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Abstract—In supervised machine learning, feature selec-
tion plays a very important role by potentially enhancing
explainability and performance as measured by computing
time and accuracy-related metrics. In this paper, we in-
vestigate a method for feature selection based on the well-
known L1 and L2 regularization strategies associated with
logistic regression (LR). It is well known that the learned
coefficients, which serve as weights, can be used to rank
the features. Our approach is to synthesize the findings of
L1 and L2 regularization. For our experiment, we chose
the CIC-IDS2018 dataset [1] owing partly to its size and
also to the existence of two problematic classes that are
hard to separate. We report first with the exclusion of one
of them and then with its inclusion. We ranked features
first with L1 and then with L2, and then compared logistic
regression with L1 (LR+L1) against that with L2 (LR+L2)
by varying the sizes of the feature sets for each of the two
rankings. We found no significant difference in accuracy
between the two methods once the feature set is selected.
We chose a synthesis, i.e., only those features that were
present in both the sets obtained from L1 and that from
L2, and experimented with it on more complex models like
Decision Tree and Random Forest and observed that the
accuracy was very close in spite of the small size of the
feature set. Additionally, we also report on the standard
metrics: accuracy, precision, recall, and f1-score.

Index Terms—logistic regression, L1 regularization, L2
regularization, feature selection

I. INTRODUCTION

Feature selection is an effective and efficient data pre-
processing method in machine learning (ML) employed
to reduce the dimensionality of the data, which can
improve the performance of machine learning models
and make them more interpretable. Moreover, it has
the potential of providing more accurate predictions
by removing noise in the data arising from irrelevant
features. The challenge is to select a subset of the
interesting data features that are most relevant and able
to correctly differentiate samples from different classes.

A major problem in supervised ML is overfitting,
i.e., the situation where the model learns the dataset
“too well", resulting in a high training data accuracy
but a poor test data accuracy during cross-validation.
Regularization is one of the most popular methods used

to avoid overfitting; it adds a penalty term to the loss
function of the ML model that reflects the complexity
of the model. L1 regularization tends to assign the
coefficients or weights of less important features to
zero, thus producing a sparse vector and equivalently a
smaller set of good-enough features. On the other hand,
L2 regularization tends to shrink the coefficients more
uniformly; thus, a sparse vector is not realizable.

In our proposed method, we attempt to synthesize the
two approaches. First, we obtain a ranked ordering of
features using logistic regression with L1 regularization,
then another ordering using L2. We choose those features
that are present in both of these sets and experimentally
test the performance of selected ML models using our
set.

Our experiment is on one large dataset which is a non-
trivial real-world dataset that is large in volume. Also, it
is challenging because there is a problematic class that
is hard to separate from another.

Regarding supervised ML models, we targeted the
Decision Tree because it is explainable. Since we are
studying accuracy, a metric that is not always the highest
for these classifiers, we also chose the Random Forest
classifier, which is related to the Decision Tree, exhibits
excellent accuracy, but sacrifices explainability. We have
found that using our method on Decision Trees and
Random Forest, there is a loss of only 0.8 and 0.6%
mean accuracy while reducing the feature size by 72%,
and that regardless of the inclusion of the problematic
class.

The rest of the paper is organised as follows. In
section II, we present some background material and
prior feature selection techniques. In section III, we
describe the experiment setup and procedure; and in
section IV present the results and analysis of this case
study. Finally, in section V, we offer concluding remarks
along with future research directions.
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II. BACKGROUND & RELATED WORK

A. Background

1) Logistic regression and Regularization: Logistic
regression (LR) is one of the most popular supervised
ML algorithms used for solving the classification prob-
lems. Regression analysis models uses coefficients to
estimate the features. If the estimates can be narrowed
towards zero, then the impact of insignificant features
might be reduced. L1 and/or L2 regularization is used
with LR to prevent overfitting by adding a penalty term
to the cost function. In the context of feature selection,
L1 regularization is known to perform feature selection
by shrinking the coefficients of less important features
to zero which will make some features obsolete. This
results in a sparse model where only a subset of features
are used. On the other hand, L2 regularization shrinks
the coefficients of less important features but does not set
them to zero. This results in a model where all features
are used, but the less important features have smaller
coefficients.

• L1 Regularization adds a penalty term to the loss
function equal to the sum of the absolute values of
the coefficients. The cost function with L1 penalty
is given by

n∑
i=1

(yi −
m∑
j=1

xij .Wj)
2 + λ

m∑
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|Wj |

• L2 Regularization adds a penalty term to the loss
function equal to the sum of the squares of the
coefficients. Thus cost function with L2 penalty
becomes
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Here, Wj is the weight/coefficient of the feature xj and
λ is known as the regularization parameter. The terms

λ
m∑
j=1

|Wj | and λ
m∑
j=1

Wj
2 are called penalty terms for

L1 and L2 respectively.
2) Random Forest: Random Forest (RF) [2] is a

divide-and-conquer based supervised learning algorithm
that can scale the volume while maintaining statistical
efficiency of information. It can be applied comprehen-
sively to any prediction problem with few calibrated pa-
rameters. RF is a collection of tree predictors that allows
the ensemble of trees to choose the most popular class in
order to improve classification accuracy. The ensemble
generates random vectors to regulate tree growth. Each
tree is constructed using random observations from the
original dataset.

3) Decision Tree: A Decision Tree (DT) is a tree-
based technique which learns a model by generating the
same labeling for the provided data. Similar to RF, DT
also uses a divide-and-conquer strategy to find the best
split points within a tree by employing a greedy search.
The main idea is to continually split the dataset into
yes/no questions using its features, until each data point
is recognized as belonging to a particular class.

4) Performance evaluation parameters: The most
common way to analyze the performance of any clas-
sification model is to use the confusion matrix [3]. Con-
fusion matrix consists of actual label vs predicted labels
which helps to visualize the distribution of each class
along with a breakdown of error categories. Performance
evaluation parameters i.e., accuracy, precision, recall, F1-
score, etc., can be computed using the components of
confusion matrix.

a) Accuracy: It is the ratio of the number of
accurately predicted instances to the number of total
instances. Despite being the most common performance
measure, it is not an useful metric for unevenly dis-
tributed data.

b) Precision: The precision is an indicator mea-
suring the exactness of each class. It is the ratio of
the number of positive instances that were predicted
accurately to the total number of instances that were
predicted positive. When a high cost is associated with
false positive, precision is a preferable metric.

c) Recall: The recall is an indicator measuring the
completeness of each class. It is the ratio of the number
of positive instances that were predicted accurately to
the number of actually positive instances. Recall is
a preferable metric when the associated cost of false
negative is high.

d) F1-score: F1-score is a function of precision
and recall which represents the harmonic mean. F1-score
is more appropriate measure for uneven classification
problems where a balance between precision and recall
is needed.

B. Related Work

Features selection techniques are crucial for reducing
training time and improving performance by removing
irrelevant features. [4]. There have been proposed a lots
of feature selection mechanisms in the past for super-
vised learning. The currently available feature selection
methods can be categorized into the followings:

• Filter Methods: Features are selected based on the
results of various statistical methods i.e., informa-
tion gain, chi-square test, ANOVA, etc., are used to
evaluate their association with actual results. These
methods are faster and computationally less ex-
pensive, hence when dealing with high-dimensional
data, it is suggested to use filter methods [5].
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• Wrapper Methods: Wrapper methods generates sub-
sets of all the features, and selects the best-
performing subsets of features. However, these
methods are usually computationally very expen-
sive. Followings are the most popular wrapper
methods:

– Forward Selection: An iterative technique that
starts with no features and in each iteration
adds a feature that best improves the model un-
til no additional feature is available to enhance
performance [6].

– Backward Elimination: Backward elimination
begins with all features and, with each iter-
ation, eliminates the least relevant one. This
procedure is continued until there is no im-
provement after the elimination of features [6].

– Recursive Feature elimination (RFE): A small
sample classifier that increases performance by
deleting characteristics with the least impact
on training errors [7, 8]. In RFE, features are
ranked by coefficient value or feature impor-
tance.

• Embedded Methods: Embedded methods generally
combine two different approaches [9] thus encom-
pass the benefits of both filter and wrapper methods.
It intelligently drop unnecessary features during
training phase. Both L1 and L2 regularization is em-
bedded methods. Some other common algorithms
include:

– Tree-based feature selection: Tree-based es-
timators compute impurity-based feature im-
portance, the best performing features are the
closest nodes of the root of the tree.

III. EXPERIMENT

A. Dataset and pre-processing
1) Dataset: The CIC-IDS2018 dataset represents ob-

servations gathered over a span of 10 days of network
traffic; it is huge in volume representing 16,233,002
samples and is spread over ten CSV files [10]. For each
sample, it gives values for 79 features along with one of
15 different target classes of which it is known to be a
member. Table I lists their names and sample sizes.

Among the 15 classes, the number of samples for
DDOS Attack LOIC UDP is small: 1730, while those for
Brute Force XSS, Brute Force Web, and SQL Injection
are extremely small: 230, 611, and 87 respectively. Most
real-world datasets are class imbalanced, i.e., the number
of samples of some classes are grossly different from that
of others. This is a key issue since most ML algorithms
assume that data is evenly distributed across classes. The
domination of majority classes over minority ones can
make ML classifiers biased towards the former resulting
in misclassification of the former.

2) pre-processing: As a part of a cleaning phase,
observations with feature values Infnity, NaN (i.e., a
missing value) were dropped. Also, there were 59 entries
for which the class entry was Label, i.e., unknown;
these too were dropped. Finally, we chose not to use
the timestamp feature since it is not relevant to the
classification [11]; this left us with 78 features.

We attempted to extract 5,000 random samples from
each class that survived the cleaning phase. To avoid
drastic class imbalance, we excluded the three classes
with very small sample size: Brute Force XSS, Brute
Force Web, and SQL Injection, leaving us with 12
classes. We had 5,000 samples each from eleven of them
but only 1,730 from the last (DDOS Attack LOIC UDP);
thus, we had 56,730 samples.

Moreover, DoS attacks-SlowHTTPTest and FTP-
BruteForce classes are very hard to separate. We identi-
fied DoS attacks-SlowHTTPTest as a problematic class.
To handle it, we split our experiment into two parts,
excluding the problematic class in the first part of the
experiment and including it in the second. Thus, for the
first part, the size of the dataset became 51,730 from 11
classes.

target class record count
Benign 13484708
DDOS attack-HOIC 686012
DDoS attacks-LOIC-HTTP 576191
DoS attacks-Hulk 461912
Bot 286191
FTP-BruteForce 193360
SSH-Bruteforce 187589
Infilteration 161934
DoS attacks-SlowHTTPTest 139890
DoS attacks-GoldenEye 41508
DoS attacks-Slowloris 10990
DDOS Attack LOIC UDP 1730
Brute Force Web 611
Brute Force-XSS 230
SQL Injection 87

TABLE I: target classes

B. Experimental setup

Our experiments were implemented in Python 3 using
the scikit learn (sklearn) package. This allowed us to
execute standard code for training the machine learning
models of interest, as well as for testing and obtaining
results; we used matplotlib for plotting graphs.

We used a 70 : 30 ratio for training data : test
data; consequently, in the first part of the experiment,
the training dataset had 36,211 observations and testing
set had 15,519 observations. For the second part of
the experiment, we added 5000 random samples of the
problematic class DoS attacks-SlowHTTPTest. The 70:30
ratio for training data : test data remained unchanged
leading to 39,711 training samples and 17,019 test ones.
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(a) Mean accuracy vs top features from L1-rank ordering. (b) Mean accuracy vs top features from L2-rank ordering.

Fig. 1: Accuracy vs number of top features from L1 and L2 orderings.

Fig. 2: Accuracy vs number of top common features
ordered as per Table III.

The various class sizes are shown in Table II; the
numbers in the first 11 rows correspond to the first part
of the experiment; the last row was obtained from the
second part (the changed values for the other 11 classes
in that part are not shown).

target class notation sample size training set test set
Benign cls-1 5000 3531 1469
Bot cls-2 5000 3450 1550
DDOS attack-HOIC cls-3 5000 3518 1482
DDOS attack-LOIC-UDP cls-4 1730 1212 518
DDoS attacks-LOIC-HTTP cls-5 5000 3476 1524
DoS attacks-GoldenEye cls-6 5000 3442 1558
DoS attacks-Hulk cls-7 5000 3545 1455
DoS attacks-Slowloris cls-8 5000 3491 1509
FTP-BruteForce cls-9 5000 3570 1430
Infilteration cls-10 5000 3501 1499
SSH-Bruteforce cls-11 5000 3475 1525
DoS attacks-SlowHTTPTest cls-prb 5000 3518 1482

TABLE II: Sample dataset description

As noted earlier, we are interested in Logistic Re-
gression. We used the SAGA solver (a version of SAG,
which is stochastic average gradient) with an inverse
regularization parameter equal to 0.5.

Next, we trained it on the dataset prepared for the

first part of the experiment with all the features; this
generated coefficient values of each feature and mean
accuracy of the model.

L1
rank

L2
rank feature name L1

rank
L2

rank feature name

1 1 Fwd Seg Size Min 12 15 Init Bwd Win Byts
2 3 URG Flag Cnt 13 16 Fwd IAT Max
3 5 SYN Flag Cnt 14 17 Bwd IAT Std
4 6 Fwd PSH Flags 15 18 Flow IAT Max
5 10 Bwd IAT Mean 16 12 Flow Byts/s
6 9 Bwd IAT Min 17 27 Flow IAT Mean
7 4 Fwd Pkt Len Min 18 45 Protocol
8 21 Fwd IAT Min 19 2 Pkt Len Std
9 23 Flow IAT Std 22 13 FIN Flag Cnt

10 24 Fwd IAT Mean 25 51 RST Flag Cnt
11 22 Bwd IAT Max 26 44 PSH Flag Cnt

TABLE III: common features

As outlined in the Introduction, we are interested in
the coefficients learned from logistic regression using L1
and L2 regularization. Towards that end, we first applied
logistic regression with L1 regularization (LR+L1) and
sorted the learned coefficients to get an L1-rank ordering
of features. Similarly, we trained an LR+L2 model and
obtained an L2-rank ordering of features. Next, we sorted
both sets of features in decreasing order of coefficient
value.

1) Three experiments: Accuracy vs number of fea-
tures:
(a) We tested the learned LR+L1 logistic regression
model repeatedly with an increasing number of features
form the L1-rank ordering: the top feature, the top two,
the top three, etc., and observed the improvement in
accuracy with increase in the number of features. This
gave us MAX_L1, the number of features at which the
accuracy reached approximately 95% of the maximum
accuracy (the one obtained using all features). We took
this accuracy level as the baseline value for the next
component.

To find out how different the LR+L2 model would
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be, we tested it for the same sequence of features, i.e.,
observed the accuracy of the learned LR+L2 model with
an increasing number of top features from the same L1-
rank ordering.

(b) Next, we repeated the above using the L2-rank
ordering. Using the learned LR+L2 model, we first
obtained MAX_L2, the number of features at which
the accuracy equaled the baseline value obtained earlier
and then observed the improvement of accuracy with
increasing features, and found out how different the
LR+L1 model would be for the same feature sets.

Finally, we attempted to synthesize the findings of
LR+L1 and LR+L2 by computing the intersection of the
L1-rank ordering and the L2-rank ordering obtaining a
set of features we call common features.

(c) We then re-did the accuracy versus number of fea-
tures experiment using these common features ordered as
per Table III (taking the first eleven from the left column
and the last eleven from the right).

2) Twelve experiments: We then conducted twelve ex-
periments which we have given names listed in Table IV.
Each name consists of a ML model (one of LR+L1,
LR+L2, RF for Random Forest, or DT for Decision
Tree) followed by a letter (one of A, B, or C). The
letters denote the feature set used: A denotes the top
MAX_L1 features from the L1-rank ordering; B the
MAX_L2 features from the L2-rank ordering; and C all
the common features.

For example, in Experiment LR+L1-A, we ran the
LR+L1 model using features ranked 1 through MAX_L1
in the L1-rank ordering. We noted the mean accuracy,
the corresponding confusion matrix, as well as precision,
recall, and F1-score metrics.

As indicated in the last two columns, we experimented
similarly with Random Forest (RF) and Decision Tree
(DT) classifiers.

ML ModelsFeatures
LR+L1 LR+L2 RF DT

L1-rank ordering
[1...MAX_L1]

LR+L1-A LR+L2-A RF-A DT-A

L2-rank ordering
[1...MAX_L2]

LR+L1-B LR+L2-B RF-B DT-B

common features
(all)

LR+L1-C LR+L2-C RF-C DT-C

TABLE IV: Experiment names.

IV. RESULT AND ANALYSIS

The common features are listed in Table III along with
their ranks in both L1-rank and L2-rank orderings.

The number of common features was 22 drawn from
ranks 1 through 26 with average rank of 12 from the
L1-rank and from ranks 1 through 51 with average rank
of 18 from the L2-rank. This showed that the common
features primarily follow the L1-rank ordering.

(a) LR+L1-A

(b) LR+L1-B

(c) LR+L1-C

Fig. 3: Confusion matrix of LR+L1 model.

A. First part: excluding the problematic class

As mentioned earlier, the first part of the experiment
excludes the problematic class.

1) Accuracy vs number of features: We described
three experiments in Subsection III-B1. The results of
the first, i.e., (a) are displayed in Fig 1a. We learned
that MAX_L1 = 26, i.e., with the 26 top L1-ranked
features, we obtained a 91.11% accuracy, which was
approximately 95% of the maximum value of 95.69%
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(a) LR+L2-A

(b) LR+L2-B

(c) DT-C

Fig. 4: Confusion matrix of LR+L2 model.

that we found possible with logistic regression with L1
regularization using all features.

Furthermore, we observed that the performances of
LR with L1 and L2 are very similar (the divergence
around 11 – 16 features can be attributed to the ordering
of features being L1-ranked).

Similarly, the results of the second part, (outlined in
Subsection III-B1(b)) are displayed in Fig. 1b. Here, we
found MAX_L2 = 51, i.e., with the 51 top L2-ranked
features, we obtained a 90.03% accuracy, on par with

(a) RF-A

(b) RF-B

(c) RF-C

Fig. 5: Confusion matrix of RF model.

the LR+L1 observations.
As in part (a), we observed similar performances of

LR with L1 and L2 (the divergence can be similarly
attributed to the use of the L2-ranked ordering).

The results of the third part (outlined in Subsec-
tion III-B1(c)) are displayed in Fig 2. Here we observed
that we 22 features, we obtained an accuracy of 91.22%
with LR+L1 and 90.1% with LR+L2, both slightly
higher than their corresponding counterparts with 26 and
51 features respectively). These values are summarized
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(a) DT-A

(b) DT-B

(c) DT-C

Fig. 6: Confusion matrix of DT model.

in Table V. It is apparent that using common features
(which is only 28% of the original features), the drop
in mean accuracy is not significant when compared with
the values generated with all 78 features.

2) Twelve experiments: We described 12 experiments
in Subsection III-B2. Their results for mean accuracy
are listed in Table V under the columns ‘L1 features’,
‘L2 features’, and ’common features’ corresponding to
the suffix A, B, and C in the experiment names (see Ta-
ble IV). In other words, 0.9111 is the accuracy obtained

in Experiment LR+L1-A, etc.
The last two columns provide more observations per

row: where the experiments using L1-rank features (-A)
and L2-rank features (-B) are restricted to the top 22
of their features to compare with an equal number of
features from the set of common features. They show
the superiority of the set of common features does not
come from their size.

The accuracy along with precision, recall, and F1-
scores are summarized for all four ML models we have
used in Table VI. It is visible that both RF and DT works
very well with the selected features; all performance
metrics have a score of 98% or higher. For completeness,
we also report the corresponding confusion matrices in
Fig. 3–6.

B. Second part: including the problematic class

For the second part, we performed 12 experiments
described in Subsection III-B2 after including the prob-
lematic class in the dataset (56,730 samples). The com-
parison of mean accuracy using different ML models for
this case is presented in Table VII. Comparing Table V
and Table VII, it is clear that the mean accuracy dropped
drastically for all the models. On top of that, none of
the feature subsets performed well for either LR+L1
or LR+L2. However, for with RF and DT, the mean
accuracy achieved using the 22 common features are
very close to that achieved with all 78 features, showing
the effectiveness of the set of common features.

The confusion matrix after inclusion is very sim-
ilar for all the classes except for the problematic
class DoS attacks-SlowHTTPTest (cls-prb) and FTP-
BruteForce (cls-9); these are the two classes that are
hard to separate. We will refer to the latter (cls-9) as
the confounding class.

So, instead of showing the entire confusion matrix,
we focus on the sub-matrix corresponding to these two
classes. Table VIII shows the values of that sub-matrix.
Both LR+L1 and LR+L2 using L1-ranked ordering or
common features, identified all the samples of confound-
ing class as the problematic class (see Table VIIIa,
Table VIIIc, Table VIIId, Table VIIIf). The situation is
better for both RF and DT regardless of the feature set:
both models identified the problematic class correctly
97% of the time although they correctly identify the
confounding class only 42% of the time. It is slightly
better for L2-rank ordering features with both LR+L1
and LR+L2 since they identify the problematic class
correctly 55% of the time and the confounding class
80%.

Since these appear to be tradeoffs, we present the
values of recall for both the problematic class and the
confounding class in Table IX and Table X.
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all 78 features A (L1 features) B (L2 features) C (common features) top 22 L1 features top 22 L2 features
LR+L1- 0.9569 0.9111 0.8787 0.9122 0.7634 0.8375
LR+L2- 0.9689 0.887 0.9003 0.901 0.7615 0.8625
RF- 0.9917 0.9858 0.9826 0.986 0.9823 0.9826
DT- 0.9903 0.9827 0.9832 0.9822 0.9796 0.9785

TABLE V: Mean accuracy comparison excluding problematic class.

accuracy precision recall F1-score
LR+L1 0.91 0.91 0.92 0.92
LR+L2 0.90 0.91 0.91 0.90
RF 0.99 0.99 0.99 0.99
DT 0.98 0.98 0.98 0.98

TABLE VI: Performance metrics excluding problematic
class using common features.

V. CONCLUSION & FUTURE WORK

In this research, we experimented on a logistic re-
gression based feature selection method to reduce the
number of features required to train a supervised ML
model. We chose the CIC-IDS2018 dataset to analyze
the performance of feature selection method on both
linear and complex machine learning models. Using our
proposed method synthesizing top features from LR+L1
and LR+L2, we obtained a small feature set of size 22, a
72% reduction from the original. (22 of 78) and observed
that (a) it was the most important set of that size since
it performed better than subsets of that size from either
the L1-rank ordering or the L2-rank ordering for every
ML model — both linear and complex; (b) we could
reach or exceed the baseline accuracy target set (see
Section III-B1) for LR with less features — 15% less for
L1 and 57% less for L2. Note that it may appear that the
accuracy for our feature set is 5 to 7% lower compared
with full 78 feature set, but that is not a reasonable
conclusion since we had set a lower baseline accuracy
target. When the problematic class was included, the
mean accuracy dropped owing to that class and one
confounding class as we have shown with the confusion
submatrix; (c) going beyond linear models to Random
Forest and Decision Trees, our feature set showed an
accuracy loss of less than 1% with a 72% reduction in
feature size. This was valid even when the problematic
class was included.

One limitation this scheme may encounter is a dataset
in which the common set is the same size as the L1-
ranked ordering in which case it would become equiva-
lent to the latter. Also, our experiment was on a single
dataset, which is not enough to prove the efficacy of this
method in general.

In the future, we will do performance analysis on other
datasets and provide a heuristic to predict the resulting
number of features number.

REFERENCES

[1] I. Sharafaldin, A. H. Lashkari, and A. A. Ghor-
bani. Toward generating a new intrusion detection
dataset and intrusion traffic characterization. In
ICISSP, 2018.

[2] L. Breiman. Random forests. Machine learning,
45(1):5–32, 2001.

[3] M. P. Akhter, Z. Jiangbin, I. R. Naqvi, M.
Abdelmajeed, A. Mehmood, and M. T. Sadiq.
Document-level text classification using single-
layer multisize filters convolutional neural net-
work. IEEE Access, 8:42689–42707, 2020.

[4] A. Kumar and A. Jaiswal. Swarm intelligence
based optimal feature selection for enhanced pre-
dictive sentiment accuracy on twitter. Multimedia
Tools and Applications, 78, Feb. 2019.

[5] A. Bommert, X. Sun, B. Bischl, J. Rahnenführer,
and M. Lang. Benchmark for filter methods for
feature selection in high-dimensional classifica-
tion data. Computational Statistics & Data Anal-
ysis, 143:106839, 2020.

[6] B. Walczak and D. Massart. Chapter 15 - cali-
bration in wavelet domain. In B. Walczak, editor,
Wavelets in Chemistry. Volume 22, Data Handling
in Science and Technology, pages 323–349. Else-
vier, 2000.

[7] X.-W. Chen and J. C. Jeong. Enhanced recursive
feature elimination. In Sixth International Con-
ference on Machine Learning and Applications
(ICMLA 2007), pages 429–435, 2007.

[8] I. Guyon, J. Weston, S. Barnhill, and V. Vap-
nik. Gene selection for cancer classification us-
ing support vector machines. Machine learning,
46(1):389–422, 2002.

[9] K. Yan and D. Zhang. Feature selection and
analysis on correlated gas sensor data with recur-
sive feature elimination. Sensors and Actuators B:
Chemical, 212:353–363, 2015.

[10] CIC-IDS2018 dataset. https : / /www.unb.ca /cic /
datasets/ids-2018.html.

[11] M. Catillo, M. Rak, and V. Umberto. 2l-zed-ids:
a two-level anomaly detector for multiple attack
classes. In Mar. 2020, pages 687–696.

8



all 78 features A (L1 features) B (L2 features) C (common features) top 22 L1 features top 22 L2 features
LR+L1- 0.8927 0.7983 0.8307 0.8012 0.6965 0.8013
LR+L2- 0.9115 0.7979 0.8469 0.8019 0.6988 0.8113
RF- 0.9385 0.9333 0.9328 0.933 0.9297 0.9295
DT- 0.9381 0.9304 0.9307 0.9306 0.9277 0.9263

TABLE VII: Mean accuracy comparison including problematic class.

cls-prb cls-9
cls-prb 1482 0
cls-9 1490 0

(a) LR+L1-A

cls-prb cls-9
cls-prb 812 670
cls-9 316 1174

(b) LR+L1-B

cls-prb cls-9
cls-prb 1482 0
cls-9 1490 0

(c) LR+L1-C

cls-prb cls-9
cls-prb 1482 0
cls-9 1490 0

(d) LR+L2-A

cls-prb cls-9
cls-prb 812 670
cls-9 316 1174

(e) LR+L2-B

cls-prb cls-9
cls-prb 1482 0
cls-9 1490 0

(f) LR+L2-C

cls-prb cls-9
cls-prb 1433 49
cls-9 859 631

(g) RF-A

cls-prb cls-9
cls-prb 1433 49
cls-9 859 631

(h) RF-B

cls-prb cls-9
cls-prb 1435 47
cls-9 861 629

(i) RF-C

cls-prb cls-9
cls-prb 1435 47
cls-9 861 629

(j) DT-A

cls-prb cls-9
cls-prb 1435 47
cls-9 861 629

(k) DT-B

cls-prb cls-9
cls-prb 1435 47
cls-9 861 629

(l) DT-C

TABLE VIII: Confusion (sub-)matrix only for the problematic class and its confounding class.

L1 features L2 features common features top 22 L1 features top 22 L2 features
LR+L1 1.00 0.55 1.00 1.00 0.54
LR+L2 1.00 0.55 1.00 1.00 0.55
RF 0.97 0.97 0.97 0.97 0.97
DT 0.97 0.97 0.97 0.97 0.97

TABLE IX: Comparison of recall values only for the problematic class DoS attacks-SlowHTTPTest.

L1 features L2 features common features top 22 L1 features top 22 L2 features
LR+L1 0.00 0.79 0.00 0.00 0.79
LR+L2 0.00 0.79 0.00 0.00 0.79
RF 0.42 0.42 0.42 0.42 0.42
DT 0.42 0.42 0.42 0.42 0.42

TABLE X: Comparison of recall values only for the confounding class FTP-BruteForce.
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