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Abstract—Multi-Sensor-System (MSS) georeferencing is a chal-
lenging task in engineering that should be dealt with in the most
accurate way possible. The easiest and most straightforward way
for this purpose is to rely on Global Navigation Satellite System
(GNSS) and Inertial Measurement Unit (IMU) data. However,
at indoor environments or crowded inner-city areas, such data
are not accurate to be entirely relied on. Therefore, appropriate
filtering algorithms are required to compensate for possible
errors and to improve the accuracy of the results. Sometimes
it is also possible to increase the functionality of a filtering
technique by engaging additional complementary information
that can directly influence the outputs. Such information could
be, e.g. geometrical features of the environment in which the MSS
runs through. The current paper deals with MSS georeferencing
by means of a Dual State Iterated Extended Kalman Filter
(DSIEKF) that is based on an efficient combination of the Iterated
Extended Kalman Filter (IEKF) with implicit measurement
equations technique and nonlinear geometrical constraints. Final
results of such an algorithm are shown to be satisfactory not only
from the accuracy point of view but also the computation time.

Index Terms—georeferencing, MSS, geometrical constraints,
Iterated Extended Kalman Filter, Dual State, 6-DOF, Kalman
filtering, Monte Carlo simulation

I. INTRODUCTION

In engineering, Multi Sensor Systems (MSS) — which are
various installed sensors on a single platform — are frequently
used to capture different aspects of an environment. To
combine the derived data for further analysis purposes, it is
essential to know the position and orientation of the MSS with
respect to a superordinate coordinate system. In other words, it
is important for the MSS to be georeferenced. These position
and orientation — that each consist of three parameters — are
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also referred to as the six Degrees of Freedom (6-DOF) or
pose parameters. Also, the MSS velocities and accelerations
at each epoch in time are of interest.

The easiest and typical way of georeferencing is to rely
on Global Navigation Satellite System (GNSS) and Inertial
Measurement Unit (IMU) data. In general, the accuracy of
GNSS data lies within meter level; unless, differential tech-
niques are applied that can increase the accuracy up to a
centimeter or even millimeter level. However, in urban areas,
due to shadowing and multipath effects, the accuracy is greatly
affected, and a total signal loss is also possible. On the other
hand, a low-cost IMU can obtain orientation results with an
accuracy of 0.8° for heading angle and 0.1° for roll and pitch
angles. Also, the IMU data are always in danger of drifting
and therefore they should not be completely relied on [1].
Therefore, it is of great importance to develop an algorithm
that can properly compensate for such errors.

One solution to the problem mentioned above is a Linear
Kalman Filter (LKF), which could be applied on GNSS and
IMU data, exclusively. However, due to a possible decreased
number of such data in challenging environments, no signif-
icant improvement should be expected. Another solution is
to increase the navigation performance by using additional
sensors on the platform, including cameras and laser scanners,
as well as map data. The performance, in this case, refers
to not only accuracy but also integrity, continuity and avail-
ability, which is well discussed and processed in [2]. In [3],
an Iterated Extended Kalman Filter (IEKF) technique with
implicit measurement equations is proposed. The algorithm
can deal well with GNSS and IMU errors by taking into
consideration data from a highly accurate laser scanner along
with all possible geometrical information of the environment.



The algorithm is then adapted to a similar case in [1] for
georeferencing of an Unmanned Aerial Vehicle (UAV) and has
further proven the method to be reliable. In the current paper,
the proposed algorithm in [3] is modified to grant efficiency
while preserving the accuracy of the results. This modified
version is named Dual State Iterated Extended Kalman Filter
(DSIEKF) in which the unknown parameters are divided into
two different parts. A part that is fixed in size and comprises
the pose parameters of the MSS and a part that includes the
additional geometrical features, which can change in size from
one epoch to the other. The second part usually depends on
the extracted information from a reliable source such as a 3D
city model. Therefore, its estimation is faster than the first part
resulting in a faster yet accurate georeferencing algorithm.
The paper is organized as follows. In section II, a summary of
the related researches to the current paper is given. In section
III, an overview of LKF, IEKF, and DSIEKF is presented.
Section IV is dedicated to the application of the mentioned
algorithms on a simulated environment. In section V, a sum-
mary over the paper along with highlighted conclusions and
an outlook over future work in the same area are given.

II. RELATED WORK

There are several ways for MSS georeferencing that could
be chosen based on the whole measurement scenario such as
the type, number and accuracy of the installed sensors on
the platform and the environment in which the MSS runs
through. For outdoor applications, georeferencing could be
done directly (sensor-driven), indirectly (target-driven), or by
means of available referenced data sets (data-driven) [4] and
[5]. For indoor applications, the classification is different,
which is presented in detail by [6]. As the focus of the current
paper relies on outdoor applications, related researches to the
first classification are highlighted in the following.

“Direct (sensor-driven) georeferencing” could be done by
using sensors such as GNSS receiver [5] and IMU [7] that
directly deliver the 6-DOF with respect to a superordinate
coordinate system. It is also possible to set up an arbitrary
superordinate coordinate system by means of a total station
or a laser tracker and to derive the pose of a certain MSS
with respect to it [8] and [9]. In “indirect (target-driven)
georeferencing”, the MSS pose is derived with respect to
targets that have already been referenced to a superordinate
coordinate system. In this case, the targets could be flat
markers with specific patterns [10] or simple 3D geometries
such as cylinders or spheres [11]. Georeferencing could also
be done by using available referenced data sets, which is also
referred to as “data-driven georeferencing”. In this type, the 6-
DOF are matched with available georeferenced data sets such
as 3D point clouds [12], digital surface models or 3D city
models [6], [13], and [14].

On the other hand, filtering techniques are tools to compensate
for possible errors within data sets derived from various
sensors. One of such techniques, which is well-known and has
been the basis of many pose estimation algorithms, is Kalman
Filtering (KF). If both system and measurement equations are

linear, the filter is referred to as LKF; however, sometimes it
is also possible to have nonlinear system and measurement
equations. In that case, another realization of KF called
Extended Kalman Filter (EKF) is used. In this realization, the
nonlinearity is overcome by means of Taylor series expansion
around a certain state [15]. In research from [16], which is
focused on sensor fusion of UAV’s local sensors, the GNSS
and IMU data are combined by means of EKF. Reference
[17] has used EKF for collaboration of several UAVs in order
to increase the accuracy of the estimated pose parameters by
combining multiple Simultaneous Localization And Mapping
(SLAM) algorithms. When linearizing around a certain state
in EKF to deal with nonlinearity, it is possible to induce
large errors in the filtering procedure, which can affect its
convergence or efficiency. Therefore, a re-linearization around
the updated state can be done to overcome the problem. Such
a procedure is referred to as IEKF. So far researches have
been mainly focused on IEKF with explicit measurement equa-
tions. In such equations, observations and states are separated
from each other. This kind of equations are also referred to
as Gauss-Markov-Models (GMM). However, sometimes the
observations and the states are interconnected. These implicit
measurement equations are so-called Gauss-Helmet-Models
(GHM) that are used within IEKF by [18] and [19]. Reference
[3] has used - for the first time - the IEKF method with implicit
measurement equations for the purpose of MSS georeferenc-
ing. Reference [1] has applied the proposed method by [3] to
georeference a UAV, which has further proven the algorithm
to be reliable. Sometimes, it is possible to have changes in the
system behaviour or its surrounding environment causing the
system or observation model to vary over time. In that case,
estimations are not limited to only the system pose but also
the model(s) parameters that should be done simultaneously
due to their dependency. One of the methods to deal with
such a problem is called Dual State (DS) estimation, which is
based on grouping the unknowns into two vectors using each
to estimate the other, iteratively, as applied by [20], [21], [22],
[23], and [24].

Moreover, sometimes the environment has additional infor-
mation to offer, which could be integrated in the filtering
process to increase the filtered results’ accuracy. Such in-
formation is generally referred to as “constraints”, and in
case of geometrical information, it is called “geometrical
constraints”. Geometrical constraints of a scene could be
the perpendicular facades of a building or the intersection
line between facades of two adjacent buildings, etc. [3]. The
constraints could be linear or nonlinear depending on the
mathematical equations that describe them. In [25], a good
overview of the possible algorithms in KF to consider linear
and nonlinear constraints is presented. To deal with nonlinear
constraints within filtering algorithms, it is generally suggested
to linearize the mathematical equations and proceed to solve
the problem by various algorithms that are already developed
for linear cases (e.g. [26], [27], [28], and [29]). In [30],
a maximum-likelihood-based filtering algorithm is suggested
that can deal with both linear and nonlinear constraints without



the necessity for linearization in case of nonlinearity. In
research from [31], linear and nonlinear systems subject to
linear and nonlinear constraints are studied, and different
algorithms are developed that could be used in any of such
cases. In [32], an algorithm is proposed that can deal with
nonlinear equality constraints; however, the method can only
handle second-order scalar constraints. Reference [33] has
suggested a smoothly constrained KF that could be used for
nonlinear constraints of any type. In [3] and [34], nonlinear
equality and inequality geometrical constraints are integrated
into the IEKF with implicit measurement equations for MSS
georeferencing by means of projection and Power Density
Function (PDF) truncation methods, respectively. Sometimes
it is probable to have a large number of geometrical constraints
in an environment that can cause the proposed algorithm in [3]
inefficient from the computation time aspect. Therefore, the
current paper has focused on adapting this algorithm to DS
estimation method that is applied to a simulated environment
for georeferencing a UAV. Furthermore, both LKF and the
algorithm in [3] have also been applied for better judgment of
the functionality of this new algorithm that is named DSIEKF.

III. METHODOLOGY

Current paper deals with georeferencing a UAV, which is
equipped with a GNSS receiver, an IMU, and a 3D laser
scanner. It is assumed that the system moves through an urban
area with multiple building models, which are constantly cap-
tured by the laser scanner. The whole MSS and its surrounding
environment are simulated, which is further explained in IV-A.

A. Linear Kalman Filter

LKF is the most straightforward realization of KF that is
used in case of GMM with linear system and observation
models as follows:

I + v, = Hy i x5
Xp=Fpp1 X1 +Fyp—1up—1 w1 (1)

wherein k is the epoch and 1, x, H,, F,, F,, u, w, v are
the measurement vector, state vector, design matrix, transition
matrix, control matrix, control vector, system noise, and mea-
surement noise, respectively.
In the current paper, the observation model of LKF is as
follows:

Iy + v =X 2

The observation and state vectors in the current paper are
defined according to (3).

L = 153 1] i = [x05 x5 %) 3)

wherein 1¢ and 1/ are vectors consisting of the 3 positions
(x, y, z) and 3 orientations (w, ¢, ), which are derived
from GNSS receiver and IMU, respectively. It should be noted
that Euler angles suffer from discontinuity and singularity
problems and therefore they are not stable. On the other hand,
quaternions can better handle such problems. However, for
better interpretation of the simulation results in the current

paper, the rotation representation by means of quaternions
is avoided and instead, rotation matrices are used within the
algorithms to deal with the aforementioned challenges of Euler
angles. x, x©, and x" are parameter vectors containing three
translations (5, ty, t.), three orientations (w, ¢, ), and three
velocities (V, V,,, V), respectively. In this case, the number
of observations is less than the number of unknowns. In other
words, for the velocity parameters, no measurements exist.
Therefore, those columns within the design matrix (H,) that
correspond to these parameters are filled with zeros.

For behaviour of the considered MSS in this paper, a simple
linear model is assumed with a transition matrix according to

4).
diag([AT, AT, AT])
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I is an identity matrix and AT is the time period between two

consecutive epochs, which is set to 1 second in the context of
this paper.

B. Iterated Extended Kalman Filter with Nonlinear Equality
Constraints

Sometimes due to nonlinear behaviour of the system or en-
vironment, it is possible to have nonlinear equations, which are
usually linearized for further processing. Such a linearization
— that is done by Taylor series expansion around a certain
state — can induce large errors in the filtering process, which
leads to divergence and inefficiency problems. Therefore, a
re-linearization around the updated states could be done to
avoid such consequences. This realization of EKF is usually
referred to as IEKF. The filtering procedure gets even more
complicated when the observations and unknowns are inter-
connected, which means that they cannot be separated from
each other. Having such a GHM within IEKF is the main scope
of [3]. The observation and system models, in this case, have
a general form as given in (5).

h(lk + I/k,Xk.) =0
X = foo1 (X1, Wp—1, Wi—1) ©)

wherein, h, f are the measurement condition equation and
nonlinear system model, respectively.

As previously mentioned, in this paper, it is assumed that the
MSS platform contains not only the GNSS and IMU sensors
but also a 3D laser scanner, which constantly captures the
surrounding environment. On the other hand, corner points
of the simulated building models are considered as additional
observations to ensure higher redundancy and thus more ac-
curate estimations. Therefore, the observation model of IEKF
consists of two types. The first type that is used for GNSS
and IMU observations and is the same as defined in III-A.
The second type that is used for 3D scanned data from the
laser scanner and corner points of the 3D city model, which
is the equation of a plane and could be written as follows:

Ny, Xp +ny, Yy +1,4.Z; —dip =0 (6)



wherein ny, ny, and n, are the planes’ normal vector pa-
rameters. d is the planes’ distance parameter vector. X, Y,
and Z are the transformed laser scanner 3D point cloud from
local to global coordinate system. The transformation is done
according to (7). In case of corner points, no transformation
is required.

Pyior =tr + RiPioc (7N

wherein, Py, is the transformed laser scanner point cloud
from local to global coordinate system. t and R are the
translation parameters vector and rotation matrix, respectively.
P;,. is the laser scanner point cloud in its local coordinate
system.

The observation and state vectors are extended according to

(®).
Lo = [ 0070 ] %k = [xxdixx ] (9)

cP L

wherein 1£°, 1P, and xPL are the local laser scanner
observations, the corner points coordinates, and the planes’
parameters, respectively.

Transition matrix, in this case, is as follows:

Orox4.5,]
]:[4»E1€ x4-Ey]

Fm,state[gxg]

F, = ©))

014 B, x9)

wherein, F; g¢q¢c 1S defined as (4) and E}, is the total number
of planes that are detected in epoch k.

Nonlinear geometrical constraints that are considered for the
current paper are the unity of building planes’ normal vectors
within the simulated environment [1]. Such a constraint is
mathematically defined as (10).

\/nz+ni+nZ=1

wherein, n, n,, and n, are the normal vector parameters of
each plane.

The whole IEKF formulation and algorithm, as well as the
method for applying the geometrical constraints, is taken from

[3].

C. Dual State Iterated Extended Kalman Filter with Nonlinear
Equality Constraints

(10)

Sometimes the system behaviour might change over time,
causing the system model to differ from one epoch to the
other. Also, it is possible to have changing observation model
over time due to environmental conditions. Therefore, it might
be necessary to estimate not only the system state but also
the engaging model(s) parameters, simultaneously. Since these
two estimations are codependent, one solution is to apply dual
estimation methods. In such methods, the estimation of these
two groups of parameters is done by alternating between using
the model to estimate the system state and using the system
state to estimate the model [21].

As it was mentioned in III-B, one type of observation models
in this paper is the plane equation that should be satisfied
in each epoch after estimating the system states. On the other
hand, according to (10), the considered geometrical constraints
require plane parameters modification. Therefore, the system

states and observation model parameters are interconnected
and subject to change over time. Such codependency is
accounted for within the IEKF algorithm given in [3] by
including the system states and planes parameters all in one
vector, as shown in (8). However, the number of captured
planes by the laser scanner might increase over time, causing
the state vector to get larger, which in turn leads to longer
computation time. Therefore, in the current paper, instead of
putting all the unknown parameters in one vector, they are
divided in two vectors shown in (11) and (12) along with
their related observations.

1 = [E5508500] %) = [xfixgsxy ]
1 = [E507], % =[x

wherein, x() and 1V, x(2) and 1) are the system states
vector and its related observations, and parameters vector of
the observation model and its related measurements, respec-
tively. x(1) is fixed in size and contains pose parameters of the
MSS whereas x(?) contains the captured planes’ parameters
and can change in size from one epoch to the other. Since
estimation of x(®) depends on reliable information from the
environment, its convergence is faster than x| which results
in less overall computation time. This new algorithm is named
DSIEKF and its pseudo-code is given in Algorithm 1. Main
idea of this algorithm is similar to that in [3] except that
the explained procedure in III-B is applied twice. Once for
updating the system states vector (lines 23 to 30) and once
for updating the planes parameters (lines 32 to 42). In each
iteration, the estimated system states are used to filter the
planes parameters that are then used to update the system
states in the next iteration. Unlike the algorithm in [3] where
the “constraint step” is applied on the final filtered results, in
this case, it is applied on the estimated planes parameters in
each iteration (lines 37 to 41). Finally, in each epoch, indices
of the captured planes along with their filtered parameters and
VCM are stored in a matrix (line 49) that is further investigated
in the next epoch. In each epoch, if indices of the captured
planes already exist in this matrix, their parameters are treated
as deterministic values; otherwise, they are filtered (line 10).
Consequently, each plane’s parameters are filtered only once
and then used as deterministic values in the next epochs.
Moreover, the generated GNSS and IMU data of the first epoch
along with their corresponding VCM are used for initializing
x( and its VCM. Figure 1 shows the flow diagram of the
algorithm.

(1)
12)

[States(1)] [States(] [ Observations(2) |

Prior Information

| Observations (1) |

1

. Update Step: Update Step:
Prediction Step  —p) State (1) — State (2) \
ConstraintSte‘;
on State (2)
Epochk

Fig. 1. Flow diagram of the DSIEKF algorithm.



Algorithm 1: Dual State Iterated Extended Kalman Filter

(DSIEKF) with nonlinear equality constraints.
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they are treated as deterministic values. In other words, each
plane’s parameters are filtered only once. The initial values and
VCM are taken from available information.
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C = [C; (idx, “(2+) E(2+))] “idx” are indices of those planes
that are captured in the current epoch.

IV. APPLICATION
A. Simulated Environment

In this paper, the simulated environment is taken from [1]

and includes generated data for a 3D laser scanner, a GNSS
receiver and an IMU — which are all assumed to be mounted
on a UAV - along with unreal building models and a ground
plane, which altogether represent a 3D city model. 3D city
models are 3D digital models of cities that contain spatial
and georeferenced data for different parts of a city (buildings,
sites, etc.) [35]. These models exist in different levels of detail,
which could be used for different purposes. In this paper a
second Level of Detail (LoD2) 3D city model is resembled by
the simulated building models and the ground plane. The main
reason for that is the availability of such LoD2 models for all
the cities in Germany when dealing with real case scenarios. In
total, 70 epochs are assumed. The true positions depict a length
of 70 meters in y-axis that is covered by the MSS in 70 epochs
while ascending for 4 meters in z-axis. The GNSS and IMU
observations are generated by adding normally distributed
noise to the true positions and orientations. Aside from 3D
scanned points by the laser scanner, indices of the building
planes, to which they are assigned, are also known. Figure 2
shows an overview of the simulated environment. The dotted
black lines in this figure represent scan lines of the UAV
that moves through the whole environment in y direction.
Table I gives the accuracy and system noise values which are
considered in the simulated environment.
LKF, IEKF, and DSIEKF algorithms are applied on the
simulated environment in 500 Monte Carlo (MC) runs. In
each run, new GNSS and IMU observations are generated
by adding various random noise to the true states. Such a
task is required to ensure functionality and performance of
the proposed algorithm subject to different observations.

TABLE I
ASSUMED ACCURACY AND SYSTEM NOISE VALUES WITHIN THE
SIMULATED ENVIRONMENT.

opo = 0.5m
00,0 = 0.2°
B oV = 1m/s
Initial state accuracy Ono = 0.0001
4,0 = 0.001m
ocpo = 0.0001 m
AT = s
opPw = 0
. 00,w = 0
System noise OV = 5. AT m/s
On,w = 0
Od,w = 0
OCPw — 0
orLs = 0.02m
Measurement noise or = o o
oo = 0.2
ocp = 0.0001 m

B. Results

In this paper, two different scenarios are considered. In
the first one, no subsampling is applied on the laser scanner
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Fig. 2. 3D view of the simulated environment.

measurements neither in IEKF nor DSIEKF. The second
scenario depicts results of DSIEKF when no subampling is
applied versus the case where only 20% of the laser scanner
measurements are considered in each epoch. These 20%
observations are randomly selected from the whole. These
scenarios are referred to as “scenario one” and “scenario two”,
respectively. Also, in the second scenario, “DSIEKF 1 refers
to the case where no subsampling is applied whereas “DSIEKF
2” is used for the case with subsampling.

Figures 3 and 4 show the average Root Mean Square Error
(RMSE) of the estimated translation parameters in each epoch
over the MC runs for both scenarios. In each MC run, RMSE
value is calculated as follows:

RMSE;, = | — Y (x — %)
k=

13)

—

wherein x1 and X} are the estimated translation parameters
vector in each epoch and their true values, respectively. IV is
the number of epochs up to the current one. Average RMSE
over the MC runs is calculated according to (14).

RMSE; = % ZRMSEk (14)

wherein S is the total number of MC runs, which is 500 in
this paper.
In both scenarios, it could be seen that LKF estimations
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Fig. 3. Mean of RMSE for all translation parameters in all epochs over the
total MC runs in scenario one.

are not satisfactory, which is due to considerably less number
of observations compared to the other two algorithms. The
reason for not having a decreasing pattern, in this case, is
due to the selection of high velocity system noise compared
to the observation noise in the system model. On the other
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Fig. 4. Mean of RMSE for all translation parameters in all epochs over the
total MC runs in scenario two.
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Fig. 5. Mean of RMSE for all orientation parameters in all epochs over the
total MC runs in scenario one.

hand, IEKF and DSIEKF have converged to the true values
over time. Since in both of these algorithms, the laser scanner
measurements and corner points data are taken as additional
observations, and the high velocity system noise is also well
dealt with. However, it could be seen that subsampling in
scenario two has led to slightly larger RMSE values compared
to the case where no subsampling is applied. The same
pattern could also be seen for average RMSE measure of the
orientation parameters as shown in figures 5 and 6. It could be
seen that in case of orientations, due to the absence of angular
velocity in the system model and therefore no corresponding

6 %1073
= DSIEKF 1
5 — -DSIEKF 2
——LKF

RMSE [rad]
w s

N
T

—_
T

0 20 40 60 80
Epoch k

Fig. 6. Mean of RMSE for all orientation parameters in all epochs over the
total MC runs in scenario two.



system noise, LKF has also a decreasing pattern.

Figure 7 visualizes the RMSE statistics of the translation
parameters in scenario two over all the MC runs by means
of box plots for DSIEKF cases. In each box plot, the middle
line shows the median. Tops and bottoms are the 25" and
75" percentiles, respectively. Distances between these tops
and bottoms are the interquartile ranges. The lines that are
extended above and below each box plot are the whiskers.
These whiskers are derived from the ends of the interquartile
ranges to the furthest sample data within the whisker length.
The red crosses are the outliers in the sense that their value is
more than 1.5 times the interquartile range away from the top
or bottom of the box. It could be seen that in both DSIEKF
cases, the median, as well as the interquartile ranges, are large
and they decrease over time. The reason for such behaviour
is the small number of observations in the first few epochs.
Over time, the number of measurements gets larger, which
leads in turn to more accurate estimations and thus smaller
RMSE values. Moreover, the median in each box plot is
fairly located in the middle, which can represent a normal
distribution with no skewness and thus having no systematic
errors within the estimations as expected. Finally, the same
behaviour with similar statistical estimations could be seen
for both DSIEKF cases. Therefore, it could be concluded that
although subsampling leads to slightly different mean and
median values for RMSE, the overall statistical pattern remains
unchanged. The same pattern could also be seen for the RMSE
statistics of the orientation parameters as shown in figure 8.
The maximum difference between the estimated translation

—DSIEKF 1

[
i LKF
1.5F 4
U
1
1
1
|
B
U
!
1
1
o i
1 10 20 30 40 50 60 70
Epoch k
i — -DSIEKF 2
I+ LKF
1.5 i b
it
e
b= [
g fiih, T
I i
! :
= i,
Tttty
0.5 i " ' ! Mool ; &W&% “"H‘Hﬁ"d-tnuuuununouu_
ISR T Bhosobabbedsad p
: : :+ -|--l»-l--l-u-llH--I--I-HH.H-lH-llHHHHHLHHUHlH
0 1
1 10 20 30 40 50 60 70
Epoch k

Fig. 7. Box plot of the mean of RMSE for all translation parameters in
all epochs over the total MC runs in scenario two. Top: DSIEKF without
subsampling. Bottom: DSIEKF with subsampling.
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Fig. 8. Box plot of the mean of RMSE for all orientation parameters in
all epochs over the total MC runs in scenario two. Top: DSIEKF without
subsampling. Bottom: DSIEKF with subsampling.

one are 7 X 1075 meters and 9 x 107 radians, respectively.
These estimation differences by IEKF and LKF are 0.68
meters and 0.0013 radians. In scenario two, the maximum
difference between the estimated translation and orientation
parameters by DSIEKF 1 and DSIEKF 2 are 0.26 meters and
7 x 10~* radians, respectively. These estimation differences
by DSIEKF 1 and LKF are 0.69 meters and 0.0014 radians.
Figures 9 and 10 show maximum absolute differences between
the estimated planes parameters (normal vector and distance
to origin) and their true values from the building models
for both scenarios. It could be seen that DSIEKF delivers
estimations that are closer to the true values than those
derived by IEKF. In the second scenario, subsampling the laser
scanner measurements has led to better estimations compared
to the case where no subsampling is applied. Therefore, it
is probable that measurement errors are propagated to the
estimated parameters of the planes given that the laser scanner
measurements are assumed to be free of outliers with correct
assignments to the planes in the simulated building models.
Also, it could be seen that in DSIEKF the parameters of the
planes are estimated only in some epochs and remain constant
for some time whereas in IEKF they are derived in every single
epoch.

Figures 11 and 12 show the duration of update step in each
epoch for both scenarios. In scenario one, it could be seen
that in those epochs where planes parameters are estimated
by DSIEKEF, the update time is close to IEKF; however, in
the other epochs where no such estimations are required, the
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and their true values in scenario one.
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Fig. 10. Maximum absolute difference between the estimated planes param-
eters and their true values in scenario two.

update step is shorter. In scenario two, it could be seen that
subsampling leads to a significantly shorter update time at the
cost of losing accuracy in state estimations compared to the
case with full laser scanner data. LKF in both scenarios has
the shortest duration, which is expected due to considerably
less amount of observations compared to the other cases. Total
update time over 70 epochs in scenario one is approximately
13 minutes, 11 minutes, 0.1 seconds for IEKF, DSIEKF, and
LKF, respectively. In scenario two, it is approximately 11
minutes, 11 seconds, 0.1 seconds for DSIEKF 1, DSIEKF 2,
and LKEF, respectively.
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Fig. 11. Duration of the update step in scenario one.

V. CONCLUSIONS AND FUTURE WORK

The core of the current paper is to adapt the idea of dual
estimation to IEKF with implicit measurement equations and
nonlinear geometrical constraints for the purpose of MSS
georeferencing. The idea is to divide the unknown parameters
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Fig. 12. Duration of the update step in scenario two.

into two parts, each represented by a separate vector. One
of these vectors contains pose parameters of the MSS, and
therefore, has a fixed size over time. The second vector
contains additional geometrical information that could change
in size from one epoch to the other. The new algorithm is
named DSIEKF that has been applied along with IEKF and
LKF on a simulated environment to georeference a UAV
equipped with GNSS receiver, IMU, and a 3D laser scanner.
Final results show that DSIEKF algorithm deliver similar
estimations as IEKF but in a relatively shorter time. Also, in
DSIEKEF, planes parameters of the simulated building model
are estimated more accurate than those derived by IEKF.
Moreover, it is shown that by 20% subsampling of the laser
scanner measurements, the computation time in DSIEKF can
be significantly decreased. Because, by such subsampling,
the number of laser scanner measurements in each epoch is
decreased from approximately 10000 to 2000, which leads
to a considerable shorter computation time. However, the
6-DOF estimations are affected, which is due to loss of
measurement data. Furthermore, it is shown that although
LKF is the fastest algorithm between the three considered
ones, it could not be a suitable solution, since the amount of
considered measurements is not enough to reach optimal state
estimations. It should also be mentioned that the introduced
approaches can also be applied on general applications other
than georeferencing.

Further research will consider the potential effects of outliers
within the laser scanner data and a suitable technique to
detect them within the filtering process. Also, it will be
important to see how wrong assignments of the points to
the building planes can affect the results and what procedure
could be taken to properly disclose these assignments and
correct them. Moreover, the random selection of the measure-
ments in a real case scenario could lead to loss of valuable
data. Therefore, further studies should develop a supervised
selection of the measurements within the filtering algorithm.
Doing so, the number of measurements could decrease with
the least possible information loss. Finally, application of
the methods on real data sets rather than simulated ones as
well as their improvement for real-time processing rather than
post-processing are aspects of interest, which will further be
investigated in the future works.
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