
EasyChair Preprint

№ 832

A Combined Semantic Search and Machine

Learning Approach for Address Entity Resolution

Anne Moshyedi, Taylor Kramer, Amitava Gangopadhyay and
Sujit Pal

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

March 15, 2019

A Combined Semantic Search and Machine Learning

Approach for Address Entity Resolution

Anne Moshyedi

Innovation Labs

SWIFT, Inc.

Manassas, VA 20110
anne.moshyedi@swift.com

Taylor Kramer

Innovation Labs

SWIFT, Inc.

Manassas, VA 20110
taylor.kramer@swift.com

Amitava Gangopadhyay

Innovation Labs

SWIFT, Inc.

Manassas, VA 20110
amitava.gangopadhyay@swift.com

Sujit Pal

Elsevier Labs, Antioch,

CA 94531

sujit.pal@comcast.net

Abstract— We have developed a comprehensive prototype

solution for a specific use case involving entity resolution for

mailing addresses of financial institutions. Our objective was to

find matches between user entry of misspelled or inaccurate

addresses of business entities and their corresponding entries in a

“gold copy” of complete and accurate mailing addresses

(dictionary). Three distinct matching methods (PySolr, SoDA and

Record Linkage) were used for a preliminary, yet diverse scheme of

lookups in finding matches. These lookup processes may optionally

be followed by search via a hybrid machine learning (ML) model

via regularized logistic regression and hierarchical clustering using

Dedupe. Our experimental results of elapsed times for searches

using the three lookup methods on a variety of match types suggest

that majority of the simpler matches are detected extremely fast

(elapsed times: ~ 6 – 48 milliseconds) at the lookup stage, making it

suitable for detecting simple and possibly most common errors in

user entries for mailing addresses. The performance of ML models,

on the other hand, is comparatively slower (elapsed times: ~ 174 –

201 milliseconds). Nevertheless, the hybrid ML model seems most

suitable in cases where multiple ambiguities exist in user entry of

addresses, and, as a result, the preliminary lookup methods may

fail to detect possible matches. The precision and recall of the ML

model on a sizeable test dataset are 0.89 and 0.94, respectively.

These high scores on model performance suggest that the ML

models can be applied successfully to entity resolution of mailing

addresses. Our combined solution can be integrated with any

enterprise software applications in order to provide both efficient

and robust address matching service in cases where users enter

mailing addresses as free-form texts that may carry inaccuracies.

Keywords—semantic search, natural language processing,

machine learning, deep learning, entity resolution.

I. INTRODUCTION

 Natural language processing (NLP) is a field of
Artificial Intelligence (AI) that enables software applications
to understand and interpret human languages [1]. The
theoretical foundations of a large variety of AI-powered NLP
applications have been developed over the last several decades.
Examples include speech recognition [2] “semantic” search
engines [3], document classification [4], text summarization
[5], and record deduplication [6, 7]. “Entity resolution” (also
termed ‘record linkage”) is one such NLP problem where
different manifestations of the same real world object
(“entity”) are linked or grouped together in order to find
matches, eliminate duplicates or find relationships among

them within single or multiple seemingly disparate datasets
[8-10].

 In this study, we have built a prototype solution to
address a recurring business problem involving financial
message transfers. The customers for financial message
transfer often enter recipient financial institution or company
addresses as free-form texts that, at times, do not match with
any entries in the corresponding system of records for exact
mailing addresses. Such cases of free-form text entry constitute
a sizable portion of financial message transfers. The lack of
exact matches in most cases, however, is due to typographical
errors, inaccuracies or ambiguities in user entries of institution
names and/or addresses rather than actual absence of records
for intended recipient institutions. Here we report a
comprehensive and robust end-to-end solution to this entity
resolution problem to find exact or most likely matches
between addresses from users’ inputs and those from an
existing larger address dataset persisted as a dictionary.

II. METHODOLODIES

 There are four stages in the end-to-end workflow for our

solution, as shown in Fig. 1. Here we give a brief description

on each of the stages: input; preliminary lookup; ML model;

and output.

Fig.1 The entity resolution workflow in our solution

Stage I: User Input

Our entity resolution workflow starts with users’ input of
two datasets in csv format on a web application we have built
natively using python and Apache Flask. We chose Flask for
the deployment of our web application because it is a simple

mailto:anne.moshyedi@swift.com
mailto:taylor.kramer@swift.com
mailto:str8ht@virginia.edu

and light-weight Python 3 microframe-work that can run on
our Apache web server, and, as such, it involves minimal
effort on its installation and setup. As part of user entry, the
first dataset represents a “clean gold copy” of the data
(“dictionary”) that is cached into the memory of an index-
based search engine (Apache Solr

TM
). This clean copy of data

is ideally collected and compiled over time to include all
known valid and complete addresses that the users are likely
to use. In the real world, these data are collected from various
data vendors globally (e.g., United States Postal Service). For
the purpose of our current proof-of-concept, however, we have
used a small set (1000 records) of publicly available addresses
of some financial institutions in the UK [11] as a dictionary.
Next, the user uploads a sample dataset of records for analyses
in order to find matches with those in the dictionary dataset.

Stage II: Preliminary Lookup

We have implemented three matching methods for this
stage: [a] simple index-based query via PySolr (a Python
wrapper for Apache Solr [12]); [b] dictionary annotator using
SoDA [13] and SolrTextTagger [14]; and [c] Record Linkage
(python Toolkit for fast lookup: [15, 16]). See below for more
details on each of these lookup methods. The search results, as
returned by each of the above three lookup methods, are
ranked and sorted based on their matching scores. The
highest-ranking match along with a success metric for each
method is displayed on the web application user interface (UI).

Here we briefly describe each of the three lookup methods
in more detail.

1) Index-based query via PySolr

Apache Solr
TM

 is a widely used index-based search

engine in the industry, and it enables advanced search

capabilities and high scalability. The PySolr wrapper allows

users to query indexes on a Solr server using a python client

[12]. The address schema for our dictionary data contains

fields for the company name, address, city name etc. (Table 1).

The addresses data used in are mode dataset are publicly

available mailing addresses of 1,000 business entities in the

UK [11]. Table 1 displays a subset of five sample records out

of which the first four are distinct and the last two records are

two variants of the same physical addresses (duplicates). The

“Name” field lists the business entity names and the “Code”

field is populated with postal codes.

Table 1: Sample address data in the dictionary

ID Name Address City Country Code

1
1 MOBILE

LIMITED
30 CITY ROAD LONDON UK EC1Y2AB

2 1 TECH LTD

57

CHARTERHOU

SE STREET

LONDON UK EC1M6HA

3
23SNAPS

LIMITED

16 BOWLING

GREEN LANE
LONDON UK EC1R0BD

4

2E2

SERVICES

LIMITED

200

ALDERSGATE

STREET

LONDON UK EC1A4HD

5
2E2 UK

LIMITED

200

ALDERSGATE

STREET

LONDON UK EC1A4HD

 The address data in the dictionary are cached as Solr
indexes to enable fast and high-performance queries. Every
time the user searches for an address, the Solr index data are
queried via HTTP GET method. Each search query is
processed with a request handler that calls a query parser,
where the parser defines the search strings and parameters in
order to specify the query. For example, when searching based
on the company name and address fields, the query parser
selects only those two fields for query execution.

 We have leveraged the built-in support by Solr for both
phrase queries and DisMax queries. The phrase queries are
particularly helpful in detecting typographical errors, stemming
and phonetic spelling. Similarly, Solr's built-in DisMax query
parser is designed to process simple phrases entered by users
with no need for complex syntax, making it particularly
suitable for address entity resolution. Also, different weighting
(“boosts”) can be assigned based on the significance of each
field in search terms, and Solr supports search for individual
terms across several fields.

2) Dictionary based annotation via SoDA and
SolrTextTagger

Our second matching method, SoDA, is a dictionary-based
annotator for Apache Solr that supports both exact as well as
fuzzy lookups across multiple lexicons [13]. Architecturally, it
is essentially an HTTP REST microservice that enables a
client to post a text corpus and retrieve a corresponding set of
annotations. Annotations, in this context, refer to structured
objects that carry information on entity identifier, matching
text, offsets of matching texts within a given input text corpus,
and the confidence score of a specific match. SoDA allows the
client to specify the desired level of accuracy. Importantly, it
performs more efficiently when the user breaks the dictionary
down into smaller dictionaries based on the individual fields at
sub-entity levels (city, state, country etc.). These new smaller
dictionaries are then loaded into SoDA and Solr using a bulk
loader, which stores the data in separate lexicons. SoDA can
be implemented “on premise” or on the cloud (e.g., Amazon
Web Services (AWS)). The AWS implementation is
particularly better suited for cases where multiple users need
to use SoDA concurrently and yet they are not required to
install it separately on each instance. Instead, users can simply
connect to the AWS machine specified in the URL of their
HTTP requests and run the tests.

In order to query the lexicons, users can send their requests
over HTTP POST using Python or Scala as JSON documents.
We used a python client that exposes an Application
Programming Interface (API) to SoDA. The Python version
was chosen in this study because it helps to maintain
consistency and seamless integration with all other matching
methods we have implemented using tools and technologies
within python ecosystem. The HTTP requests are sent
through Jetty that serves as an HTTP web server, and
processes requests, responses, and stores the lexicon data in a
TSV (Tab Separated Values) format. SoDA itself interacts
with SolrText-Tagger

3
 on the Solr index.

SolrTextTagger is part of Apache Solr (7.4.0 and above),
and it

leverages Lucene’s Finite State Transducers (FST)

technology [14]. This tagger is commonly used to find entities

in large text, return pattern matching results in queries or to
enhance “query understanding.” FST refers to finite state
automata consisting of a set of strings with optional edges
between the nodes of strings. The connected nodes provide a
complete representation of the target entity. The FST structure
enables substring tagging on word level rather than at
character levels. FST is written as an immutable byte array,
and, consequently, it is efficient with respect to memory usage
and elapsed time to execute search queries. Further, when new
dictionary entries are encountered for matching entities, FST,
which is index-based, does not need to be rebuilt; the user
only needs to add the new entries.

Two separate FSTs were used in our implementation in
order to expand the abilities of the search method. The first
FST contains every word in the dictionary with a unique
integer id that can be used as a substitution. The second is a
word-phrase FST that is used based on those unique ids and
allow the tagger to account for prefixes and suffixes in words
and word phrases.

Next, SoDA, which is built on top of SolrTextTagger, is
used to hold the entity names and unique identifiers. Our
approach allows us to perform searches with multiple
matching modes and methods. This flexible approach thus
enables discovery of varieties of matches. For example, the
address dataset can be uploaded to SoDA server in multiple
formats, and is queried either concurrently or until a strong
match at pre-defined level is found. The TSV files with
separate address fields are searched first, followed by searches
on a second file in which the entire address is stored together.
Additional methods were also used to further strengthen this
approach. They include the use of non-streaming matches of
phrases against entries, text annotations against specified
lexicons and the use of multiple stemming algorithms, such as,
Porter stemmer [17, 18] and KStem stemmer [19].

3) Pattern-based matching via Record Linkage:

The third lookup method in our solution was via use of
“Record Linkage Toolkit [16].” It is a python implementation
widely used in entity resolution problems. It provides the user
with capabilities for fast lookup via powerful matching
algorithms and also provides an optional capability to build
ML models. For the purposes of this study, we have, however,
used the toolkit only for its fast lookup capability.

Similar to the other two lookup methods discussed earlier
(PySolr and SoDA), the same two separate datasets were also
used in Record Linkage as user inputs. The first stage of
processing employs block and sorted neighbor indexing
methods to reduce the volume of data that is sent to
comparison algorithms. Under block indexing, records with
exact matches between any or all fields produce outputs that
show “matched” records. A sorted neighborhood indexing
method, however, combines the two datasets, sorts them
alphabetically, and finds the alphabetically closest dictionary
record(s) for each user entry. These selected “neighbors” are
subsequently sent to the classification stage. In the event that
the previous two indexing methods deem insufficient, full
indexing may be applied for a more comprehensive scheme of
search.

In the classification stage, the indexed results are
compared against a wide variety of matching metrics. For
string-based data, the Record Linkage program can use a
variety of algorithms including jaro, jaro-winkler, levenshtein,
qgram, and cosine similarity [16]. These algorithms compare
records and compute their matching status. For our specific
datasets, jaro-winkler and levenshtein algorithms yielded the
most consistently accurate results. Positive matches are
reported when the algorithm finds a match between the values
in an input field and the corresponding dictionary field under a
specified “similarity threshold.” This process is repeated for
each input field, and it results in a matrix of record pairs
classified into ones and zeros. The 1’s in this matrix signify a
positive match for the particular field of that given record pair,
whereas 0’s indicate a negative match status. Once this initial
process to find match is complete at individual field levels, the
program computes the match status of each record as a whole.

In the next step, the matching process uses the previously
created matrix, and, for each record, determines whether or
not a sufficient number of fields in the record match in order
to be considered a complete and successful match. For our
implementation, the program first checks for agreements
within all five fields, and if no matches are found, it
subsequently checks for agreement within at least four of the
five fields in the user entry. The pair of addresses with the
highest matching score in the list of search results is returned
to the user as the final output.

Stage III: ML Model

Any user entry of address that cannot be matched via the
three preceding preliminary lookup methods is subsequently
sent to the ML model stage for further processing. The ML
model was trained via Dedupe python library that uses a
combination of two separate ML models (regularized logistic
regression and hierarchical clustering [20]; discussed later).
Similar to the lookup methods discussed above, the first step
in using ML model via Dedupe is to load two datasets in csv
format: the dictionary and the simulated user entry datasets.
The dictionary data contain a list of complete and accurate
company addresses that potential users are likely to use. The
second dataset includes a simulated list of addresses that
potential users are likely to spell or type in differently. For
example, the user-entered addresses may contain ambiguities,
missing values, incorrect fields, improper formatting,
abbreviations, truncations, and other possible variations. The
ML model compares these two datasets, and determines
matches within pairs of records.

The first step to determine matches between strings or text
corpora using Dedupe involves calculation of “similarity
scores” via different measures. The method in our
implementation uses the Affine Gap Distance [21], which is a
string metric used to score alignments between strings. The
Affine Gap Distance counts the minimum number of changes,
such as substitutions, deletions, and additions required to
achieve an exact match between the two strings. This numeric
value thus represents the pairwise similarity between two
strings. Additionally, each address is split into component
fields (city, state, postal code etc.), and each individual field is
then compared with its corresponding dictionary value.

The gap distance is calculated based on individual fields
within a single address (city, state etc.) rather than the entire
address as a whole. This is particularly useful in our specific
use case because some fields within an address, such as, the
company name, may carry higher importance than other fields,
such as postal code. Different numeric weights (discussed
later) are assigned to each field (company name, address, city,
country, and postal code). These weight factors are multiplied
by their corresponding individual gap distance. The final gap
distance of the entire record is given by the weighted sum of
distances for all address fields.

In order to determine the numeric weights for each field
and the threshold values for gap distance, a supervised ML
method was employed in our model. For our training data, we
manually created labeled sample pairs across our address
dataset, where each pair was marked either a match or distinct.
This is a mode of training method in ML, called supervised
“active learning.” The labeled sample pairs allow a
regularized logistic regression model to learn from training
data and assign weights for each field. The individual weights,
combined with the total gap distance of the entire address,
yield an estimate of probability for pairs of records being
duplicates, which, in turn, is indicative of the likelihood of a
match between them. Thus, the predictive ML model is
essentially based upon the binary dependent variable (match
or distinct) derived from active learning and on the respective
gap penalties associated with each address.

The ML model also uses a method called “blocking,”
where different addresses are separated into distinct blocks
with some common features between them. Because similar
entities are likely to share some common feature(s), the search
algorithm can limit comparisons among addresses only within
the same block and not across separate blocks. This reduces
the number of required searches for a match, and,
consequently, results in improved efficiency in performance of
search algorithm of the ML model. Dedupe uses two sets of
blocking rules, namely, predicate and index blocks. Predicate
blocks bundle together records that share a similar trait or
characteristic feature. One such feature, for example, can be
the same few characters that two or more company names start
with in the name field of our address dataset. In the case of
index blocks, Dedupe creates a data structure, called inverted
index, which is populated with all the unique values in a
specific field. Records with at least one similar value for its
index are grouped together as a single block. Further, Dedupe
uses the Greedy Set-Cover algorithm

[22] in order to select a

set of blocking rules that, on one hand, maximizes the checks
for duplicates and, on the other, minimizes the required
number of comparisons. This algorithm selects addresses with
lowest weights and includes them within the most prospective
candidate blocks for match discovery. At the same time, the
algorithm does not unnecessarily increase the size of the block
and number of comparisons. Combined, these methods
provide the algorithm with a fast yet robust search mechanism
for pattern matching.

Once the probabilities are calculated for pairs of record
being duplicates or not, Dedupe uses a method, known as
hierarchical clustering with centroid linkage, in order to
group potential duplicates [21]. For example, let us assume

that one pair of addresses (A and B) and a second pair (B and
C) have high probabilities of being within-pair duplicates, 0.7
and 0.8, respectively. While we do not have direct measure of
probability of match between A and C in this case, each of
them is indirectly linked via high match probability with
addresses B. The address B, based on this algorithm, would be
considered the centroid for the same cluster in which all three
addresses are constituent members. Note that this clustering
algorithm relies on a computed value of probability threshold
for group membership within a single cluster. The calculation
of this threshold involves use of an F-score, which, in turn, is
calculated with an optimum tradeoff between precision and
recall. Precision, in this context, is a measure of how valid the
predictions by the Dedupe model are, whereas recall refers to
the sensitivity of the model in detecting true matches. In order
to calculate the precision and recall, a random sample of the
blocked data is taken and the pairwise probabilities are
calculated. In our specific use case, the prediction of false
match (“false positive”) is less desirable than missing a true
match (false negative). This is because a false match could
potentially lead to an undesirable consequence of monetary
transaction being delivered to an unintended recipient entity.
Accordingly, a higher weight was placed on precision than on
recall for our model performance. This was accomplished by
setting an optimum threshold for match definition.

Finally, in the event no match is found even via the hybrid
ML model, the user is prompted to enter additional
information and the search process is repeated starting with
stage I.

Stage IV: Output

The same Flask web application user interface (UI) that is
used for user input is also used to display the results from our
lookup methods and the ML model. The user can view all
results from the three lookup methods and the hybrid ML
model displayed individually on this presentation layer. This
provides the user with greater choice in accepting a particular
match results from any single matching method. Also, the UI
allows the user to run each search method sequentially or all
four methods concurrently.

III. RESUTLS AND DISCUSSIONS

Table 2: Time (milliseconds) elapsed for different match

types versus different matching methods

Match Types PySolr SoDA
Record

Linkage
Dedupe

Exact match:
1 MOBILE LIMITED

30 CITY ROAD

LONDON

7.46 17.07 47.31 173.64

Incorrect wording:
1 MOBILE LIMITED

30 CITY STREET
LONDON

5.67 16.73 44.73 200.72

Multiple ambiguities:
1 mobil lim 30 city rd

lon uk

4.78

(No

match
found)

50.83

(No

match
found)

135.77
(No match

found)

175.53

Our results on three example match types (exact match,
incorrect wording and multiple ambiguities) are shown in
Table 2 along with their corresponding elapsed times (in
milliseconds) in returning results via the three lookup methods
and the ML model. These results suggest that PySolr can
detect the most common types of inaccuracies in user entries
and successfully match them with corresponding accurate
addresses. Further, the results returned via PySolr are
consistently the fastest among all three preliminary lookup
methods. It is also easily scalable to large set of dictionary
data, and the lookup works seamlessly when updates are made
in the dictionary. Moreover, PySolr is useful in setting up the
foundation of Solr, which can also be used with SoDA.
Combined, PySolr provides a simple, fast and scalable way to
find matches between records when the threshold value for a
given match is not critical.

As for the use of SoDA in our solution, one of its
advantages is that it places higher importance on recall over
precision. As such, it uses a fast and dynamic programming
algorithm to calculate the edit distance between two text
corpora. For our use case, we estimated an optimum threshold
value for this edit distance (25) via multiple trial and errors.
This is to ensure that the “gap penalty” between the user entry
and the exact address are not exceedingly high for a desired
conclusive match. The use of an optimum threshold can help
reduce the number of false matches.

Another advantage of using SoDA in our entity resolution
problem is its ability to store aliases. When the dictionaries are
loaded into lexicons, the user can specify a list of words and
their variants that are frequently spelled differently. For
example, if the user specifies “RD” or “Rd” as known aliases
for “Road,” SoDA can identify them as exact matches. These
differently spelled variants are evaluated the same way as their
primary dictionary records. This capability of SoDA is thus
particularly useful in our use case, as abbreviations or
acronyms for both company name and street addresses are
common in user entries.

Notably, both SoDA and Record Linkage return match

results only when the matches satisfy a defined threshold for

confidence level in each method. The user sets the threshold

values based on trial and error on known test data. Also, these

threshold values can be customized based upon desired level

of confidence and the data format used in a specific use case.

Fig.2 The relative strengths of each method used in our

solution for entity resolution

While the three lookup methods are all useful in finding
matches, they show different degrees of effectiveness based
upon the match types (Fig. 2). For example, they all can
correctly detect matches in cases where only the name string
in the user input is incorrect, but the address string is exact
and accurate (no deviation from the dictionary entry).
Similarly, as desired, all lookup methods can ignore extra
white spaces and also account for special characters. There are
specific match scenarios, however, where these lookup
methods show different degrees of relative efficacy. For
example, unlike PySolr or SoDA, matching via Record
Linkage may fail due to its case sensitivity and sensitivity to
the order in which different substrings appear in the input
address. Further, there are other specific match types, such as
missing substring for which Record Linkage and SoDA fail to
find matches, but PySolr succeeds (e.g., input: “1 mobile 30

city London.” versus dictionary: “1 MOBILE LIMITED 30
CITY ROAD LONDON UK EC1Y 2AB”). Moreover, we
note examples of inaccurate street names that both Record
Linkage and SoDA can correctly match, whereas the identical
search phrases fail to find matches via PySolr. For example,
when the input address is “1 MOBILE LIMITED 400
CENTER POINTE LANE LONDON UK,” PySolr incorrectly
suggests a completely different address as a possible match.
Thus, these three lookup methods display their individual
strengths and weaknesses that can have different implications
for their suitability in specific use cases.

All three lookup methods are, however, consistently one or
two orders of magnitude faster (~ 6 – 48 milliseconds) than
the ML model (~173 – 200 milliseconds). Thus, our results
suggest that the three lookup methods can provide an efficient
solution for simpler match types (discussed in the last
paragraph) where they are likely to find consistent and
identical search result for a given user entry.

The use of three separate lookup methods reduces the
possibility of “false positives” (false matches), and provides a
higher degree of confidence on each match. However, in the
event that identical matching results are obtained consistently
across all three lookup methods for a given user entry, the user
may optionally accept the final result from this lookup stage
and forego the use of ML models in the next stage (Stage III;
as discussed in section 2). Thus, the lookup stage can
potentially limit the use of the computationally more
expensive ML model to only those cases when either no
matches are found at the lookup stage (Stage II) or search
results are not consistent among the three lookup methods.
Depending on the need and preference of the user, our
solution provides options to search each method sequentially
one after the other, or run them all concurrently.

As noted, the ML model seems most suitable in cases
where the preliminary lookup methods fail to return matches
due to multiple ambiguities. For example, the last sample in
Table 2 includes minor ambiguities in all the address fields
(dictionary: “1 MOBILE LIMITED, 30 CILTY ROAD,
LONDON, UK” versus user entry: “1 mobil lim, 30 city rd,
lon, uk”). In this case, all three preliminary lookup methods
fail to find a match, whereas the ML model successfully
returns a match between the user input and the dictionary
entry. Also, the ML model yields overall high values of
precision and recall (0.89 and 0.94, respectively) noted over a
large number of searches. These high values (~90%) indicate
that our ML predictions yield only a limited number of false
positives (high precision), while the searches via ML are still
very sensitive to all potential matches (high recall). Combined,
these results suggest that the Dedupe ML model can provide a
reliable solution to the address entity problem.

As noted, the use of the ML model, albeit computationally
more expensive, becomes an essential part of our overall
solution. It is particularly vital in cases where multiple
ambiguities exist in user entries. Because it is virtually
impossible to anticipate all possible ambiguities and
misspellings in each address that a user may enter, it is
impractical to prepare an exhaustive set of rules a priori in
order to account for all likely match scenarios. Accordingly,

the use of the ML model is critical in our overall solution of
supervised learning method via Dedupe (Fig. 2). This is
because the ML model does not require rule-based pattern
matching via, for example, regular expression. The model can
learn from the labeled training data and detect the patterns for
matching that can be applied on new user entries. Furthermore,
as additional marginal cases of ambiguities are encountered
over time, they can be appended to the existing training dataset,
and the ML model can be retrained with the revised dataset in
an attempt to improve the accuracy in model predictions.

IV. CONCLUSIONS

 We have explored the efficacy of a variety of fast
lookup methods and ML model solutions in entity resolution of
postal addresses. Our experimental results suggest that the
simple and perhaps most common user errors in entering
mailing addresses can be rectified via a variety of preliminary
lookup methods. These methods in our solution involve the use
of fast index-based search and dictionary annotation via several
Python software packages (PySolr, SoDA and Record Linkage).
Most common user errors are detected extremely fast at this
stage (elapsed time ~6 – 48 milliseconds). For the ML model
using Dedupe, however, the elapsed times for searches are
orders of magnitude higher (~ 174–201 milliseconds) across all
match types. Nevertheless, the use of the ML model seems
most suitable in detecting more complex match types where
multiple ambiguities exist in user entries. The ML model yields
consistently high values of precision and recall (0.89 and 0.94,
respectively), suggesting its potential use in address entity
resolution problems.

Depending on specific use cases, the proportions of false
positives and false negatives in the lookups and ML model
results may have diverging implications for their use in entity
resolution problems involving monetary transactions.
Accordingly, our choice of different methods in both lookup
and ML models reflects an optimum balance among speed,
accuracy and caution. Further, all of the four methods (three
lookup and one ML methods) employed in our solution can be
customized based on specific user data and requirements for
address matches.

Our comprehensive solution is applicable to any entity
resolution problems in any area of business where the
matching of records among multiple datasets is desired. This
flexible yet advanced solution is scalable, easy to integrate
with other enterprise applications, and it can potentially
reduce transaction processing times significantly.

 Finally, as more real data of user entries are collected over
time, the precision and recall of the ML model are expected to
further improve. Also, our additional experimental work is
currently underway that involves use of additional ML models
and deep learning (DL) models in order to include more
complex match types and leverage a majority voting algorithm
to minimize any bias within the ML or DL models.

Disclaimer

The views articulated in this paper are personal to the authors
and do not represent the views of their employers or any other
organization.

Acknowledgement

This research was funded and supported by the Innovation

Labs and Summer Internship Program at SWIFT. We thank

Soumitra Dutta (Cornell Univ.) and Uwe Aickelin (Univ. of

Melbourne) for their very constructive informal reviews. We

also thank Chris Martis, Kevin Dize, Nancy Murphy and

Sudhir Pai for their help with different steps in preparation for

the manuscript. We appreciate the help and support extended

by Peter Ware in this collaborative research work.

REFERENCES

[1] Powers, D. M. W., & Turk, C. C. R., Machine Learning of Natural
Language, Springer-Verlag, 1989.

[2] Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A., Jaitly, N.,
Senior, A., Vanhoucke, V., Nguyen, P., Sainath, T. N., & Kingsbury, B.,
Deep Neural Networks for Accoustic Modeling in Speech Recongnition:
The Shared Views of Four Research Group, Signal Processing
magazine, IEEE, 29.6, 82-97, 2012.

[3] Dong, Hai & Hussain, Farookh & Chang, Elizabeth., A survey in
semantic search technologies. 2008 2nd IEEE International Conference
on Digital Ecosystems and Technologies, IEEE-DEST, 403 – 408, 2008.

[4] Yang, Z., Yang, D., Dyer, C., He, X., Smola, A., & Hovy, E.,
Hierarchial Attention Networks for Document Classification,
Proceedings of NAACL-HLT, 1480-1489, 2016.

[5] Brigitte, E-N., Summarizing Informations, Springer, 1998.

[6] Dunn, H. L., Record Linkage, American Journal of Public Health, 36,
12, 1412-1416, 1946

[7] Newcombe, H. B., Kennedy, J. M., Axford, S. J., James, A P.,
Automatic Linkage of Vital Records, Science, 130, 3381, 954-959,
1959.

[8] Fellegi, L. P. & Sunter, A. B., “A theory for record linkage,” Journal

of the American Statistical Society, vol. 64, no. 328, 1969.

[9] Christen, P., A Survey of Indexing Techniques for Scalable Record
Linkage and Deduplication, IEEE TRANSACTIONS ON
KNOWLEDGE AND DATA ENGINEERING, VOL. Z, NO. Y, ZZZZ
2011

[10] Cohen, W. W., Ravikumar, P., & Fienberg, S., “A comparison of string
distance metrics for name-matching tasks,” in Workshop on Information
Integration on the Web, held at IJCAI’03, Acapulco, 2003.

[11] Dictionary data source: Open source data available at:

https://github.com/moshyedi/Data-
Source/blob/master/companies_final.csv

[12] Kocherhans, J., Kaplan-Moss, J., & Lindsley, D., pysolr, GitHub Inc.,
2018, https://github.com/django-haystack/pysolr.

[13] Pal, S., Solr Dictionary Annotator, 2015,
https://github.com/elsevierlabs-os/soda.

[14] Smiley. D., and Westenthaler, R., SolrTextTagger, 2013,
https://github.com/OpenSextant/SolrTextTagger.

[15] Christen, P., Data matching: concepts and techniques for record linkage,
entity resolution, and duplicate detection. Springer Science & Business
Media, 2012.

[16] de Bruin, J. d., Record Linkage Toolkit Documentation, Release 0.12.,
2018,
https://media.readthedocs.org/pdf/recordlinkage/latest/recordlinkage.pdf

[17] M.F. Porter, An algorithm for suffix stripping, Program, 14(3),
130−137, 1980.

[18] Porter, M., The Porter Stemming Algorithm, Revised Version,
https://tartarus.org/martin/PorterStemmer/

[19] Krovetz, R., Viewing Morphology as an Inference Process. In:
Proceedings of the Sixteenth Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, S.
191–203, 1993.

[20] Gregg, F., & Eder, D., DataMade & Contributors, Dedupe 1.9.3., The
MIT License (MIT), 2014, https://github.com/dedupeio/dedupe.

[21] Gotoh, O. An improved algorithm for matching biological sequences.
Journal of Molecular Biology, 162 (3), 705-708, 1982.

[22] Greedy Set-Cover Algorithms, Neal Young, 2008. Encyclopedia of
Algorithms, 379-381.

https://github.com/moshyedi/Data-Source/blob/master/companies_final.csv
https://github.com/moshyedi/Data-Source/blob/master/companies_final.csv
https://github.com/OpenSextant/SolrTextTagger
https://media.readthedocs.org/pdf/recordlinkage/latest/recordlinkage.pdf
https://github.com/dedupeio/dedupe

