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Abstract

Safety verification of hybrid dynamical systems relies crucially on the ability to reason about reach-

able sets of continuous systems whose evolution is governed by a system of ordinary differential equa-

tions (ODEs). Verification tools are often restricted to handling a particular class of continuous systems,

such as e.g. differential equations with constant right-hand sides, or systems of affine ODEs. More re-

cently, verification tools capable of working with non-linear differential equations have been developed.

The behavior of non-linear systems is known to be in general extremely difficult to analyze because

solutions are rarely available in closed-form. In order to assess the practical utility of the various veri-

fication tools working with non-linear ODEs it is very useful to maintain a set of verification problems.

Similar efforts have been successful in other communities, such as automated theorem proving, SAT

solving and numerical analysis, and have accelerated improvements in the tools and their underlying

algorithms. We present a set of 65 safety verification problems featuring non-linear polynomial ODEs

and for which we have proofs of safety. We discuss the various issues associated with benchmarking

the currently available verification tools using these problems.

1 Introduction

For verifying safety properties of hybrid systems, it is crucial to have the means of reasoning
about safety properties of purely continuous systems that determine state evolution inside the
operating modes.

In computer science, emphasis has traditionally been placed on working with hybrid systems
in which the continuous modes are governed by relatively simple ODEs. For instance, safety
verification of systems with ODEs possessing constant right-hand sides and right-hand sides
bounded within real intervals is aided by the fact that reachable sets of such continuous systems
can be computed exactly. Progress has been made on verifying safety in systems with linear
and affine continuous dynamics (with tools such as PHAVer [13] and SpaceEx [14]). This
is a much more difficult problem, since reachable sets of linear ODEs cannot in general be
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phrased in a decidable theory, which is only known to be possible for some special classes of
systems [22, 16, 18].

It is a well-known fact that non-linear ODEs can exhibit behaviour that is impossible under
affine or linear dynamics [19]. Their expressive power allows for modelling very rich dynamic
phenomena, but comes at the price of making the reachability analysis much more difficult. A
major obstacle is the fact that solutions to non-linear ODEs cannot in general be obtained as
closed-form expressions, i.e. finite expressions in terms of polynomials and elementary functions
such as exp, sin, cos, ln, etc. Hybrid systems with non-linear ODEs are not at all uncommon in
control theory; this is especially true of the class of piecewise-smooth systems (sometimes called
variable structure systems), which are used in the design of sliding mode controllers [10].

A number of tools and approaches have been developed that enable safety verification of
non-linear systems (e.g. [7, 21, 36, 31, 30, 29, 24, 17, 15, 37]). The methods currently in existence
differ in a number of aspects; for instance, the level of automation they provide, the generality
of system and inputs specifications, etc. These important (and at times subtle) differences make
the tools difficult to compare objectively. One approach to address the issue could be to push for
a consensus in the community about a useful and fairly general class of systems of interest that
we should all work on. However, any such enterprise would be necessarily artificial for the time
being as there is no generally agreed-upon classification of differential equations. In this work,
we rather advocate a pragmatic approach: that of creating a database of benchmarks that can
be used for a comprehensive assessment of the existing and future verification tools. The hope
would be to steer the research towards working with a growing set of examples that a variety of
related communities care about. If such a set were available, a tool (or an approach) could easily
be seen to be more powerful if it is able to handle (parse, verify, solve, etc.) a larger proportion
of those examples. Determining which verification tool is “better” cannot be entirely objective
as it would further need to take into account the tool’s running time performance, memory
requirements, level of automation, etc. However, we believe that the problem of comparing
verification tools can, at least in part, be addressed by collecting verification benchmarks and
converting them to a single standardized input format. While this effort is only a first step
towards a more ambitious goal, we feel it is important to initiate the process of gathering
interesting verification problems and making them available to the community.

Similar efforts have been successfully undertaken in fields such as automated theorem prov-
ing (e.g. the TPTP problem library [3]), SAT solving (where competitions, e.g. [1], have led to
drastic improvements in the performance of SAT solvers in the last two decades) and numerical
analysis [39], resulting in improved quality of the tools and their underlying algorithms.

Contributions

We (I) provide a set of 65 safety verification problems featuring non-linear systems, for all of
which the safety property is known to hold. Further, we (II) discuss the current challenges
in comparing verification tools working with non-linear continuous dynamics and (III) outline
ideas for addressing some of these difficulties.

2 Benchmarks

We have collected a set of 65 safety verification problems featuring non-linear ODEs, which
we have gathered from existing papers treating the problem of unbounded time safety verifi-
cation [24, 9, 11, 37] and invariant generation for non-linear systems (e.g. [6]). The problems
we have collected all share the property of having proofs of safety that were obtained using
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the methods presented in the pertinent papers (or having proofs that are immediate from the
results described therein).

In general, in order to fully state a safety verification problem, one requires four pieces of
information:

1. The system of ODEs, written using vector notation as ẋ = f(x), where f : Rn → Rn.

2. The mode invariant, denoted H ⊆ Rn, which defines the region where the system may
evolve along the solution to the system of ODEs.

3. The set of initial states X0 ⊆ Rn.

4. The set of unsafe (or forbidden) states Xu ⊆ Rn.

Remark Note that it is sufficient to consider autonomous ODEs, i.e. those in which the
right-hand side does not depend explicitly on the independent time variable t, because one
may always augment the system with ṫ = 1 and treat t as a state variable. Furthermore, in
many cases it is also sufficient to only consider polynomial problems because it is often possible
to re-cast safety verification problems with non-polynomial terms to problems only featuring
polynomial functions (see e.g. [25, 28]).

The problem is to show that it is impossible for the system to evolve into a forbidden state
xu ∈ Xu from any initial state x0 ∈ X0 by following the solution ϕt(x0) to the system of ODEs
ẋ = f(x) for any time while it remains within the evolution constraint H. Formally, this may
be written down as

∀t ≥ 0. ∀x0 ∈ X0. (∀τ ∈ [0, t]. ϕτ (x0) ∈ H)→ ϕt(x0) 6∈ Xu.

In bounded-time safety verification one is only interested in showing safety up to some finite
time bound T ≥ 0, i.e.

∀t ∈ [0, T ]. ∀x0 ∈ X0. (∀τ ∈ [0, t]. ϕτ (x0) ∈ H)→ ϕt(x0) 6∈ Xu.

Clearly, if the safety property holds for unbounded time, it is guaranteed for any fi-
nite time bound, but not conversely. Since all the problems we have gathered are non-
linear and have proofs of unbounded-time safety, we may designate this class of problems
NONLIN-UNBOUND-TIME-SAFE in order to distinguish it from other classes of problems that
we may wish to add later on, such as e.g. provably safe linear systems, or provably un-
safe systems, etc. In this section we will illustrate some of the safety verification prob-
lems featuring 2-dimensional ODEs. The full set of the 65 problems is available from
http://verivital.com/hyst/benchmark-nonlinear/

x

y

Figure 1: Non-linear system in the safety verification problem from [9].
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Example 2.1 (Non-linear example [9]). Dai et al. in [9] studied safety verification using barrier
certificates, illustrating their approach using the following system:

ẋ = 2x− xy,
ẏ = 2x2 − y.

The set of initial states is given by x2 + (y + 2) 2 ≤ 1 and the set of unsafe states is
x2 + (y − 1) 2 ≤ 9

100 (shown in green and red respectively in Fig. 1). The evolution constraint
is taken to be the real plane R2.

Example 2.2 (FitzHugh-Nagumo system example [6]). Ben Sassi et al. [6] reported a method
for generating polyhedral invariants for polynomial ODEs and applied it to the FitzHugh-
Nagumo system:

ẋ = −x
3

3
+ x− y +

7

8
,

ẏ =
2

25

(
x− 4y

5
+

7

10

)
.

With the knowledge of the invariant, by considering initial states that lie inside the invariant,

x

y

Figure 2: Safety verification in the FitzHugh-Nagumo system.

e.g. −1 ≤ x ≤ −0.5 ∧ 1 ≤ y ≤ 1.5 and letting −2.5 ≤ x ≤ −2 ∧ − 2 ≤ y ≤ −1.5 represent
the forbidden states, all of which lie entirely outside the invariant, one may conclude the safety
property. Fig 2 shows the phase portrait along with the initial and the unsafe states (in green
and red, respectively).

Example 2.3 ([37], ODE from [12], Ex. 10.15 (i)). In previous work [37], a non-linear ODE
from a textbook on the qualitative theory of planar ODEs [12]

ẋ = −42x7 + 68x6y − 46x5y + 258x4y + 156x3y + 50x2y + 20xy6 − 8y7,

ẏ = y
(
1110x6 − 220x5y − 3182x4y + 478x3y3 + 487x2y4 − 102xy5 − 12y6

)
,

was used to create a safety verification problem where the initial states are given by
x > −1 ∧ x < − 3

4 ∧ y ≤
3
2 ∧ y ≥ 1 and the forbidden states satisfy the inequality x > y + 1

(shown respectively in green and red in Fig. 3).
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x

y
Figure 3: Safety verification problem from [37].

2.1 Problem format

We have chosen to store our verification problems in a format used by the SpaceEx verification
tool for hybrid systems [14]. While SpaceEx currently cannot work with non-linear differential
equations, its input format is sufficiently simple and convenient. A given problem in this format
is stored in two separate files

1. An .xml file storing the ODE ẋ = f(x) and the mode invariant H of the system.

2. A .cfg file detailing the initial set X0 and the set of forbidden states Xu.

For example, the verification problem described in Example 2.2, may be stored in the two files
shown in Fig. 4 and Fig. 5.

1 <?xml version ="1.0" encoding ="iso -8859 -1"? >
2 <sspaceex xmlns ="http ://www -verimag.imag.fr/xml -namespaces/sspaceex" version ="0.2"

math=" SpaceEx">
3 <component id=" fitzhugh_nagumo_ben_sassi_girard_2">
4 <param name="x" type="real" local="false" d1="1" d2="1" dynamics ="any"/>
5 <param name="y" type="real" local="false" d1="1" d2="1" dynamics ="any"/>
6 <location id="1" name="p">
7 <invariant >true </invariant >
8 <flow >x ’==7/8+x-x^3/3-y &amp; y ’==(2*(7/10+x-(4*y)/5))/25</flow >
9 </location >

10 </component >
11 </sspaceex >

Figure 4: FitzHugh-Nagumo system dynamics, illustrated in Fig. 2.

3 Challenges

In using any significantly broad set of verification benchmarks, one faces a number of challenges
if one wishes to use them to compare safety verification methods and tools. Firstly, in contrast
to the world of SAT/SMT solving or automated theorem proving, verification of continuous
systems has not matured to the point where the community has agreed upon an input standard
that can be used to exchange problems (such as SMT-LIB [2] or TPTP [3]). Also, unlike
with numerical analysis or simulation, general safety verification problems need not have point
initial conditions, but rather a set of initial states that may be uncountably infinite, and not
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1 system = fitzhugh_nagumo_ben_sassi_girard_2
2 initially = "-1<=x & x<=-0.5 & 1<=y & y <=1.5"
3 forbidden = "-2.5<=x & x<=-2 & -2<=y & y<= -1.5"
4 output -variables = x,y
5 scenario = stc
6 directions = box
7 set -aggregation = "none"
8 sampling -time = 0.5
9 flowpipe -tolerance = 0.25

10 time -horizon = 9
11 iter -max = 4
12 output -format = GEN
13 verbosity = m
14 output -error = 0.001
15 rel -err = 1.0e-12
16 abs -err = 1.0e-15

Figure 5: SpaceEx configuration file specifying the initial and forbidden states.

necessarily “nice” (e.g. may be disconnected, non-convex, unbounded, etc.). Below we outline
some important challenges that stand in the way of benchmarking existing verification tools.

• Tools for bounded-time safety verification based on computing flowpipes enclosing reach-
able sets of non-linear ODEs, such as e.g. Flow∗, are often limited in the nature of the
initial and the forbidden sets of states. In particular, the underlying algorithms used in
these tools require the set of initial states to be bounded (unlike in Example 2.3); ideally
given by a hyper-rectangle (unlike Example 2.1). On the other hand, methods for auto-
matic unbounded-time safety verification based on searching for appropriate continuous
invariants (e.g. [29, 37]) are capable of working with much broader classes of initial and
forbidden regions. For instance, semi-algebraic initial regions that are unbounded, non-
convex, or whose description features a combination of conjunctions and disjunctions do
not present a problem.

Remark At the same time, tools based on flowpipe construction can sometimes give a
sense of the “hardness” of the verification problem when they fail to prove safety up to
some given time bound, whereas invariant-based verification tools typically do not provide
useful insights into the nature or the difficulty of the problem when they fail.

• Tools that employ interval arithmetic often require bounds on the state variables of the
system (e.g. HSolver [33, 34], dReach [21]), which technically renders them inapplicable
to safety verification problems where the evolution constraint H is unbounded, e.g. given
by Rn.

• Certain tools (e.g. Flow∗) cannot work with sets described by strict inequalities (such as
the forbidden states in Example 2.3). While it would be sound to simply over-approximate
the closure of such sets by relaxing the inequalities to be non-strict, this step currently
needs to be performed manually by the user and (inevitably) affects the reachability anal-
ysis.

• The performance of tools often depends heavily on the user-specified options, such as e.g.
the fixed/adaptive time steps used for the verified integration, error tolerances, etc. It is
presently not apparent how one might automatically translate “good” settings from one
verification tool to another, or indeed automatically arrive at good settings for a particular
tool in the first place. Thus, some verification tools that are designed to be fully automatic
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rely crucially on the user choosing the right settings, which is typically difficult for a non-
expert.

• Some unbounded-time verification methods (e.g. [31]) likewise require significant manual
input from the user, such as e.g. selecting templates for polynomial functions. It is yet
unclear how these methods can be meaningfully compared to methods that provide a
greater level of automation.

• Uncertainty in the continuous dynamics is permitted by some verification tools (e.g. Flow∗),
but not others.

4 Outlook

Safety verification problems for non-linear systems are very useful for assessing the utility and
efficiency of invariant generation methods (e.g. [35, 38, 6, 29, 26, 40, 17, 37]), as well as tools
based on verified integration of ODEs (e.g [7, 27, 20, 21]). We are hopeful that maintaining and
further populating the set of verification benchmarks will result in improvements to the exist-
ing capabilities offered by the tools for both bounded and unbounded-time safety verification.
Improvements in invariant generation would also greatly benefit deductive verification tools for
hybrid systems, such as theorem provers (e.g. [30, 15, 23]).

At least some of the challenges outlined in the previous section can potentially be addressed
using HyST [5], a source transformation tool for hybrid systems that takes as input a hybrid
system verification problem in the SpaceEx format and translates it into formats accepted by
other verification tools. In addition to translating between the various problem formats, HyST
is able to work with its internal representation of the verification problem through so-called
model transformation passes, which can address issues that affect particular verification tools.
For instance, currently HyST can add identity reset maps to transitions in hybrid automata,
split transition guards with disjunctions, etc. A potentially interesting future transformation
pass could be implemented in HyST to convert continuous systems with uncertainty into hybrid
systems in which there is no uncertainty in the continuous dynamics, e.g. following the work
of Ramdani et al. [32].

At present, HyST can translate problems into formats accepted by Flow∗, dReach, HyCre-
ate [4], HyComp [8] and SpaceEx. An interesting future direction would be to extend it to also
work with invariant generation tools and add model transformation passes to soundly convert
safety verification problems that currently cannot be processed by some of the verification tools
into a form that is amenable to analysis.

In collecting safety verification benchmarks it is profitable to find a useful classification. One
could separate verification problems for continuous systems into classes depending on certain
features, such as:

• the type of continuous dynamics, e.g. constant/linear/non-linear,

• the dimensionality of the system (i.e. the number of state variables, |x|),

• the type of safety verification (i.e. bounded versus unbounded time),

• the nature of the evolution constraint (e.g. bounded versus unbounded state space),

• the nature of the initial and forbidden set (bounded versus unbounded; if bounded, hyper-
rectangles versus more general sets), and

• the nature of the verification problem itself (i.e. is the system safe or unsafe?).
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Such a classification will certainly become important in the future as more verification problems
are gathered and added to our collection. Our initial set of 65 problems (which we tentatively
labelled NONLIN-UNBOUND-TIME-SAFE) belongs to one of the most general classes under this
scheme, since it makes few assumptions about the nature of the verification problem. This
generality makes it difficult to use the problems for benchmarking existing tools, but at the
same time serves to bring out their current limitations.
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