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Abstract— Speech enhancement based on neural networks 

provides performance superior to that of conventional 

algorithms. However, the network may suffer owing to 

redundant parameters, which demands large unnecessary 

computation and power consumption. This work aimed to 

prune the large network by removing extra neurons and 

connections while maintaining speech enhancement 

performance. Iterative network pruning combined with 

network retraining was employed to compress the network 

based on the weight magnitude of neurons and connections. 

This pruning method was evaluated using a deep denoising 

autoencoder neural network, which was trained to enhance 

speech perception under nonstationary noise interference. Word 

correct rate was utilized as the subjective intelligibility feedback 

to evaluate the understanding of noisy speech enhanced by the 

sparse network. Results showed that the iterative pruning 

method combined with retraining could reduce 50% of the 

parameters without significantly affecting the speech 

enhancement performance, which was superior to the two 

baseline conditions of direct network pruning with network 

retraining and iterative network pruning without network 

retraining. Finally, an optimized network pruning method was 

proposed to implement the iterative network pruning and 

retraining in a greedy repetition manner, yielding a maximum 

pruning ratio of 80%.  

I. INTRODUCTION 

Speech enhancement has been widely used in speech 

communication, automatic speech recognition, and speech 

coding. It aims to estimate clean speech from noisy sound 

with an acceptable speech quality and intelligibility. Many 

monaural speech enhancement methods, which use only 

single-channel speech information have been proposed, such 

as Wiener filtering, minimum mean square error (MMSE) 

based estimation, and subspace method [1]. Most speech 

enhancement algorithms are derived based on the prior 

distribution assumptions of the noisy speech and explore the 

statistical difference between the clean speech and noise 

signal. In real-world scenarios, those speech enhancement 

algorithms are usually less effective under nonstationary 

noise conditions. Recently with the development of the deep 

neural network (DNN) in signal processing [2-3], many 

neural network based speech enhancement algorithms have 

been proposed, which employ nonlinear processing units to 

learn higher order statistical information automatically [4-7]. 

For instance, an objective function for DNN-based speech 

enhancement was proposed to match human auditory 

perception. The proposed objective function helped to 

compute the gradients based on a perceptually motivated 

non-linear frequency scale and alleviated the over-

smoothness of the estimated speech [8]. Furthermore, a 

speech enhancement algorithm based on deep denoising 

autoencoder (DDAE) was shown to provide superior 

performance to the traditional MMSE-based estimation [4, 5]. 

The DDAE-based speech enhancement combined with a 

noise classifier could potentially be integrated into an 

embedded signal processor to overcome the degradation of 

speech perception caused by noise [9, 10].  However, the 

superior performance of the neural network is at the cost of 

high computational complexity and power consumption, 

making it difficult to deploy neural network based speech 

enhancement to mobile and embedded devices. Hence, many 

recent studies have focused on designing approaches to 

compress DNN structures. Effective approaches include 

quantization, sparse or low-rank compressions, and network 

pruning [11]. 

Specially, the network pruning method has been studied 

for decades [12-14]. Early pruning approaches included 

optimal brain damage (OBD) and optimal brain surgeon 

(OBS), which reduced the number of network connections 

based on the Hessian of the loss function [12, 13]. It was 

shown that such pruning methods were more effective and 

accurate than the magnitude-based pruning method [15]; 

however, the necessary second-order derivatives required 

additional computational resources. Liu et al. compared the 

OBD-based pruning method with the magnitude-based 

pruning method for DNN-based speech classification 

accuracy and speech recognition performance. The 

classification accuracy and word error rate (WER) results 

showed that the OBD-based pruning method was superior for 

highly pruned network [14]. However, the accuracy and 

WER showed a slight difference between the OBD-based 

pruning and magnitude-based pruning methods. The 

magnitude-based pruning method gained more attention 

because it could be simply and efficiently implemented. 

Recently, Han et al. proposed a deep compression method 

that combined magnitude-based pruning, quantization and 

Huffman coding. They removed the redundant network 

connections and learned only those connections that are 

important [16-17]. This magnitude-based pruning method 

was shown to reduce the number of parameters by 9× and 

13× on the AlexNet and VGG-16, respectively [16]. 

Motivated by this success in image processing, this study 

employed the magnitude-based pruning method for DNN-



based speech enhancement. Although the magnitude-based 

pruning method has been established in theory and evaluated 

in many experiments, the application to DNN-based speech 

enhancement is still questionable. This is largely because the 

full-connected speech enhancement network is very complex, 

particularly when dealing with nonstationary background 

noise, and the accurate perceptual evaluation of the enhanced 

speech is difficult. 

Accurate evaluation of enhanced speech has long been a 

challenge for speech enhancement studies [18-23]. Many 

objective speech quality/intelligibility indices, e.g., speech-

transmission index [19], normalized covariance metric [20], 

short-time objective intelligibility metric [21] and across-

band envelope correlation metric [22], have been developed. 

However, these evaluation metrics could hardly predict the 

intelligibility of enhanced speech containing various non-

linear distortion, caused by the nonlinear processing in 

speech enhancement [18]. Compared to objective speech 

intelligibility evaluation, subjective listening tests require 

human listeners to recognize speech signals, and these 

generally have the most accurate results for speech 

intelligibility. The word correct rate (WCR) was often used 

as the subjective evaluation criteria, which is calculated by 

dividing the number of correctly identified words by the total 

words for each test condition [23]. Hence, this study utilized 

WCR as a subjective feedback index to evaluate speech 

enhanced by the pruned network. In summary, the major goal 

of this study was to prune the network based on the weight 

magnitude of each connection and neuron and use WCR as a 

subjective feedback index to evaluate the speech 

enhancement performance of the sparse network during 

network pruning.  

II. NETWORK PRUNING 

A. DDAE-based Speech Enhancement  

DDAE has been used to build a DNN architecture for 

speech enhancement [4, 5]. The basic structure of DDAE-

based speech enhancement is shown in Fig. 1.  

This network can be regarded as a multiple hidden layer 

neural associator with noisy speech as input and clean speech 

as output. The fast Fourier transform (FFT) is applied to the 

input signal to compute the spectrum of each overlapping 

windowed frame. A set of noisy-clean speech pairs are  

converted into a Mel-frequency power spectrum as the input 

features 𝑌𝑚
  and output features 𝑋𝑚

  during the training phase. 

The frame in the FFT is denoted by m. For a DDAE model 

with D hidden layers, it can be obtained that: 

 
where {𝑊0 … 𝑊𝐷} and {𝑏0 … 𝑏𝐷} are the matrices of the 

connections and the bias vectors for the DDAE model. �̂�𝑚
  is 

the vector of enhanced speech corresponding to the noisy 

counterpart 𝑌𝑚
 , and the activation function is given by 

σ(t) = (1 + 𝑒−𝑡)−1. The final parameters are determined by 

optimizing the following objective functions: 

 
Here M is the total number of noisy-clean pairs. In the test 

phase, an inverse transform is performed to synthesize the 

restored speech waveforms with phase information of the 

corresponding noisy speech. The speech feature was 

extracted from frames with a 16 ms Hamming window and 

frame shifting of 8 ms. More detailed information regarding 

the DDAE-based speech enhancement can be found in 

studies [4, 5]. 

B. Iterative Network Pruning Method  

The network pruning method proposed in this study is 

based on the magnitude of parameter weights. Pruning 

converts a dense neural network into a sparse one and 

reduces the number of parameters and computations while 

adequately preserving speech enhancement performance. 

A block diagram of the pruning network method is shown 

in Fig. 2. Firstly, the network is trained normally to obtain 

the original parameter set 𝛩. The next step is to prune the 

network based on the magnitude of weights. The absolute 

value is employed as a simple index to determine the relative 

importance of the weight. Weights with absolute values 

below the pruning threshold are removed by setting them to 

zero. During this step, a mask matrix M is utilized to 

implement the network pruning. Weights below the pruning 

threshold have a corresponding mask of zero; otherwise, the 

value of the mask is one. The pruning network is realized by 

computing the dot product between the original parameter set 

𝛩 and the mask matrix M. 
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Fig. 2 Block diagram of the iterative pruning method with retraining. 

 
Fig. 1 Structure of DDAE-based speech enhancement system. FFT, fast 

Fourier transform; IFFT, inverse fast Fourier transform. 



The third step is to retrain the sparse network to obtain the 

final weights. Note that the initialization network for the 

retraining is the sparse network from the second step rather 

than the initial random network. The sparse network has 

converged, and so, keeping the surviving parameters 

provides better performance when retraining the sparse 

network. During the retraining phase, the learning rate needs 

to be adjusted. This is because the weights have already 

attained local minima during the training network phase. 

Usually, the retraining learning rate is reduced by one or two 

orders of magnitude.  

The final step is to evaluate the performance of the pruned 

network using the WCR. The threshold is usually the WCR 

of speech enhanced by the original network. If the WCR is 

obviously lower than the threshold, the critical sparse 

network is obtained. Otherwise, it returns to the “prune 

network” step and prunes more weights. The pruning step 

combined with the one-time retraining is one iteration, and 

the maximum pruning ratio of parameters could be found by 

pruning the network progressively after several such 

iterations. This pruning method is called iterative pruning 

method.    

Compared to the iterative pruning method, direct pruning 

method removes the weights of the original network globally 

according to the pruning ratio instead of performing 

progressive pruning. The optimized pruning method repeats 

the iterative pruning and retraining in a greedy way, which 

reconverges the pruned network. The optimized iterative 

pruning method is expected to provide a higher network 

pruning ratio. 

III. EXPERIMENTS 

A. Databases and Settings 

Experiments were conducted using utterances excerpted 

from the Mandarin Chinese version of hearing in noise test 

(MHINT) [24], which were pronounced by a male native 

speaker with a fundamental frequency ranging from 75-180 

Hz, and recorded with a sampling rate of 16 kHz. This study 

focuses on challenging noisy conditions; hence two types of 

nonstationary noise were utilized, i.e., babble noise and 

 

construction jackhammer (CJ) noise. Half of the clean 

MHINT utterances were corrupted by the corresponding 

noise at –10, –5, 0, 5, and 10 dB input signal-to-noise ratios 

(SNRs) to form the training set. The other half of the clean 

utterances were corrupted by two noises at 0 dB input SNR 

to form the test set.  

The DDAE-based speech enhancement model consisted of 

three layers, with 500 neurons in each hidden layer. The 

number of trained network parameters was 581,580. Then the 

original network was pruned iteratively to several ratios. For 

subjective feedback, listening experiments were conducted 

with 20 subjects having normal hearing to obtain the WCR of 

the speech enhanced by the different pruned networks. 

B. Iterative Pruning 

The trade-off curves between the pruning ratio and WCR 

under the babble and CJ noise conditions are shown in Fig. 3 

and Fig. 4, wherein pruning ratio refers to proportion of 

parameters removed. The three network pruning methods 

were compared, including 1) iterative pruning with retraining, 

2) direct pruning with retraining, and 3) iterative pruning 

without retraining. In Fig. 3 and Fig. 4, it can be seen from 

the red line that the iterative pruning method with retraining 

could prune 50% of the parameters without significantly 

affecting the WCR of enhanced speech while the maximum 

pruning ratio of iterative pruning without retraining is only 

up to 25% (the dashed line). In addition, the direct pruning 

method with retraining performs better than iterative pruning 

method without retraining, but its maximum pruning ratio 

(the dotted line) is lower than that of the iterative pruning 

method (the solid line). 

C. Optimized Iterative Pruning 

Trade-off curves of the optimized pruning method between 

the pruning ratio and WCR under the babble and CJ noise 

conditions compared with the iterative pruning method with 

retraining, are shown in Fig. 5 and Fig. 6. Under the 0 dB CJ 

noise condition, the optimized pruning method, which 

repeated the pruning and retraining 5 times (the dotted line) 

or 10 times (the solid line), could remove 75% of the 

 

 
Fig. 3 Trade-off curves between pruning ratio and WCR of three 

pruning methods under the babble noise condition. 

 
Fig. 4 Trade-off curves between pruning ratio and WCR of three 

pruning methods under the CJ noise condition. 



 

parameters without affecting the subjective speech perception 

performance of the pruned network. Under the babble noise 

condition, the maximum pruning ratio could reach up to 80%, 

equivalent to reducing the network parameters by 5×. The 

optimized pruning method performs better than iterative 

pruning method with retraining (the dashed line). In addition, 

there is little difference between the two optimized pruning 

methods that repeat the iterative pruning and retraining steps 

5 times and 10 times.  

IV. DISCUSSION AND CONCLUSIONS 

DNN have been widely applied in speech signal 

processing for classification (automatic speech and speaker 

recognition) and regression (speech separation and 

enhancement) tasks. The DNN-based speech enhancement 

system automatically learns the nonlinear kernel space from 

noisy-clean speech pairs and performs well even under 

mismatched noise types; hence it can potentially be 

implemented in embedded and mobile speech processors. 

However, the network parameters are highly redundant, 

leading to large memory requirements and unbearable 

computational burden to embedded devices. This study 

evaluated magnitude-based network pruning methods to 

reduce network redundancy without significant degeneration 

in the speech enhancement performance. To dates, the 

accurate evaluation of the enhanced speech containing non-

linear distortions arising from speech enhancement 

processing is still a challenging task. Hence, the present work 

employed WCR as the subjective intelligibility feedback 

index to evaluate the performance of the sparse networks 

after network pruning.  

Experimental results related to the DDAE-based speech 

enhancement network in this work showed that the iterative 

pruning method with retraining could remove 50% of the 

network parameters without affecting the network 

performance in subjective speech perception. This result is 

superior to other implementations of the iterative pruning 

without retraining and direct pruning with retraining. 

Furthermore, by repeating the iterative pruning and retraining 

steps 5 times, the maximum pruning ratio of the network 

could be raised up to 80%, equivalent to a compression rate  

of 5:1. Future work will assess the efficacy of the optimized 

iterative pruning method on other speech enhancement 

networks with higher complexity or more challenging 

listening environments, and combine it with other 

compression strategies (e.g., quantization and hardware 

acceleration) to further reduce the network redundancy. 
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