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Fig. 1: True LR and corresponding bicubic downsampled LR image from ground truth
HR of the RealSR dataset [6] and DIV2KRK dataset [7]

are the supervised super-resolution methods due to the availability of ground
truth information and the development of many novel methods.

Reconstructing the HR image from LR input includes image deblurring, de-
noising, and super-resolution operations which makes the SISR a highly com-
plex task. Due to recent technological advances, such as computational power
and availability of data, there has been substantial development in various CNN
architectures and loss functions to improve SISR methods [1{5]. These models
have been primarily tested on the synthetic datasets. Here, the LR images are
downsampled from the ground truth HR images by using known degradation
model such as bicubic downsampling. For instance, Fig. 1 shows that the char-
acteristics like blur and that details of true and bicubic downsampled LR images
do not correspond exactly for both RealSR [6] and DIV2KRK dataset [7]. Such
di�erences can be attributed to underlying sensor noise and unknown real-world
degradation. Hence, the models perform well on those synthetically degraded
images, they generalize poorly on the real-world dataset [8]. Further, most of
the works have shown that adding more CNN layers does increase the perfor-
mance of the model by some extent. However, they are unable to capture the
high-frequency information such as texture in the images as they rely on the
pixel-wise losses and hence su�er from poor perceptual quality [9{12].

To address the issues mentioned above, the research community has also
proposed using Generative Adversarial Networks (GANs) for SISR task. The �rst
GAN-based framework called SRGAN [13], introduced the concept of perceptual
loss, calculated from high-level feature maps, and tried to solve the problem of
poor perceptual �delity as mentioned before. Subsequently, numerous GAN-
based methods were introduced that have shown improvements in the super-
resolution results [13{15]. GANs are also used for generating perceptually better
images [13, 14, 16]. Motivated by such works, we propose SR using Triplet loss-
based GAN (SRTGAN) - a triplet loss-based patch GAN comprising a generator
trained in a multi-loss setting with a patch-based discriminator.

Our proposed method - SRTGAN gains superior Peak Signal-to-Noise Ra-
tio (PSNR) and competing Structural Similarity Index (SSIM) [17] values on
the RealSR dataset (real-world degradation) [6], which still cannot be consid-
ered a valid metric as they fail to capture the perceptual features. Hence, we
also evaluate our performance on the perceptual measure, i.e. Learned Percep-
tual Image Patch Similarity (LPIPS) [18] score. Our SRTGAN outperforms the

2





adversarial learning for super-resolution termed as SRGAN [13], which shows
perceptual enhancement in the SR images even with low �delity metrics such as
PSNR and SSIM. Recent works such as SRFeat [16] and ESRGAN [14], which
were inspired by SRGAN, have also reported improvements in the perceptual
quality in obtaining SR images. A variant of GAN, TripletGAN [27] demon-
strated that a triplet loss setting will theoretically help the generator to con-
verge to the given distribution. Inspired by TripletGAN, PGAN [28] has been
proposed, which uses triplet loss to super-resolve medical images in a multistage
manner.

The limitation of the majority of the work mentioned above is the use of
arti�cially degraded training data, such as bicubic downsampling. The CNNs
typically fail to generalise well on the real-world data, because real-world degra-
dation is considerably di�erent than bicubic downsampling (see Fig. 1). The
supervised approaches need real LR-HR pairs in order to generalise to real-
world data, which is challenging. For recovering real-world HR images, Cai et
al. [6] introduced the RealSR dataset and a baseline network called Laplacian
Pyramid-based Kernel Prediction Network (LP-KPN). Thereafter, several re-
search works for SR have been conducted on the RealSR dataset, considering
factors from real data into account. [29{35].

Further, Cheng et al. suggested a residual network based on an encoder-
decoder architecture for the real SR problem [30]. A coarse-to-�ne approach was
used by them, where lost information was gradually recovered and the e�ects of
noise were reduced. By adopting an autoencoder-based loss function, a fractal
residual network was proposed by Kwak et al. [35] to super-resolve real-world
LR images. At the outset of network architecture, an inverse pixel shu�e was
also proposed by them to minimise the training parameters. Du et al. [33] sug-
gested an Orientation-Aware Deep Neural Network(OA-DNN) for recovering of
images with high �delity. It is made up of many Orientation Attention Mod-
ules(OAMs) which are designed for extracting orientation-aware features in dif-
ferent directions. Additionally, Xu and Li have presented SCAN, a spatial colour
attention-based network for real SR [34]. Here, the attention module simultane-
ously exploits spectral and spatial dependencies present in colour images. In this
direction, we provide a novel framework based on triplet loss in the manuscript
inspired by [27] to enhance the perceptual quality of SR images on the realSR
dataset.

Although there have been previous attempts to incorporate the triplet loss
optimization for super-resolution such as PGAN [28], which progressively super-
resolve the images in a multistage manner, it has to be noted that they are
speci�cally targeted to medical images, and in addition, the LR images used are
obtained through a known degradation (such as bicubic sampling) and blurring
(Gaussian �ltering). Thus, it fails to address real-world degradation. Using the
triplet loss, the proposed patch-based discriminator can better distinguish be-
tween generated and high-resolution images, thereby improving the perceptual
�delity. To the best of our knowledge, the utilization of triplet loss to the real-
world SISR problem has not been explored before. We, therefore, propose the
new approach as explained in the upcoming section.
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3 Proposed Method

Fig. 2 shows the detailed training framework of our proposed method. The pro-
posed supervised SR method expects the LR and its corresponding ground truth
HR image as the input. It performs super-resolution on the LR image using the
generator network, which is trained in a multi-loss setting using a fusion of losses
namely content, perceptual, adversarial, and quality assessment. As depicted in
Fig. 2, the content Loss is calculated as L1 loss (pixel-based di�erence) between
the generated(SR) and ground truth(HR) images. It assists the generator in pre-
serving the content of ground truth HR. As the generator network is trained in
an adversarial setting with the discriminator, we use a triplet-based GAN loss,
which also boosts the stability of the learning. Apart from the GAN loss, we
incorporate multi-layer perceptual loss, which is calculated as L2 loss between
the features of HR and SR, obtained from a pre-trained VGG network as sug-
gested in SRGAN [13]. Moreover, we also use a quality assessment loss based on
Mean Opinion Score (MOS) for improving the perceptual quality of generated
images [22]. The validation of each setting in the framework is demonstrated in
the ablation section later.

Fig. 2: The training framework of our proposed method - SRTGAN.

Generator Network (G): The design of generator network is shown in
Fig. 3, which was published in [36]. The architecture can be divided into Feature
Extraction (Low-level Information Extraction (LLIE), High-level Information
Extraction (HLIE)) and Reconstruction (SR reconstruction (SRRec)) modules
based on their functionality. The LLIE module is initially fed with LR input
(ILR) for extracting the low-level details (i.e., Il). It consists of a convolutional
layer with kernel size 3 and 32 channels. This can be expressed mathematically
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Discriminator (D) Network: We further use a PatchGAN [37] based dis-
criminator network to distinguish foreground and background on a patch with
scale of 70 � 70 pixels. The proposed architecture is shown in Fig. 4. It is de-
signed by adhering to the recommendations made in the work of PatchGAN [37].
It consists of �ve convolutional layers with strided convolutions. After each con-
volution, the number of channels doubles, excluding the last output layer which
has a single channel. The network uses a �xed stride of two except for the second
last and last layer where the stride is set to 1. It is noted that a �xed kernel
size of 4 is used for all layers throughout the discriminator network. Further,

Fig. 4: Discriminator Network. Here, n stands for the number of channels, while S
represents stride.

each convolutional layer except the output layer uses leaky ReLU activation and
padding of size one. All intermediate convolutional layers except the �rst and
last layer use Batch Normalisation.

Quality Assessment (QA) Network: Inspired by [36], a novel quality-
based score obtained from QA Network is employed which serves as a loss func-
tion in training. The design of QA network is shown in Fig. 5, which is inspired
by the VGG. The addition of the QA loss in the overall optimization enhances
the image quality based on human perception as the QA network is trained to
mimic how humans rank images based on their quality. Instead of using a single
path to feed input to the network, two paths have been employed in this case. To
proceed forward, both of these features are subtracted. Each VGG block has two
convolutional layers, the second of which uses a stride of 2 to reduce the spatial
dimensions. The network uses Global Average Pooling (GAP) layer instead of
attening layer to minimize the trainable parameters. At fully connected layers,
a drop-out technique is used to overcome the issue of over-�tting. The KADID-
10K [38] dataset, consisting of 10, 050 images, was used to train the QA network.
The dataset has been divided in 70%-10%-20% ratio for train-validate-test pur-
poses respectively during the training process.

3.1 Loss Functions

As depicted in Fig. 2, the generator is trained using a fusion of content loss
(pixel-wise L1 loss), GAN loss (triplet-based), QA loss, and perceptual loss.
Mathematically, we can describe the loss of generator by the following formula:

Lgen = λ1Lcontent + λ2LQA + λ3L
G
GAN + λ4Lperceptual. (4)
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(a) Results on RealSR dataset [6].

(b) Results on DIV2KRK dataset [7].

(c) Results on DIV2KRK dataset [7].

Fig. 8: Qualitative evaluation of SRTGAN with other state-of-the-art methods on
RealSR and DIV2KRK dataset

to other methods on PSNR metric, whereas performs competitively in terms of
SSIM, on the RealSR dataset [6]. SRTGAN also performs quite competitively
in terms of PSNR and SSIM on the synthetic dataset - DIV2KRK [7]. The
perceptual metric, LPIPS obtained using our proposed approach is signi�cantly
better for both datasets (see Table 2).

4.4 Qualitative Analysis

In this section, we show the e�cacy of SRTGAN through visual inspection.
We qualitatively evaluate the SR performance on one image of RealSR dataset
(Fig. 8a) [6] and two sample images of DIV2KRK dataset (Fig. 8b and 8c) [7]. In
addition, we also make comparison with other novel works such as KernelGAN

12








