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Abstract—The concerns over radiation-related health risks
associated with the increasing use of computed tomography (CT)
have accelerated the development of low-dose strategies. There
is a higher need for low dosage in interventional applications
as repeated scanning is performed. However, using the noisier
and undersampled low-dose datasets, the standard reconstruction
algorithms produce low-resolution images with severe streaking
artifacts. This adversely affects the CT assisted interventions.
Recently, variational autoencoders (VAEs) have achieved state-
of-the-art results for the reconstruction of high fidelity images.
The existing VAE approaches typically use mean squared error
(MSE) as the loss, because it is convex and differentiable.
However, pixelwise MSE does not capture the perceptual quality
difference between the target and model predictions. In this
work, we propose two simple but effective MSE based perception-
aware losses, which facilitate a better reconstruction quality. The
proposed losses are motivated by perceptual fidelity measures
used in image quality assessment. One of the losses involves
calculation of the MSE in the spectral domain. The other involves
calculation of the MSE in the pixel space and the Laplacian
of Gaussian transformed domain. We use a hierarchical vector-
quantized VAE equipped with the perception-aware losses for the
artifact removal task. The best performing perception-aware loss
improves the structural similarity index measure (SSIM) from
0.74 to 0.80. Further, we provide an analysis of the role of the
pertinent components of the architecture in the denoising and
artifact removal task.

Index Terms—computed tomography, perception-aware, image
reconstruction, deep learning, denoising, artifact removal

I. INTRODUCTION

Computed tomography (CT) is the most frequently used
tomographic method in many countries due to its wide availability,
easy usage and minimal contraindications [1]. It plays an
important role in providing assistance for various interventional
procedures, including biopsy, tumour ablation, catheter place-
ments and orthopaedic surgeries [2]. However, the burgeoning
use of CT increases the radiation exposure related health risks
and may induce cancer, especially for the paediatric patients
[3]. These growing concerns acted as the driving force for
the introduction of various dose reduction strategies. The most
common dose reduction technique is lowering of the tube current
or voltage. However, this strategy leads to noisier measurements
(projections) with decreased signal-to-noise ratio due to increased
electronic readout noise. Another potential dose reduction strategy
is compressed-sensing motivated sparse sampling (SS) [4], where
a reduced number of projections are acquired while maintaining
the routine dose intensity. Although not clinically introduced, SS
has shown potential to provide robust bone-mineral deposits [5]
and facilitate faster data collection. The combination of lower

Fig. 1. A 2D slice of FDK
reconstructed head CT vol-
ume (a) under sparse sam-
pling and low beam intensity
(b) using all routine dose
projections. Both of them
suffer from metal artifacts.

tube current and sparse sampled projections will deliver ultra
low-dose, desired for real-time CT assisted interventions.

For decades, the conventional analytical methods such as
filtered back projection (FBP) and Feldkamp (FDK) [6] are
being used in clinics, as they need less computational power
and time. However, the reconstructions using low-dose strategies
and analytical methods suffer from severe streaking artifacts,
as shown in Fig. I. This makes the reconstructions clinically
useless and may hinder interventional guidance. To overcome this
problem, different variants of iterative methods [4] were proposed,
which can integrate prior knowledge, such as diagnostic quality
pre-operative CT examinations or information about metallic
implants. However, the iterative methods are much slower and
more computational intensive than FDK, as they require to repeat
the projection and back-projection operations multiple times.
Recently, many deep learning (DL) methods have been proposed
for the CT denoising task [7]. DL methods can incorporate prior
knowledge, such as the FBP/FDK reconstructed image. Also,
DL methods used as a post-processing tool takes fraction of a
second for the inference, desirable for real-time interventions.

In this work, we propose a hierarchical vector quantized VAE
(VQ-VAE) [8] based architecture to generate high quality images
from the corrupted CT images acquired under low-dose and
sparse sampling protocols. VQ-VAE is a DL based generative
model which has achieved state-of-the-art results for various
computer vision tasks [9]. VQ-VAE produces promising results,
but the choice of loss function plays an important role for the
specific task. Therefore, we introduce two perception-aware
MSE based losses inspired by their usage in the image quality
assessment tasks. The framework equipped with the proposed
losses reconstructs high fidelity human head CT images, where
some of them have metal fillings, making the denoising and
artifact removal problem particularly challenging. Lastly, we
demonstrate the role of each pertinent component of the hierarchy
in the artifact-free reconstruction task.

II. RELATED WORK

A. CT Reconstruction Using DL Approaches
The review on DL methods for CT reconstruction [7] portrays

that significant efforts have been made to fuse the conventional
reconstruction algorithms with DL. The proposed DL based



approaches can be divided into three categories: (i) unrolled
iteration, (ii) domain-transform, and (iii) post-processing. The
algorithms pertaining to the first category use DL models to
learn some components of the iterative algorithms. The first
DL method to unroll the optimization algorithm is ADMM-
Net [10], where the tuning parameters and linear operator are
learned from the training data. Some other approaches learn the
regularizer [11] or model the projector which projects onto a set
of feasible images, performed iteratively [12]. These methods
produce diagnostic-quality images, but are slow for fast-imaging
protocols owing to the inherent method’s iterative nature.

The domain-transform approach estimates a direct mapping
from projections to image domain. The method requires a lot of
training data due to the huge difference between the projections
and image space distributions. Zhu et al. proposed one such
method AUTOMAP [13], which uses two fully-connected layers
as the initial layers. The first layer learns a mapping between
the sinograms and pixel domain. This approach is not feasible to
reconstruct 3D volumes even using sparse sampling, considering
its gigantic computational requirement [14]. Few other domain-
transform approaches were proposed, where one X-ray image
[15] or two bi-planar projections [16] were used to produce 3D
CT volumes. However, both of them used clean projections with
no metal artifacts. Further, the bi-planar network was trained
with knee bone segmentation, which is difficult to acquire for
every patient.

Most of the DL approaches for CT reconstruction belong to the
post-processing category, which are primarily based on residual
auto-encoder architectures [17, 18, 19]. In post-processing, a
mapping is estimated between the low quality image/projection
and the high quality image/projection. Few convolutional neural
network (CNN) approaches performed denoising in the image
domain, where a network was trained to produce cleaner images
from the corrupted FBP reconstructions [19, 20, 21]. These
networks were either trained on 3D volume patches or 2D slices.
Some other works applied denoising on the projections prior to
reconstruction [19, 22]. Lee et al. proposed a hybrid denoising
framework [22], where the pooling layers were replaced with
wavelet transforms and two residual networks were trained to
perform denoising in both projections and image domain. Yang
et al. proposed a Generative Adversarial Network (GAN) based
approach [23] to denoise the low-dose scans. The GAN approach
used a loss function as the combination of Wasserstein distance
and the difference between a pretrained VGG network [24]
outputs for noisier input image and target.

B. Applications of Discrete Cosine Transform (DCT)
DCT is a linear transform which decomposes an image

into its spatial spectral components. It is widely used for
data compression due to its energy compaction capabilities.
Recently, it has been used in various tasks such as, classification
accuracy improvement [25], face recognition [26], deep-fake
identification [27], model compression [28, 29], faster training
and convergence [30], produce harmonic convolutional blocks
and reduce overfitting [29]. Giudice et al. [27] detected the
GAN generated images by modelling the non-zero frequency
coefficients of DCT as a zero-centred Laplacian distribution.
The β statistics of the distribution was exploited to identify
the GAN-specific spurious frequency, absent in normal images.

Networks trained on 8×8 blockwise DCT coefficients taken
directly from the JPEG images demonstrated significantly faster
convergence and better accuracy for most of the cases [31].
DCT-based similarity metrics are used to assess the perceptual
quality of the images [32] and video [33], where the distortion
is measured by a l2-norm in the DCT domain.

III. METHODOLOGY

A. VQ-VAE Framework
VAE is a fusion of autoencoder and variational Bayes, where

the input x, target y and embedding e are random variables.
VAEs approximate the underlying data distribution instead of
embedding all information explicitly, which makes them require
fewer examples and less prone to overfitting than discriminative
models. This makes them particularly suitable for small datasets.
The VAE models produce blurry reconstructions as the encoder
cannot precisely distinguish between multiple training samples,
which causes the decoder weights to be spread across for the
same samples [34]. VAEs face another problem of ‘posterior
collapse’ due to the discrepancy between the posterior and prior
distribution. This leads the decoder to utilize the information
only from a subset of latent dimensions [35].

VQ-VAE uses discrete embeddings instead of a continuous
distribution, which prevents the posterior collapse and stabilizes
training [8]. The discrete embedding space is achieved through
vector quantization, where K prototype vectors are indexed in an
embedding space e∈RK×D , where D is the dimension of each
vector. The encoder E(.) provides a non-linear mapping between
the input space (x) and a vector E(x), which is quantized using
e. The optimal prototype vector for the encoder output E(x) is
found by nearest-neighbour search between the E(x) and the
prototype vectors in e. The decoder produces the reconstruction
using the prototype vector from e through another non-linear
function.

B. Proposed Hierarchical VQ-VAE Framework

LQ HQ

Encoder Decoder

VQ

Encoder DecoderDecoder

VQ
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Fig. 2. A simple representation of the proposed hierarchical VQ-VAE concept

In our denoising and artifact removal task, the VQ-VAE
network learns a transformation of the low quality (LQ) image
to a higher quality (HQ) image. We modified VQ-VAE to have a
hierarchy of three levels of quantized embeddings (Q1, Q2, Q3),
as shown in Fig. 2, where VQ denotes vector quantization. The
upper embeddings are conditioned on the lower ones as done in
[9]. The hierarchical concept facilitates each embedding space to
capture non-redundant representations which act complementary
to each other. In this way, we intend to encourage each embedding
level to capture separate representations. We hypothesize that
the upper embedding space (Q1) models artifact removal, the
middle one (Q2) captures the local information such as edges



and texture and the bottom one (Q3) captures the global structure.
The detailed architecture is described in Appendix B.

C. Loss Formulation
The VQ-VAE [9] objective has multiple loss components, as

shown in (1). The first component is the reconstruction loss,
which is the l2-norm between the model prediction (ŷ) and
the target (y), optimising both encoder and decoder. For clarity,
HQ is denoted by y in all equations. The second component is
the commitment loss which affects only the encoder weights.
It prevents frequent reassignment of a prototype vector to the
encoder output, which prevents the explosion of the embedding
space. For our task, there exists one commitment loss for each
embedding level l∈L, as shown in (1). Further, β denotes the
change-reluctance hyperparameter [9], el is the embedding at
level l, El(xl) is the encoder output at level l using the input
xl, sg is stopgradient operator [8]. The embedding vectors at all
levels are learned through exponential moving average for faster
convergence [9].

Loss= ||y−ŷ||22+β

L∑
l=1

||sg[el]−El(xl)||22 (1)

The VAE and other models designed for reconstruction task
typically use the classical MSE to measure the fidelity of
the pixels, as it has desirable mathematical properties and is
easily computed. However, pixelwise MSE does not capture
the structural relationship in a pixel-neighbourhood, dissimilar
to how humans perceive an image [36]. Therefore, MSE is
considered as an unreliable metric in image quality assessment
studies. On the other hand, the accepted perceptual metrics have
at least one undesirable property when being used as objective
function: non-convex, non-differentiable, invalid distance metrics,
or have complicated gradient computation [37]. Therefore, in
this work we propose two MSE based perception-aware losses.
The losses enjoy the properties of MSE and compared to MSE,
they are more aligned with how humans perceive the difference
between two images.

1) Laplacian of Gaussian (LoG) MSE Loss: LoG is widely
used for capturing sudden intensity changes (edge detection). It is
calculated as the second derivative of an image after application
of a Gaussian filter to the image, to reduce false edge detection.
We propose a loss LoG MSE (LossLoG) as a combination of
pixelwise MSE and l2-norm calculated in the LoG transformed
pixel space, as shown in (2), where λ is a hyperparameter for
tuning LoG’s contribution. The loss penalizes the disagreement
between the zero crossings of LoG transformed target and the
model predictions. This makes it more sensitive to the edges or
structures wrongly reconstructed by the model, making it more
perceptually aware than a pixelwise MSE.
LossLoG(y,ŷ)=MSE(y,ŷ)+λ MSE(LoG(y),LoG(ŷ)) (2)

2) DCT MSE Loss: DCT has been used in image quality
assessment tasks [33], which motivated us to propose a loss
where l2-norm is calculated in the spectral domain, as shown in
(3). Karhunen–Loève transform (KLT) is considered the optimal
transform to extract weak signals hidden in any type of noise,
where even Fast Fourier Transform does not work [38]. DCT
closely approximates KLT under Markovian conditions [39],
which is generally true for any CT image. DCT has the additional
advantage of fixed basis images, unlike KLT. The components of

the DCT spectrum have varying importance (amplitudes), based
on their contribution to the visual quality of the image. Therefore,
a huge disagreement between the model prediction and target
for the important DCT coefficients will result in higher penalty.
This facilitates the model to focus on the pertinent areas of the
image.

Lossdct(y,ŷ)=MSE(DCT (y),DCT (ŷ)) (3)

IV. EXPERIMENT AND RESULTS

A. Dataset and Training Details
Forty 3D head CT volumes from publicly available Mayo

Clinic dataset [40] were used for the task. As the provided dataset
has helical acquired projections, CTL tool [41] was used to create
496 cone-beam projections similar to a clinical setup. FDK was
used for reconstruction, where each reconstructed head was of
dimensionality 512×512×512. For the low quality model input
(LQ), only 15 low-dose projections were used for reconstruction
as done in [42]. The high quality (HQ) groundtruth images were
reconstructed using all (496) routine-dose projections.

The models were trained on the 2D slices of the CT volume.
Therefore for each patient, there were 512 2D slices. Each 2D
slice was cropped to 384×384, to retain only useful information.
The image intensities were cropped to the 99th percentile and
subsequently normalized to an interval of [0,1]. The dataset split
for all the experiments was: training (32), validation (4) and
test (4). We trained 4 models, using the same architecture (refer
to Appendix B). Three models were trained on normal images.
The fourth model (Minput dct) used 8 × 8 block-wise DCT
transformed input as in [31] and Lossmse for all loss components.
The model Mmse used Lossmse similar to [9], which served
as the baseline. The perception-aware loss models: Mdct used
Lossdct, MLoG used LossLoG, for all the loss components. The
other training details are mentioned in Appendix A.

B. Results and Discussion
1) Quantitative Results: We evaluate the performance of the

models on test data using the following metrics, MSE, Peak
Signal-to-Noise Ratio (PSNR) and Structural Similarity (SSIM).

Model SSIM PSNR (dB) MSE
FDK 0.176 ±0.040 14.53 ±1.94 3.92e-2 ±0.020
Mmse 0.743 ±0.072 24.35 ±2.54 4.34e-3 ±0.002
Mdct 0.803 ±0.071 27.84±2.41 1.90e-3 ±0.002
MLoG 0.799 ±0.066 27.11 ±2.68 2.23e-3 ±0.002
Minput dct 0.752 ±0.067 26.00 ±2.51 2.69e-3 ±0.002

TABLE I
QUANTITATIVE EVALUATION OF THE RECONSTRUCTION QUALITY OF ALL

MODELS AND FDK. VALUES ARE THE MEAN AND STANDARD DEVIATION OVER
2D SLICES. BEST RESULTS ARE MARKED BOLD.

Table I portrays that Mdct performed the best and Mmse the worst,
with respect to all metrics. Comparing the three models trained
on pixel space, we observe that the models using surrogate
losses produced lower pixelwise MSE than the one trained
with MSE objective. We can infer from the empirical results
that perception-aware losses are beneficial for training, as they
model pixel gradients instead of pixel values. The Minput dct

model also yields better performance than Mmse. This confirms
the hypothesis that DCT captures the pertinent details of the
image which facilitates learning, as reported by other works



[30, 31]. However, interestingly the model trained on image
space and using loss Lossdct produced better results compared
to Minput dct trained in DCT space. The reason can be, the
convolutional architecture is not suitable for this objective, as in
the DCT domain identical patterns in different locations have
different meaning.

2) Qualitative Results and Discussion: Fig. 3 shows that
the models using perception-aware loss removed the streaking
artifacts and reconstructed the high intensity details such as,
bone and teeth fillings. For easier LQ images, such as Fig. 3 (d)-
LQ, Mmse reconstructed the high intensity details. However, for
difficult cases, such as Fig. 3 (c)-LQ, Mmse did not even remove
the streaking artifacts completely. For some cases, the perception-
aware loss based models did not reconstruct the soft-tissue well,
as seen in Fig. 3 (c). We leave it as future work, where we
consider to improve the soft-tissue contrast by incorporating
the pre-operative CT examinations as prior knowledge. For
further analysis, we studied the progression of filter responses
or activation maps over first few epochs for Mmse, Mdct and
MLoG models, where maximal change is expected. Generally
for lower level filters, the pixels were connected and formed
structure much earlier for Mdct and MLoG models compared
to Mmse. Similarly, for high-level filters, we observed that the
inner structural details were prominent at a much earlier epoch
for Mdct and MLoG models, compared to Mmse (refer to Fig
4). Further, we can see the edges seem more highlighted for
LoG, attributed to the Laplacian operator’s edge enhancement
properties.

LQ HQ
Model Predictions

Mmse Mdct MLoG
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Fig. 3. The predictions produced by the models for 4 cases from test data.
1st column contains LQ (Input), 2nd column contains the corresponding HQ
(Groundtruth), and the rightmost pane contains predictions from models Mmse,
Mdct and MLoG respectively for the corresponding LQs.

3) Analysis of the Role of Embedding Levels: Our architecture
has three embedding levels as shown in Fig. 2. We tracked the
progression of activation maps for both LQ and its corresponding
HQ image. We inspect the epochwise activation maps for both
LQ and HQ, to investigate what each embedding level captures.
Fig. 5 (a) portrays that for top-most embedding Q1, the activation
maps of LQ are evolving to develop star-like patterns (artifacts),
whereas the HQ activation maps evolved without artifacts. This
indicates that the Q1 still encodes the artifacts, and the artifact
removal is also done by the decoder. Fig. 5 (b) shows that the
mid-level embedding Q2 captured more global structures than
Q1, such as the geometry of the head and inner bone or tissue

details. Further, Q2 captures more local details than the lowest
level embedding Q3, as seen in Fig. 5 (c). Further, we can
observe that the HQ and LQ activation maps tend to become
similar over the epochs, for both Q2 and Q3. The empirical
results support that each embedding level of VQ-VAE captures
distinguishable concepts, as we intended with our architecture
design. This observation was consistent for different examples.

Input

a)

b)

c)

Fig. 4. The progression of the activation maps for the input image (left side)
for first 7 epochs. The activation maps are produced by models: (a) Mmse (b)
Mdct (c) MLoG.
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Fig. 5. The progression of the activation maps for LQ and HQ for first 6 epochs.
The activation maps are produced from the best performing model Mdct, from
the respective embedding levels (a) top-most Q1 (b) middle Q2 (c) lowest Q3

V. CONCLUSION

In this work, we introduced two simple but effective perception-
aware MSE based losses. The losses enable the hierarchical
VQ-VAE framework to remove the challenging low-dose related
artifacts. Further, they help the model to capture the fine details
(bones, teeth and metal fillings) accurately compared to the
pixelwise MSE model. The losses are not architecture specific
and easy to implement. We also provided an analysis on the role
of different embedding levels. The analysis supported that each
level captured distinct concepts at different abstraction levels.
This facilitated the removal of the artifacts in the low quality
head CT images, which were generated from only 3% (15 out of
496) of the projections. As future work, we plan to improve the
soft-tissue contrast by incorporating the diagnostic or planning
CT as prior knowledge.

APPENDIX A
EXPERIMENT AND HYPERPARAMETER DETAILS

The models are implemented in Tensorflow(2.3.0). The
experiments were carried out on NVIDIA Tesla V100 32GB
GPUs. Each experiment was run for maximum of 500 epochs
with early stopping, where training was stopped if there was no
improvement after 20 epochs. Online data augmentation included
random flipping, rotation and scaling. The models were trained
using ADAM [43] optimiser using learning rate 1e-4. The model



with the lowest validation SSIM was selected and used for
the evaluation on test data. The batch size was set to 72 (the
maximum which fits the GPU memory) for all experiments. We
used type-II variant of DCT, same as used in [29]. The Laplacian
operator (refer to (4)) used in the LoG loss is implemented as a
discrete convolution kernel, [1,1,1; 1,-8,1; 1,1,1]. The parameters
for Gaussian kernel were set as sigma=1.0 and kernel size=7.
The LeakyReLU slope was set as 0.2.

∆2f(x,y)=f(x+1,y)+f(x−1,y)−2f(x,y)︸ ︷︷ ︸
x direction

+f(x,y+1)+f(x,y−1)−2f(x,y)︸ ︷︷ ︸
y direction

+

f(x−1,y−1)+f(x−1,y+1)+f(x+1,y+1)+f(x+1,y−1)+4f(x,y)︸ ︷︷ ︸
diagonal

(4)

APPENDIX B
VQ-VAE ARCHITECTURE DIAGRAM

Fig. 6 shows the detailed hierarchical VQ-VAE architecture
implemented for the task. The three embedding levels are
marked as Q1, Q2 and Q3. The Residual+strided convolution
block comprises of two residual blocks followed by a strided
convolution having kernel size 3× 3 and stride of two. The
residual block is implemented as: activation, 3×3 convolution,
activation, 3×3 convolution, where LeakyReLU [44] was chosen
for the activation. The decoder similarly has two residual blocks,
followed by a transposed convolution with stride of two and
kernel size 3×3.

Fig. 6. The hierarchical VQ-VAE architecture for the CT denoising and artifact
removal task.
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