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Abstract— In the networking industry, there is a lack of tools 

and software that provide a testing platform to experiment with 

mobile networks. Without these platforms to experiment with, 

researchers can only present concepts for changes to mobile 

networks and cannot prove their work is practical. Open AI 

Cellular (OAIC) provides the software and tools to install, 

deploy, and configure a 5G network. OAIC is a 5G network 

research and experimentation platform where researchers can 

learn more about mobile networks with simulated equipment 

that matches today's networking standards. You will learn more 

about the core components needed to create a 5G network and 

experiment with a wireless mobile network. The experimental 

results highlight OAIC’s ability to handle Denial of Service 

(DOS) attacks with little impact on network performance. This 

project also highlights implementing network slices within OAIC 

to reduce the effects of a DOS attack. This paper provides a new 

perspective on mobile network experiments and developments 

and offers valuable insight into the future of 5G and 6G 

networks. 

I. INTRODUCTION 

 

A. Motivation 

 

  5G networks are discussed briefly in some of my 

classes, but we didn’t get to go into further details on it. I 

learned about 5G and what goes into a mobile network, but 

with a hands-on project. I began researching 5G networks one 

year ago on campus as a research job and found that I loved 

learning more about this topic. I was trying to develop a low-

budget project to experiment with a small-scale 5G network 

but could not do it. While researching, I found open-source 

software allowing users to set up their own 5G network from 

their computers. I wanted to use this tool to learn more about 

5G but also to experiment with the tool and see what features it 

has to offer. 

 

  The main goal of this project is to share information 

about this tool and to encourage students to experiment with it 

to learn more about 5G networks. Another goal of this project 

is to fill the gap in hands-on learning with 5G. For many in the 

IT industry wanting to experiment more with 5G, finding ways 

to apply what you learn about mobile networks takes time and 

effort. Few resources are available for testing or experimenting 

with 5G networks, especially open-source ones. This project 

provides zero-cost, open-source, well-documented software to 

help fill the gap in hands-on learning with 5G. 

B. Roadmap 

• Objectives – The Open AI Cellular tool aims to 

research with simulated equipment that matches 

what is used in the industry. Within the industry, 

there is a lack of tools that allow researchers and 

developers to experiment with 5G and test out 

proposals to see if their ideas are possible. This 

paper highlights the importance of OAIC and 

how it can help further develop the future of 

mobile networks. 

• Methodology – I will go in-depth about the 

equipment and installation requirements for this 

project. The installation process for OAIC will be 

explained in detail, along with the challenges I 

encountered while installing it. I will explain the 

importance of each tool used to make OAIC run. I 

will talk about the critical components of the 5G 

network that OAIC will run. I will also discuss the 

various experiments I ran with OAIC. These 

experiments include a DOS attack and 

implementing network slicing on my network. 

• Contributions – I will highlight the results of my 

experiment, showing how OAIC can be useful 

when developing new ideas for future generations 

of mobile networks. I will also share potential 

applications for solving a problem based on the 

output of my experiments. 

II. BACKGROUND 

 



A. 5G 

 

  5G is the fifth generation of mobile networks, 

intending to provide more availability, reliability, and lower 

latency than previous generations. 5G can support a 100x 

traffic increase compared to 4G, data rates of over 100 

Megabits-per-second (Mbps), and utilizes Millimeter waves for 

better spectrum use [1]. With the demand for fast connections 

growing, 5G was a massive milestone for wireless 

communications. 

B. Open AI Cellular (OAIC) 

 

 

Fig. 1. Open AI Cellular (OAIC) Framework [2]. 

  Open AI Cellular (OAIC) is an open-source effort that 

provides libraries and toolsets that contain AI controllers and 

an AI testing framework [2]. This effort helps the development 

and research of AI-enabled cellular radio networks. OAIC 

provides a framework, as shown in Figure 1, that 

acknowledges various open-source 5G software, which allows 

users to implement radio access network intelligent controllers 

(RICs) and O-RAN interfaces for testbed and production real-

time experiments. OAIC will enable you to install, configure, 

and run your own 5G network from a single device for research 

and experimentation. Each component used to simulate a 5G 

network matches the equipment used in the real world for 

mobile networking. 

C. Ubuntu 

 

  Ubuntu is an open-source operating system used 

throughout this project and is where OAIC will run [3]. Ubuntu 

is a flavor of Linux that is stable and secure. Although there are 

other Linux flavors, Ubuntu is the only version of Linux that is 

used to install and configure OAIC. 

D. Docker 

 

  Docker is a platform that can utilize containers to run 

applications in a small, separate environment [4]. Containers 

are images that have the required software to run packaged 

together. They are like virtual machines (VMs) but are lighter 

and less resource-intensive. These containers are essential for 

the OAIC installation because they require containers for 

specific components. 

E. Kubernetes 

 

  Kubernetes is an open-source platform for automating 

deployment, scaling, and operations of application containers 

across clusters of hosts [5]. Placement, restarts, replication, and 

autoscaling of containers are all automated using Kubernetes. 

In each of the pods being run by Kubernetes, there could be 

any number of containers being used. It is an essential tool for 

OAIC because the containers and pods are running separate 

components and software, and Kubernetes manages it all for 

us. 

F. Helm 

 

  Helm is a package manager for Kubernetes, which is 

the equivalent of apt installing packages [6]. It deploys 

packaged applications, which are called Helm Charts, on 

Kubernetes clusters. Helm Charts contain configuration and 

package information that will be essential for OAIC to run. The 

Helm Charts are used in this project for package and 

configuration management. 

G. srsRAN 

 

  srsRAN is a 5G software radio suite developed by 

SRS (Software Radio Systems). It was designed to create open-

source, high-performance software radio solutions for 4G and 

5G [7]. The srsRAN suite includes srsUE, srsENB, and 

srsEPC. Everything in the suite represents the different 

components that go into a mobile network. This is important 

software that is needed for OAIC to run. 

H. Iperf3 

 

 

Fig. 2. The Iperf3 command was entered while running OAIC. 

  Iperf is an open-source tool that performs various 

measurements of network bandwidth and packet loss on IP 



networks [8]. In this project, we will be using the third version 

of this software, Iperf3. This tool tracks the OAIC component's 

network performance, which is critical for ensuring the 

components are running. Figure 2 shows Iperf3 running with 

OAIC. 

 

I. Denial of Service (DOS) Attack 

 

  A Denial of Service (DOS) attack occurs when a 

malicious actor prevents users from accessing devices and 

network resources [9]. DOS attacks frequently work by 

flooding or overwhelming a targeted device with requests until 

the device can no longer process normal traffic. In this project, 

we will perform two DOS attacks against OAIC components. 

The first DOS attack will be against the network base station, 

and the second DOS attack will also be on the base station, but 

with network slicing throughout the network. 

J. Hping3 

 

 
Fig. 3. Hping3 running a DOS against an OAIC component. 

  Hping is a tool used to create and send custom 

network packets (ICMP/UDP/TCP) and displays replies like 

ping would [10]. Although it is a more advanced ping, it can be 

used to run different types of network attacks. In this project, 

we will be using the third version of this tool to run a DOS 

attack against the OAIC components. One of the uses of the 

OAIC tool is to experiment with 5G components without any 

effect on an actual network. Figure 3 shows hping3 running a 

DOS attack against an OAIC component. 

 

K. NexRAN 

 

  The NexRAN app implements RAN slicing by 

sending instructions to RAN nodes that perform custom 

resource allocation and bind UEs to those slices of allocated 

resources [11]. For this project, we will slice our 5G network 

into fast and slow slices. The number of slices in the network 

will affect the network's data rates, and we will test how well 

these slices run with different numbers of slices. We will also 

test how these slices perform while under a DOS attack. 

 

L. Intended Audience 

 

  This project was developed for various purposes and 

audiences. Students and researchers are the target audience, 

intended to help both learn and experiment with 5G networks. 

OAIC allows users to configure, deploy, and experiment with a 

5G network and its components. For students, OAIC provides 

a learning experience for students interested in topics related to 

wireless systems. You can learn about the various components 

and parts of a wireless network, like a 5G network. Students 

can also run multiple types of attacks against this network, 

allowing them to learn other topics in the cybersecurity field. 

For researchers, OAIC will enable you to run different 

experiments and attacks to see how various components 

perform. OAIC also provides a testing platform where you can 

run programs and scripts within the platform to produce data 

outputs. This project will attempt to run OAIC and experiment 

with it to test if it is a good fit for students and researchers. 

 

III. PROCEDURE 

 

A. Lab Setup 

 

 

Fig. 4. The 5G Research Testbed. The server labeled “Dell EMC” is the 

server that will be used for this project. 

  For my capstone, I used a testbed designed for 

researching and experimenting with open-source 5G tools. This 

testbed consists of 3 servers: small, medium, and large. They 

are labeled based on the storage size of each server. For this 

project, I will use the large server, a Dell PowerEdge R7515 

Rack Server, which has Ubuntu 24.04 as its operating system 

[12]. Figure 4 shows the testbed where OAIC will be running. 

OAIC’s components and additional software are fully installed 

and functional on this server. Although I am using a server for 

this project, this can also be installed on a laptop or PC at 

home. 



 

  OAIC provides instructions for allowing users to 

create their own 5G network. This can be used for testing 5G 

network components, learning about 5G, and developing tools 

and software related to mobile networks. When running a 5G 

network with OAIC, there are a few components used that are 

important to know. The first component is the EPC, which 

represents the core of the network. It is used for session 

management, mobility management, and authentication. The 

second component is the gNB/gNodeB, which functions like a 

base station, providing connectivity between the EPC and the 

user. The third component is the User Equipment (UE), which 

is the mobile device that will be connected to the 5G network. 

B. OAIC Installation 

 

  The OAIC installation process has various stages that 

must be completed in the correct order. Each stage is 

important, as it configures and sets up various tools for OAIC 

to run properly. 

• Hardware & Software Requirements – This 

section covers the requirements needed to install 

OAIC and its dependencies. We also discuss the 

different ways we can set up OAIC to make it 

easier to install. 

• O-RAN Near-Real Time RIC & srsRAN 

Installation – In this section, we have four 

important steps that we follow to install the O-

RAN Near-Real Time RIC. The first step is to 

install Ubuntu and have the operating system 

running. The second step is installing Docker, 

Kubernetes, and Helm, all critical programs 

needed to run OAIC. The third step is to build a 

modified docker image using OAIC’s 

DockerHub images. The last step is to deploy the 

Near-Real Time RIC, which requires the 

Kubernetes clusters to be deployed and running. 

This section also has some installations to get 

srsRAN installed, which includes ZeroMQ and 

Ettus UHD binary. 

• Running Your Own 5G Network – This section 

covers all of the components that OAIC will use 

to simulate a 5G network. I will explain the 

purpose and use of each component and highlight 

the communication that occurs between them. I 

will also share some challenges I encountered 

while running OAIC with the components for the 

first time. 

 

1) Hardware & Software Requirements 

 

  OAIC will be installed on any device that meets the 

specifications provided in OAIC’s installation documentation. 

The operating system required for OAIC is Ubuntu version 

20.04 or later. The hardware required includes a CPU with 2-4 

cores, 16GB or more of RAM, and a minimum storage 

capacity of 80GB. To allow non-Linux users to install and 

configure OAIC, users can even install the software on a 

virtual machine (VM), which has the benefit of running 

multiple installations of OAIC on different VMs. Students can 

even install OAIC for personal use on their computers if they 

meet the software’s requirements. As previously mentioned, 

we will be installing OAIC on one of the servers in our testbed 

to utilize equipment used in the IT industry. 

 

2) O-RAN Near-Real Time RIC & srsRAN Installation 

 

  After ensuring our system meets the software and 

hardware requirements, we can install the software needed to 

get OAIC up and running. The first thing we need to get 

running is the O-RAN RIC, which is responsible for 

controlling and optimizing Radio Access Network (RAN) 

functions. OAIC documentation provides us with a script, as 

shown in Figure 5, that will install Kubernetes, Docker, and 

Helm. The script will also install pods that help with cluster, 

service creation, and internetworking between services. 

 

 

Fig. 5. OAIC created a small portion of the script to install Kubernetes, 

Docker, and Helm. 

  While running the script, I ran into some problems 

with the script finishing successfully. The script got stuck in a 

loop while configuring and running the pods. Figure 6 shows a 

message saying, "No resources found in kube-system 



namespace." This issue with the script not being able to find 

the resources resulted in a loop where the script was waiting 

for the eight pods to run. After spending hours researching this 

issue, I realized that the various solutions provided for solving 

this problem that I had attempted to do were not working. I 

then decided to post about this issue on OAIC’s GitHub page, 

hoping a developer would assist with this problem. 

Unfortunately, there was no response after waiting for multiple 

weeks, so I had to troubleshoot this issue independently. 

Eventually, I solved this issue by running the script a second 

time, and the eight pods started to run. Figure 7 shows a list of 

all the pods created after the script is finished running. 

 

Fig. 6. The pod configuration issue. 

 

Fig. 7. The Kubernetes list of running pods. 

  The next step is to build a modified docker image. 

First, we must create a local docker registry to host the docker 

images. A local docker registry is a registry you host and 

manage your own infrastructure. Once the docker registry is 

created, we need to pull a docker image from OAIC’s 

DockerHub and then push it to the local registry, as shown in 

Figure 8. With the docker image pulled and pushed, we can 

then deploy the near-real-time RIC. The specific command we 

need to use to deploy the RIC uses something called a recipe. 

A recipe provides customized requirements for the components 

of a deployment group for a specific deployment site. With the 

specific recipe designed for OAIC, it is deployed with the near-

real-time RIC. 

 

 

Fig. 8. Building a modified docker image. 

 

  With the O-RAN Near-Real Time RIC installed, we 

can install the srsRAN. We need to have ZeroMQ installed, in 

which srsRAN uses its networking library to transfer radio 

samples between applications. We also need to have Ettus 

UHD binary and the asn1c compiler installed. The installation 

process for srsRAN is simple and requires running a script 

created by OAIC to get it installed and running. Figure 9 shows 

srsRAN installing on the server. 

 

Fig. 9. The srsRAN installation process. 

 

3) Running Your Own 5G Network 

 

  With everything installed, we can start up all the 

components needed to run a 5G network. Before we start each 

component, we need to remember that each component must 

be started in the correct order. If they are not opened in the 

correct order, OAIC will not run properly. The components are 

all running on separate terminal windows, as they are each 

running different things. The first component we will start is 

the EPC, which represents the core of the network [13]. Figure 

10 shows the command to start the EPC and how it looks while 

running. 



 

Fig. 10. OAIC’s 5G network’s EPC running. 

  The next component to start is the gNB/gNodeB, 

which represents the base station or cell tower [14]. Before the 

command to start the gNodeB, we need to note some critical IP 

information. We need to find the current machine’s IP address 

and the IP address of the E2 Termination service at the near-

RT RIC. Once we have these IP addresses, we can then run our 

gNodeB. Figure 11 shows the IP addresses being collected and 

the gNodeB running. The last component we need to start is 

the UE, which is the user equipment or the device connecting 

to the cell tower [15]. Figure 12 shows the UE running. 

 

Fig. 11. OAIC’s 5G network’s gNB/gNodeB running. 

 

Fig. 12. OAIC’s 5G network’s UE running. 

  To confirm that every component is connected to each 

other, we need to make sure that an IP address for the UE is 

shown within the terminal, like in Figure 12. With every 

component running in our 5G network and an IP address 

provided for the UE, we must exchange traffic to confirm that 

our network works correctly. This will confirm whether the UE 

and EPC can communicate with each other. We will use iperf3 

to check that there is incoming traffic from both the UE and 

EPC. Figure 13 shows iperf running from the EPC side, and 

Figure 14 shows iperf running from the UE side. 

 

Fig. 13. Iperf running from the EPC side of the network. 

 

Fig. 14. Iperf running from the EU side of the network. 

  While starting each of these components for the first 

time, I ran into various issues that prevented me from running 

them all together. The first issue was with gNodeB, where it 

would get stuck in a loop while trying to establish a socket 

connection to a specific IP address. While looking into this IP 

address, I found that it is the IP address for a specific pod, 

which was the service-ricplt-e2term-sctp-alpha pod. After 

hours of attempting to fix this issue, I went to OAIC’s GitHub 

page to see if anyone else had experienced this issue. One user 

ran into the same issue and claimed the solution was to “fix the 

Kubernetes IP address when installing it.” This solution needed 

clarification, and I needed help figuring out how to do that. I 



restarted the OAIC installation from scratch, and the issue was 

fixed. I still do not know other solutions for this issue, but it 

was resolved for me. Figure 15 shows this issue and highlights 

the pod that was involved. 

 

 

Fig. 15. Socket connection to pod failure. 

  The second issue I ran into while starting OAIC's 

components was that leaving components alone for more than 

10 seconds caused them to go idle. I found this out when I did 

not use iperf3 to send traffic from the EPC side of the network 

to the UE side. When I did not send this traffic, the UE would 

prompt a message in the terminal saying “RRC IDLE,” as 

shown in Figure 16. The RRC (Radio Resource Control) is the 

process by which the UE and gNodeB establish a connection. I 

eventually realized that I needed to send traffic between 

components for the network to continue running. Without the 

traffic running between the two, the RRC process cannot 

finish, resulting in the components not working with each 

other. 

 

Fig. 16. RRC idle problem. 

 

C. Experiments 

 

1) Denial-of-Service (DOS) 

 

 

Fig. 17. The bit rate of the 5G network per hour. Hours 14 and 15 are with 

normal traffic, and hours 16 and 17 are with DOS attack traffic. 

  Our first experiment will test how well components 

within the configured OAIC installation can handle Denial-of-

service (DOS) traffic. We ran normal traffic (pings) on the 

simulated 5G network for 2 hours to get a baseline of data 

rates, amount of traffic sent, and component performance. 

After running normal traffic, we ran a DOS attack on the 

gNodeB for 2 hours to compare component performance with 

the normal traffic performance. 

 

  For the normal traffic, we used vnStat to track 

network and component performance and ping to send traffic 

within the network [16]. vnStat is a tool to track data involving 

specific network adapters and creates graphs with the data 

collected. The ping traffic will be used as a baseline to see the 

network performance without any large traffic. We would ping 

for 2 hours and then transition into running a DOS attack on 

the gNodeB. We used hping3 to flood the network with 

requests for our DOS attack to see how it would impact overall 

performance. While monitoring normal and DOS traffic, vnStat 

created a graph showing data rates per hour, logged ping time 

to see any delays in responses, and logged iperf bitrates from 

both the user equipment and network side. My prediction for 

this experiment is that there will be a slight decrease in overall 

network performance. 



 

 

Fig. 18. A comparison of bit rates during normal traffic and DOS traffic. 

  The results from this experiment show that there was 

a decrease in bit rate and longer response times while running 

the DOS attack.  Figure 17 shows the bit rate from the network 

interface srs_spgw_sgi, where this AI-enabled 5G network is 

running. The figure shows the bit rate increasing from hours 14 

to 15, which is when the normal traffic was sent. It also 

indicates that the bit rate decreased from hours 15 to 16 when 

the DOS attack began to run. Figure 18 shows the second-by-

second bit rate of the base station, tracked with iperf, from both 

the normal and DOS traffic over 2 hours. The normal traffic bit 

rate is higher overall, while the DOS traffic is lower and has 

multiple spikes where the bit rate drops close to 0. We can see 

this when comparing the averages of bit rates under normal and 

DOS conditions. The bit rate during normal traffic averaged 

1.59 Mbits/sec, while the bit rate averaged 1.28 Mbits/sec 

during DOS traffic. This proves that the DOS had an impact on 

the network's bit rate. 

 

 

Fig. 19. A comparison of ping response time during normal traffic and DOS 

traffic. 

  Figure 19 shows the second-by-second ping response 

time when pinging the base station during normal and DOS 

traffic over 2 hours. The response time was quicker during 

normal traffic, while there were moments during the DOS 

traffic when it would take more than 500ms for a response. The 

attack has impacted the network response time, with many 

spikes in response time. This is shown when we compare the 

average ping response time in both types of traffic. The 

average ping response time under normal traffic was 66.38ms, 

while the average response time under DOS traffic was 

71.43ms. 

2. Denial-of-Service (DOS) on Network Slices 

 

 
 

 

Fig. 20. Implementing slow slicing (top) and fast slicing (bottom). 

  Our second experiment will test how well components 

within the configured OAIC installation with RAN slicing can 

handle Denial-of-service (DOS) traffic. The NexRAN tool is 



used to implement these slices on the network. OAIC offers 

two different ways of implementing RAN slicing, which 

includes slow and fast slices. Slow slicing is where there are 

fewer slices, meaning higher data rates for each slice. Fast 

slicing is where there are more slices, meaning lower data 

rates. For each type of slicing, we collected ping and iperf 

information in normal traffic for 2 hours, then collected the 

same information while under a DOS attack for 2 hours. Figure 

20 shows the implementation of slow and fast slices on the 

simulated 5G network. 

 

 

Fig. 21. A comparison of bit rates during slow-sliced normal traffic and DOS 

traffic. 

  This experiment's results show a noticeable decrease 

in bit rate and slightly longer response times for the slow slices. 

Figure 21 shows the second-by-second bit rate of the base 

station with slow slices, tracked with iperf, from both the 

normal and DOS traffic over 2 hours. The normal traffic bit 

rate is higher overall, while the DOS traffic is lower, and both 

had a significant spike towards the beginning, where their bit 

rate reached below 1 Mbit/sec. We can confirm that DOS 

traffic's average bit rate was lower by looking at the average bit 

rate in normal traffic. The average bit rate for the slow sliced 

network in normal traffic was 2.51 Mbits/sec, while the 

average bit rate in DOS traffic was 2.16 Mbits/sec. When 

comparing these results to the non-sliced network, the slow 

sliced network had jumps in data rates from high to low, which 

is something to pay attention to. There are also fewer spikes 

where the bit rate reaches below 1 Mbit/sec. 

 

 

Fig. 22. A comparison of ping response time during slow-sliced normal traffic 

and DOS traffic. 

  Figure 22 shows the second-by-second ping response 

time when pinging the base station with slow slices during 

normal and DOS traffic over 2 hours. The ping response time 

was faster during normal traffic, but there were only a few 

spikes where the response time was almost 400ms. There were 

fewer spikes in response time than the non-sliced network, 

except for one massive spike in the slow sliced network 

towards the beginning. Looking at the ping response time 

averages in both traffic conditions, we see a higher ping 

response time under DOS conditions. The average ping 

response time in normal traffic conditions was 143.83ms, while 

the average ping response in DOS traffic conditions was 

165.53ms. 



 

 

Fig. 23. A comparison of bit rates during fast-sliced normal traffic and DOS 

traffic. 

  The results from this experiment show that the fast 

slices' bit rate slightly decreases during a DOS attack. Figure 

23 shows the second-by-second bit rate of the base station with 

fast slices, tracked with iperf, from both the normal and DOS 

traffic over 2 hours. Although the bit rate during the DOS is 

slightly lower, the attack did not significantly impact network 

performance. The fast slices managed this attack very well. We 

can prove this by looking at the bit rate averages in both types 

of traffic. The average bit rate in normal traffic is 1.37 

Mbits/sec, while the average bit rate in DOS traffic is 1.16 

Mbits/sec. 

 

 

Fig. 24. A comparison of ping response time during fast-sliced normal traffic 

and DOS traffic. 

  Figure 24 shows the second-by-second ping response 

time when pinging the base station with fast slices during 

normal and DOS traffic over 2 hours. There is a noticeable 

difference in response time between the normal and DOS 

traffic. he DOS traffic had longer response times than normal 

traffic, which is the common trend with each experiment. The 

average ping response time in normal traffic was 245.57ms, 

while the average ping response time in DOS traffic was 

288.97ms. 

  Figure 25 summarizes the key metrics for each 

network scenario covered in these experiments. If we compare 

each of these scenarios, the slow-sliced network had the best 

bit rate averages, while the normal network had the lowest ping 

response times. With these averages, we need to determine 

where our priorities are with the network. In the normal 

network, we have average bit rates with the lowest ping 

response time. We have higher bit rates in the slow-sliced 

network but slightly higher ping response times. We have 

lower bit rates and higher ping response times in the fast-sliced 

network. It all comes down to personal preferences. 

NETWORK METRICS IN DIFFERENT SCENARIOS 

  
Bit Rate 
(Mbits/Sec 

Ping 
Response 
Time (ms) 

Normal Traffic 1.59 66.38 

DOS Traffic 1.28 71.43 

Slow-Sliced Normal 
Traffic 2.51 143.83 

Slow-Sliced DOS Traffic 2.16 165.53 

Fast-Sliced Normal 
Traffic 1.38 245.58 

Fast-Sliced DOS Traffic 1.16 288.97 

Fig. 25. A table that compares the average network bit rate and ping response 

times with normal and DOS traffic, sliced and non-sliced, and slow-sliced vs 

fast-sliced 



 

IV. DISCUSSION 

 

A. Conclusions 

 

  Based on the results of these experiments, the sliced 

5G network appeared to handle the DOS attack better than the 

regular 5G network. The sliced network had little to no drops 

in bit rate and fewer large spikes in ping response time 

compared to the regular network. However, with slicing 

involved, we see higher ping response times. Of all the 

network options available, a slow-sliced network would work 

best. The slow-sliced network has the highest bit rates and 

slightly higher ping response times, but better than fast-slicing. 

This experiment reveals that a DOS attack can impact OAIC's 

mobile network's performance, but slow-slicing could reduce 

the effects on network performance. 

  With slicing reducing the effects of the DOS attack, 

we need to discuss reasons why this was possible. Slicing 

didn’t completely stop the DOS attack, but it allowed the 

network to mitigate its impact to different slices. By having 

multiple slices in the network, we are isolating different parts 

of the network, allowing separate services to run without 

interrupting what’s happening in the other slices. Based on this 

experiment, one of these slices took the majority of the DOS 

attack, while the rest was able to continue running as normal. 

  This capstone project was a success. OAIC was 

installed and deployed on the testbed, and we ran multiple 

experiments successfully, meaning anyone can use this tool to 

learn and experiment with 5G. 

B. Challenges Faced 

 

  While I was beginning the process of preparing the 

lab for this capstone project, I ran into issues accessing the lab 

that had the testbed I was using. I was locked out of the lab for 

two weeks due to problems that were not in my control, 

resulting in a delayed start from when I wanted to begin this 

project. Along with the lab issues, I was also deciding whether 

to do a research-based capstone project or a hands-on capstone 

project. I decided to focus on a hands-on capstone since I 

would be using equipment, and it’s a project that students can 

also try and set up. 

 

  While I was focused on installing OAIC, I previously 

described the various issues that held up the installation and 

deployment of the software. The first issue was the 

configuration of the pods during the installation. It caused me 

to stay in a loop because it could not find a specific namespace. 

The second issue was a socket connection issue with a 

particular pod set up in Kubernetes. It prevented me from 

running the gNodeB, one of the essential components. The 

final issue was an idle error, where I needed to run network 

traffic to keep the network functioning. 

C. Lessons Learned 

 

  It took a lot of trial and error to get OAIC running and 

working correctly, but once it was working, its ability to test 

5G components is helpful for those who want to experiment 

with 5G. This tool allowed me to learn more about what goes 

into making a 5G network and about industry-related tools, 

such as Docker and Kubernetes. 

 

  I also worked with a testbed, giving me the hands-on 

experience I sought. In the testbed, I learned how to manage 

and configure servers and how difficult it can be to run 

multiple programs and services simultaneously on one device. 

 

  If I had to restart this project, I would have tried 

installing OAIC on multiple devices to see how the installation 

process would have been. I successfully installed it on my 

laptop and the servers in the testbed, but I want to know if the 

installation process will run properly on other devices. I also 

would like to try different types of attacks on the components, 

such as a man-in-the-middle (MITM) attack, to capture traffic 

and interfere with its communications. Trying to interfere 

while the components were trying to establish a connection 

with each other would have been interesting to try out. 

V. CONCLUSION 

 

  This project provides a detailed explanation of Open 

AI Cellular (OAIC), its features, the installation process, and 

deploying a 5G network on any device that it supports. It 

provides a great learning experience for students or for those 

interested in learning more about 5G networks. Not only can 

OAIC be used by students, but it can advance research in 5G. 

Projects using OAIC can be expanded to make changes to 5G 

and the future generations of mobile networks. All the software 

involved in making OAIC run is open source and available to 

utilize. Anyone can get this up and running within an hour or 

two. 

 



  If given more time, I would have also included 

OAIC’s testing platform, OAIC-T, for more experiments and 

as an opportunity to learn more about programming [17]. 

OAIC-T would have allowed me to use test configuration files 

to configure a testing environment and to run various actors to 

test OAIC components. The tool captures statistics on 

component usage, provides a visualization of these 

performance metrics, and can provide any output as requested 

in the test configuration files. This would have been a great 

addition to this project, but the project still meets its goals of 

running a 5G network and experimenting with it. 
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