-
sification. With N -Way-K-Shot detection strategy, N is set to |Labels(Testing)|
and K = |Testing Set|. Then, by calculating the distance between the query set
and the prototype of the meta task in the testing set, the sample is classified into
the category with the smallest distance between the corresponding prototype.

Novel Android Malware Traffic Detection AMDetector is capable to clas-
sify large-scale DoridMal encrypted traffic precisely, as well as to detect the
novel DoridMal traffic, even if the number of the available samples is small. As-
suming that the available dataset is SetU and the known set is SetK , novel set
SetN = SetU − SetK , where SetK ∩ SetN = ∅. Figure 4 demonstrates the
framework of novelty detection. Model is trained with SetK , applied with N -
Way-K-Shot training strategy. During testing, N is set to |Labels(SetN)|. The
classification process is similar to that when classifying the known.

AMDetector: Detecting Large-scale and Novel Android Malware Traffic 9

4 Experiment and Result

In this section, we evaluate our proposed model on two public datasets to verify
the rationality and effectiveness of AMDetector. First, we briefly introduce the
two datasets we use. Then, we describe the experimental setting and the state-of-
the-arts, which are considered as baseline. Finally, we discuss the experimental
results on known and novel DroidMal encrypted traffic classification in detail.

4.1 Experiment Preparation

Dataset Organization We evaluated our model on two datasets, including
AndMal2017 [12] and USTC2016 [22]. Specifically, AndMal2017 consists of 42
classes in 4 families of encrypted traffic generated by DoridMal. USTC2016 con-
tains traffic produced by 10 classes of malware and 10 benign software.

AndMal2017 contains 42 classes of DroidMal from 4 major Android mal-
ware families, including Adware, Ransomware, Scareware and SMS Malware, of
each contains around 10 classes of DroidMal. Encrypted traffic data is captured
by running DroidMal in sandbox, which is used to represent the correspond-
ing binary sample. After session image translation, around 2,000 images can
be obtained from each class, which extends the insufficient binary samples of
DroidMal.

USTC2016 is the second dataset included in our experiment, which consists
of traffic data generated by 10 classes of malware and 10 classes of benign soft-
ware from Windows. To verify the generalization of AMDetector, USTC-MW is
regenerated by regrouping 10 classes of Windows malware traffic from the origi-
nal dataset. USTC-MW contains 10 classes of malware traffic, including Cridex,
Geodo, Htbot, Miuref, etc. After image translation, 1,000 samples from each
class contribute to USTC-MW.

Evaluation Metrics We compare AMDetector against the state-of-the-arts
with four standard evaluation metrics that is commonly used in the task of
classification, including Overall Accuracy (OA), Precision (Pr), Recall (Re) and
F1-score (F1).

4.2 Experiment Design

Baseline Evaluation AMDetector is compared against the state-of-the-art
baselines for DoridMal traffic classification, including XGBoost-based method [17],
RandomForest-based method [7], FlowPrint [8], conversation-level Features-based
method [1], CNN-based method [21], GAN-based method [14], SiameseNet [11],
FS-Net [13], TripletNet [9] and RBRN [29]. Note that part of the baselines can-
not detect novel DroidMal, so they will be absent from evaluations of novelty
detection (Section 4.4 and 4.5).

10 W. Li et al.

Fig. 5. Results on Large-scale DoridMal Traffic Classification with 42 classes.

Table 1. Comparison Results on Large-scale DroidMal Traffic Classification with 42

Known Classes.

Methods OA Pr Re F1

XGBoost [17] 23.50 25.98 22.78 22.31

Random Forest [7] 27.43 27.22 26.39 26.46

FlowPrint [8] 20.26 21.77 19.84 19.61

Conversation Features [1] 66.71 39.71 41.09 40.38

CNN [21] 75.36 75.36 73.97 74.65

GAN [14] 66.52 67.60 66.44 67.02

FS-Net [13] 56.41 58.64 57.74 58.19

RBRN [29] 45.71 45.19 44.68 44.93

SiameseNet [11] 82.77 85.06 82.88 83.96

TripletNet [9] 67.33 67.76 69.93 68.83

AMDetector 88.34 88.62 90.55 89.58

Experimental Setting We first evaluate on AndMal2017 to classify large-scale
encrypted traffic from known DroidMal. Then, novelty detection on unknown
DoridMal encrypted traffic is performed on the same dataset. Finally, cross-
platform classification is evaluated on USTC-MW. Specifically, we employed
Adam as the optimizer of our model and trained for 100 epochs with learn-
ing rate of 0.01. The experiments were performed using the following hardware
and software platforms: Intel i7-9750 @2.6GHz, 16GB RAM, NVIDIA GeForce
RTX2060; Windows 10, CUDA 10.1, and PyTorch 1.0.1.

4.3 Classification on Large-scale Android Malware Encrypted
Traffic

We evaluate the following well-designed experiments to validate the rationality
and advancement of AMDetector. First, we evaluate on AndMal2017 to classify
large-scale DroidMal encrypt traffic (42 classes detection). Specifically, 5-Way-
10-Shot strategy is employed with a 42-classses training set when optimizing
the model. During testing, N is set to 42 to evaluate large-scale classification.
Note that N is set to the number of classes included in testing set to predict the
testing data integrally. Table 1 illustrates the classification results on 42 classes

AMDetector: Detecting Large-scale and Novel Android Malware Traffic 11

(a) 1 Novel Class of AndMal2017 (b) 5 Novel Classes of AndMal2017

(c) 1 Novel Class of USTC-MW (d) 5 Novel Classes of USTC-MW

Fig. 6. (a) and (b): Results of Novelty Detection on AndMal2017. (c) and (d): Results

of Cross-platform Detection on USTC-MW.

of DoridMal traffic, of which our model achieves superior performance compared
against the state-of-the-arts. Also, Figure 5 shows the results of 50 independent
evaluations. It is not an easy task for conventional Softmax-based classifiers to
classify large-scale of DroidMal traffic directly. However, AMDetector can main-
tain eye-catching performance, supported by the superiority of meta-learning
strategy.

4.4 Novel Android Malware Encrypted Traffic Detection

In order to validate the ability to classify novel classes, we evaluate AMDetector
on the regenerated DroidMal2017. Note that only the baselines that support
novelty detection will be evaluated in this part. Two experiments are performed
in this part, including 1-way and 5-way detection. In 1-way novelty detection,
we randomly splintered 1 class out of the 42 classes of AndMal2017. Specifi-
cally, the number of classes in training set Nknown is set to 41 and the number
of classes in novel set Nnovel is 1. During detection phase, 9 classes of known
classes are randomly picked up to reconstruct a testing set, which consists of 9
known classes and 1 novel class. Similarly, in 5-way novelty detection, Nkonwn

and Nnovel are set to 37 and 5, respectively. During detection, testing set that
contains 5 known classes and 5 novel classes is obtained. Figure 6a, 6b and
Table 2 show the results after repetitive evaluation, where Nnovel = 1 and 5,
respectively. AV Gknown refers to the average OA of the known classes while

12 W. Li et al.

Table 2. Novel DroidMal Traffic Classification, where the Nnovel = 1, 5 respectively.

Mode Nnovel = 1, Nknown = 9 Nnovel = 5, Nknown = 5

OA Pr Re F1 OA Pr Re F1

CNN [21] 78.15 78.14 68.81 73.18 48.75 45.89 38.73 42.01

GAN [14] 72.07 72.48 45.32 55.77 42.09 43.19 25.87 32.36

SiameseNet [11] 92.76 93.33 92.76 93.04 89.26 90.00 89.26 89.63

Flowprint [8] 87.63 88.93 87.66 88.29 84.52 85.61 86.01 85.81

FS-Net [13] 92.11 93.41 93.69 93.55 91.87 90.99 91.42 91.20

TripletNet [9] 96.03 96.06 96.03 96.04 93.86 94.00 93.86 93.93

AMDetector 99.77 99.80 99.83 99.81 95.06 95.32 95.95 95.63

Table 3. Cross-platform Malware Traffic Classificaiton, where the Ncross = 1, 5 re-

spectively.

Mode Ncross = 1, Nknown = 9 Ncross = 5, Nknown = 5

OA Pr Re F1 OA Pr Re F1

CNN [21] 57.32 81.09 31.93 45.82 10.92 34.73 10.72 16.38

GAN [14] 41.59 58.31 27.99 37.82 5.10 17.93 6.54 9.58

SiameseNet [11] 91.15 92.07 91.16 91.61 64.57 61.63 64.57 63.07

Flowprint [8] 82.71 83.06 83.75 83.40 71.85 72.82 72.09 72.45

FS-Net [13] 85.13 84.62 84.97 84.79 75.14 76.47 76.25 76.36

TripletNet [9] 89.89 90.47 89.87 90.18 69.08 68.25 69.08 68.66

AMDetector 93.59 93.24 95.17 94.19 81.59 82.08 83.23 82.65

AV Gcn refers to the average OA of the n − th novel class. It is encouraged to
see that AMDetector performs superiorly when detecting diverse novel classes.
Meanwhile, AMDetector can achieve stable performance on known and novel
classes classification synchronously.

4.5 Cross-Platform Malware Detection

In order to verify the generalization of AMDetector, AMDetector is trained
with AndMal2017 and tested with USTC-MW. Note that only the baselines
supporting novelty detection will be evaluated in this part. Following the same
principle in Section 4.4, we randomly select 1 or 5 classes from USTC-MW and 9
or 5 classes from AndMal2017 to construct testing set, respectively. Figure 6c, 6d
and Table 3 illustrate the results, where Nnovel is set to 1 and 5, respectively.
The results prove that our well-trained model can transfer to classify the unseen
malware traffic, even if the traffic is generated from malware on Windows.

5 Conclusion

In this paper, we convert the few-shot Android malware detection to the prob-
lem of encrypted network traffic classification and proposed AMDetector, a ses-

AMDetector: Detecting Large-scale and Novel Android Malware Traffic 13

sion image-based model with meta-learning to tackle the above issues. First,
DoridMal encrypted traffic is split with session and transferred to gray-scale im-
ages. Then, after embedding the images into a high dimension metric spatial,
a prototype-based classifier is applied to separate the samples linearly. Well-
designed experiments are evaluated on 2 public datasets and verify the efficiency
and generality of our model when classifying large-scale DoridMal traffic, which
is superior to the state-of-the-arts. Moreover, our model is capable to detect and
classify the encrypted traffic that is unseen in training set, even if it is generated
by the malware from different Operation Systems.

6 Acknowledgment

This work was supported by the National Natural Science Foundation of China
(Grant U2003111, 61871378).

References

1. Abuthawabeh, M., Mahmoud, K.: Enhanced android malware detection and family

classification, using conversation-level network traffic features. Int. Arab J. Inf.

Technol. (2020)

2. Arora, A., Garg: Malware detection using network traffic analysis in android based

mobile devices. In: 2014 Eighth International Conference on Next Generation Mo-

bile Apps, Services and Technologies (2014)

3. Arshad, S., Shah: Android malware detection & protection: a survey. International

Journal of Advanced Computer Science and Applications (2016)

4. Bai, Y., Xing: Unsuccessful story about few shot malware family classification and

siamese network to the rescue. In: Proc. of ICSE (2020)

5. Celik, Z.B., Walls: Malware traffic detection using tamper resistant features. In:

MILCOM 2015-2015 IEEE Military Communications Conference (2015)

6. Chan, P.P., Song: Static detection of android malware by using permissions and

api calls. In: Proc. of ICML (2014)

7. Chen, R., Li: Android malware identification based on traffic analysis. In: Interna-

tional Conference on Artificial Intelligence and Security (2019)

8. van Ede, T., Bortolameotti: Flowprint: Semi-supervised mobile-app fingerprinting

on encrypted network traffic. In: Proc. of NDSS (2020)

9. Hoffer, E., Ailon, N.: Deep metric learning using triplet network (2014)

10. Hou, S., Saas: Deep4maldroid: A deep learning framework for android malware

detection based on linux kernel system call graphs. In: 2016 IEEE/WIC/ACM

International Conference on Web Intelligence Workshops (WIW) (2016)

11. Jmila, H., Khedher: Siamese network based feature learning for improved intrusion

detection. In: Proc. of ICONIP (2019)

12. Lashkari, A.H., Kadir: Toward developing a systematic approach to generate

benchmark android malware datasets and classification. In: 2018 International Car-

nahan Conference on Security Technology (ICCST) (2018)

14 W. Li et al.

13. Liu, C., He, L., Xiong, G., Cao, Z., Li, Z.: Fs-net: A flow sequence network for

encrypted traffic classification. In: IEEE INFOCOM 2019-IEEE Conference on

Computer Communications (2019)

14. Liu, Z., Li: Efficient malware originated traffic classification by using generative ad-

versarial networks. In: 2020 IEEE Symposium on Computers and Communications

(ISCC) (2020)

15. Onwuzurike, L., Mariconti: Mamadroid: Detecting android malware by building

markov chains of behavioral models (extended version). TOPS (2019)

16. Peiravian, N., Zhu, X.: Machine learning for android malware detection using per-

mission and api calls. In: Proc. of ICTAI (2013)

17. Sharan, A., Radhika, K.: Machine learning based solution for detecting malware

android applications. Machine Learning (2020)

18. Snell, J., Swersky: Prototypical networks for few-shot learning. In: Proc. of NeurIPS

(2017)

19. Spreitzenbarth, M., Freiling: Mobile-sandbox: having a deeper look into android

applications. In: Proceedings of the 28th Annual ACM Symposium on Applied

Computing (2013)

20. Tang, Z., Wang, Q., Li, W., Bao, H., Liu, F., Wang, W.: Hslf: Http header se-

quence based lsh fingerprints for application traffic classification. In: International

Conference on Computational Science (2021)

21. Wang, W., Zhu: Malware traffic classification using convolutional neural network

for representation learning. In: 2017 International Conference on Information Net-

working (ICOIN) (2017)

22. Wang, W., Zhu, M.: End-to-end encrypted traffic classification with one-

dimensional convolution neural networks. In: 2017 IEEE International Conference

on Intelligence and Security Informatics, ISI 2017, Beijing, China, July 22-24, 2017

(2017)

23. Wang, Y., Yao: Generalizing from a few examples: A survey on few-shot learning.

ACM Computing Surveys (2020)

24. Wang, Z., Fok, K.W., Thing, V.L.: Machine learning for encrypted malicious traffic

detection: Approaches, datasets and comparative study. Computers & Security

(2022)

25. Wong, M.Y., Lie, D.: Intellidroid: A targeted input generator for the dynamic

analysis of android malware. In: NDSS (2016)

26. Yan, L.K., Yin, H.: Droidscope: Seamlessly reconstructing the {OS} and dalvik

semantic views for dynamic android malware analysis. In: USENIX12 (2012)

27. Yang, W., Kong: Malware detection in adversarial settings: Exploiting feature evo-

lutions and confusions in android apps. In: Proc. of ACSA (2017)

28. Yuan, Z., Lu: Droiddetector: android malware characterization and detection using

deep learning. Tsinghua Science and Technology (2016)

29. Zheng, W., Gou, C., Yan, L., Mo, S.: Learning to classify: A flow-based relation

network for encrypted traffic classification. In: Proc. of WWW (2020)

30. Zhu, H.J., You: Droiddet: effective and robust detection of android malware using

static analysis along with rotation forest model. Neurocomputing (2018)

